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Quantum Codes

Shor (1995)
e quantum errors can be corrected
e hide a state in non-local degrees of freedom
e perform (commuting) check measurements to infer error

Parameters of Quantum Codes:
e number of physical qubits n
e number of encoded qubits k
e smallest weight of an undetectable error d (distance)

III. ENCODING

Our encoding is as follows. Suppose we have k qubits that
we wish to store. We have our quantum computer encode
each of these qubits into nine qubits as follows:
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Classical Codes & CSS Quantum Codes

Gassical (linear, binary) codes
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ﬁ:SS quantum codes

Defined by two check matrices
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Bravyi-Leemhuis-Terhal (2010):
Any [[n,k,d]] stabilizer code can be
mapped onto a [[4n,2k,2d]] CSS code.




LDPC Quantum Codes

4 LDPC (Quantum) Codes N
Two conditions:

1. Each check operates on O(1) (qu)bits

\2. Each (qu)bit participates in O(1) checks

e Classical: H needs to be sparse / CSS: H, and H, must be sparse
e Classical LDPC codes: good codes (k = 6(n) and d = ©(n))
e Big open question: Can LDPC quantum codes be good?

o hard:H H =0

o take good code H, then H, can not be sparse!

/

e Until recently: not even distance scaling beyond polylog(n) Vn



History of LDPC Quantum codes with large distances
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Product Constructions

Classical Code 1 Classical Code 2 I— Quantum Code
I

e Can take product of two classical codes

e Quantum code inherits properties of input codes

Tillich-Zémor (2013), Bravyi-Hastings (2014), Audoux-Couvreur (2015), Zeng-Pryadko (2019), Evra-Kaufman-Zémor (2020)



Product Constructions

e Algebraic approach is technical Check
e \Want to talk about codes in terms of fopology /
Bit
Take repetition code on 3 bits as an example: \
e 3 bits

e codewords are 000 and 111

e 3 parity checks

110
H=1011 Can be identified with a circle graph:
101 e edges are bits

e vertices are checks



Product Constructions

Ox0 = 69

classical classical
Expressing this as matrices: quantum _
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Observation:
e Kronecker product: size of quantum code is product of the input code lengths
e distance is the same as for input codes
e can achieve at most d = ©(Vn)



Fiber Bundle Codes

Hastings-Haah-O’Donnell (also Freedman-Meyer-Luo):
introduce twists into the product to increase distance
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toric code: shortest non-contractible loop = distance
take LxL torus: distance is L

can twist torus to increase length of one of the loops



Fiber Bundle Codes

Twists can be described in the language of fiber bundles: m
e Base manifold
e Fiber manifold
e local data describing twists Q

Hastings-Haah-O’Donnell: e _Q( ”3/%0%! ,,,) |

Random code as base ‘

+ circle as fiber (repetition codes) - Q(n %//,o;,é} »./
+ random twists

o= with high probability
‘e |
N 0

W,
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Fiber Bundle Codes

Step 1: Construction of fiber bundle
Input:

e base code has n’ bits

e fiber is repetition code of size { = O(n’)

e twists are random and of length ©(\t)

Result:
e code has n=0(In’)=0O(n"?) qubits
e encodes k = O(n’) qubits w.h.p.
e X-distance is (¥t n’) = ©(n**) w.h.p.
e Z-distance is O(f) = O(n"?) w.h.p.
e still limited by the Z-distance!

A
Z/ rauolon C,é"!‘!‘s?ﬁ.é cocle
c{;’ ize n
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Fiber Bundle Codes

Step 2: Distance balancing (Hastings ‘17, Evra et al. ‘20)

Imbalanced Balanced
Quantum x Classical Quantum
Code Code Code

Input:
e quantum code A with parameters [[n, k,,d,,d.]]
e classical code B with parameters [n;,k;,d]

Output:
Quantum code with
e n'=0(n,n;)
o Kk =0(k,k;)
e distances
o dy =d,and
o d,=dd,

E

=
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de > d 2 Dx O(K
‘imbalanced’ Da = A = Lix
surface code

‘balanced’
3D code

when d,d, scales faster than \n we break
polylog(n)Vn-distance barrier
their example: d, =2 Q(n®**) and d, = Q(n"?)

obtain code with d = Q(n*®) 12



Fiber Bundle Codes

Step 3: Reducing check weights

Checks of random code have polylog(n) weight

polyls. (o)

—
O(+) / \

L > Q(n"Fsye), b= O 45w
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Lifted Product Codes

/Main idea:

Lift the tensor product of classical codes from I,

N to an {-dimensional, commutative FF,-algebra R

Lifted product:
Take ‘check matrices’ H1 & H2 with entries in R

#X: (%C@Q I‘/ I.Z@E/_/j) H%=<Ie®k /{Z/#jere)

The tensor product over R gives quantum codes which are smaller by a factor of {
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Lifted Product Codes

Special case: consider the F,-algebra R = [y [x]/(xg — 1)

and let H, be the repetition code of length £ (checks generated by 1+x)

Connection to Hastings-Haah-O’Donnell:
Think of x as shift-operator along fiber of length ¢

e H,is constructed from ‘random cyclic lifts’ of a special graph called expander graph (more on that later)

e Similar to fiber bundle construction: random lifts = random twists

e Slightly more structured than HHO: No weight reduction needed

Agarwal et al., SIAM Journal on Discrete Mathematics, vol. 33, no. 3, 2019
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Lifted Product Codes

Almost linear distance:

classical code of length n’

choose { = O(exp(n’))

obtain quantum code of size n = O(f n’)
encodes k = ©Q(n’) = ©(log(n)) qubits
using a very elegant ‘averaging trick’ they
show that d = O(f) = O(n/log(n))

S U
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Lifted Product Codes

Quantum Classical x Classical Quantum
Code Code Code Code

Dimension Balancing

Can take further (regular) tensor products to trade distance for encoded qubits
e [[N,K,D]] quantum code Q
e [n’,k’,d’] classical code C
e Q2CeC gives code with [[@(nN),0(k’?K),Q(d'D)]]

s Q(m%%/éym)/ = @(”x@’h)
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Balanced Product Quantum Codes

Tensor product
+ Quantum Code
symmetry reduction

How do we obtain symmetrical codes?



Expander Graphs

Graphs which have strong connectivity property

Measured by Cheeger constant h

h()() - min Léi/
S

Interested in expander graphs of constant degree
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Expander Graphs

e HHO & PK use random graphs which are good expanders
e We use an explicit (non-random) construction

Lubotzky-Phillips-Sarnak (1988)
e Optimal expanders
e Cayley graphs of PGL(2,IFq) or PSL(2,IFq)

e Can be thought of as hyperbolic tessellations

Hyperbolic graphs are expanders

20



Expander Codes

Sipser-Spielman (1996)

Combine:
o Family of expander graphs
o Local block codes

Obtain family of good classical codes

1m0 IFEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. €, NOVEMBER 169

Expander Codes

Michacl Sipser and Daniel A. Spiciman

Abstract—Using expander graphs, we construct a new family
of asymptotically good, linear error-correcting codes. These codes
have Hoe timn saqyental decoding alguriuse and logaitale
time parallel decoding algori near number of
processors. We present mm randomized and explicit construc-
tions of these codes. results the good

However, 2 randomly chosen graph will
level of expansion with high probability
In Section VI, we construct asymptotically good expander
codes that rely on graphs with less expansion. As explicit
of graphs with such expansion exist, we can

e the required

performance of the randomly chosen codes.

Index Terms— Asymplotically gond error-correcting code,
lincar-tim aph.

1. INTRODUCTION

PRESENT an asymptotically good family of linear
Wen'mruun'wung codes that can be decoded in linear
time. As these codes are derived from expander graphs, we call
them “expander codes.” Expander codes belong to the class of
low-density parity-check codes introduced by Gallager [10]

Gallager [10] suggested using the adjacency matrix of a
randomly chosen low-degree bipartite graph as the parity
check matrix of an eror-correcting code. He showed that
such a code probably has a rate and minimum distance near
the Gilbert-Varshamov bound, He also sugg atural
sequential algorithm for decoding these codes, Alllmu”h he
was unable to demonstrate that it would correct a constant
fraction of error.

Tn our first construction, we replace Gallager’s random
graphs with very good expander graphs. In Section
analyze the patural sequential decoding alg
the expansion of this graph,
a constant fraction of error from a corrupted codeword. In
Appendix I, we show that this algorithm succeeds only if
the underlying graph is an expander. Zyablov and Pinsker
[35] showed that, with high probability over the choice of
the graph, Gallager's codes could be decoded by circuits
of size O(nlogn) and logorittmic depth. In Section V
B, we show that our expander codes can be decoded by
slightly simpler circuits of imilar complexity. Pippenger [27)
pointed out that a proof of the correctness of our parallel
decoding algorithm can be obtained from Kuznetsov's proof
of of a construction of lerant memoties
derived from Gallager’s codes [17]. Unfortunately, we are
unaware of explicit constructions of expander graphs that have
the level of expansion needed for the arguments in Section V.

-A, we

orithm in terms of
d show that it will remove
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present explicit constructions of asymptotically good expander
codes, along with a simple paralle] algorithm that can remove
a constant fraction of error from these codes. This algorithm
can be implemented as a circuit of size O(nlogn) and depth
O(logn), or simulated in linear time on a sequential machine.

For the sake of accuracy, we begin this paper with # brief
overview of a few important models of computation in which
our algorithms can be seen to run in linear time. In Section
1L, we recall the properties of expander graphs that we will
need in this paper. We conclude with some advice to those
who might implement these codes along with the results of
some experiments that we performed to test the performance
of expander codes derived from randomly chosen graphs.

We are unaware of an algorithm that will encode our
expander codes in less than O(n?) time (such a time bound
is trivial for lin . our expander codes are
an essential element of a construction of asymptotically good
codes that can be both encoded and decoded in linear time
311

A. Terminology

In this paper, we build linear codes over the alphabet {0, 1}
(although it is easy to generalize the constructions to larger
ficlds). By a code of block length n and rate v, we mean a
code in which the words have n symbols, of which rn are
message symbols that may be freely chosen and the remaining
(1—r)n are determined by the choice of the message symbols.
In particular, a linear code of block length n and rate r is a
subspace of GF (2)" of dimension rn. If a code has minimim
relative distance c, then each pair of words in the code differs
in at least am symbols. When we say that an algorithm will
correct an ¢ fraction of error from the code C, we mean that the
algorithm, on input a word w that differs from & word v & C
in at most en symbols, will output v. We make no restrictions
on the output of the algorithm on other input words

T. MODELS OF LINEAR TIME

The meaning of “linear time” depends on the model of
computation considered. In this section, we provide a bricf
description of 2 few standard models of sequential computation
under which our algorithms run in linear time. We also
describe the cireuit model, which we will use to analyze our
parallel algorithms

B
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Expander Codes

Example
e Hyperbolicgraph %7 T ¥
e Edges are bits All code words of the
& vertices are parity checks [7,4,3] Hamr.nlnglcode
_ _ " (up to cyclic shifts)
e Not checking for parity only ™.
: : (e, 0, 6, 6, 06, 0, 0]
(as in toric code) 0.0 0 0 1. 1 1]
6, 6, 6, 1, 6, 1, 1]
e Check for code words of a (e, 0, 6, 1, 1, 1, 1]
Y | N/ = [\ k¢ [01 e, 1, 0, 0, 1, 1]
local codeL e (e, 6, 1, 6, 1, 0, 1]
(e, o, 1, 1, o, 1, 1]
(e, 0, 1, 1, 1, 0, 1]
: (e, 1, 0, 1, 0, 1, 1]
:'.-"""""'-"%.,’. ."““_.-------..._.; [1; 1; lr lr 1! 1! 1]



Expander Codes

o

Put code word of Hamming
code around a vertex
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Expander Codes
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Expander Codes
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Expander Codes

Expansion of graph X
+

distance of local code L

—enforce code words of

weight O(n)!
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Expander Codes

Counting degrees of freedom (bits) and constraints (checks)

%%Af %@; %f\ﬂ e seboune k = const. x n
Z}QP

Obtain classical codes with parameters
[n, k=6(n), d=6(n)]

“Good codes”




Balanced Products

Topological notion:

Consider two topological spaces X & Y on which group H acts from left & right, respectively.

For any pair in their cartesian product (X, )/) 2 Xx >/
=
We define the anti-diagonal action h . (X, 7) = (X 11 | h )’)

The balanced product X x,, Y is then given by the quotient space:

X)‘HY — Xx%

28



Balanced Product Quantum Codes

Use balanced product to take product with repetition code

Input:
e expander code with cyclic symmetry
e repetition code
e cyclic symmetry group H

For the experts:
e Deal with a double complex
e Checks are defined through boundary
operators respecting balanced product
e Current Example:
o  One type of check is simply the
check matrix of the expander code!

Al
) @ G(2) 25 (Cots) o)

id®)d / il
Geometric intuition: \/ %

e expander code comes with associated Riemann surface C ((X)8ls) 8, Co (2; )
e wrap surface around itself (giving rise to twists) 640() Bu 9(22) Sl ( o( ) i

e glue-in circles (repetition codes)
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Balanced Product Codes

Codes constructed using balanced product:

1. Take s-regular expander graph X to be Cayley graph of PGL(Z,Fq):
a. |PGL(2F.) =a(a*1)

b. contains cyclic subgroup H of order |H|= g

Better bounds could be
attainable if we knew other
Cayley expanders

2. Local code L guaranteed to exist

Properties of the code:
e Number of qubits n = 3 x number of edges in X
e Number of logicals k = ©(n??)

e Z-distance d, = O(n)
using Panteleev-Kalachev bounds
e X-distance d, 2 Q(n""?)

Taking product with suitable classical code gives k = @(n*®°) and d = Q(n®°) &L



Concrete Example

Genus-14 surface with order-13 cyclic symmetry
Local Code: Hamming [7,4,3]

Quantum code:
e 1014 physical qubits
e 6 logical qubits
e Monte Carlo:
o X-distance <13
o Z-distance <18
e check-weights 6 (X-checks) and 4-8 (Z-checks)
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Balanced Products are symmetric

e Fiber bundle & Lifted product codes:

o defined in terms of base and fiber

o There are restrictions on what the fiber can be
e Balanced product codes:

o different point of view

o product is more general

o associated group algebra can be non-commutative

32



Conjecture on Good LDPC Quantum Codes

Conjecture:
Consider two suitable classical codes C, & C, (good & LDPC) of length n with common

symmetry group G of size ©(n).

The balanced product C, e, C, is a good LDPC quantum code [k = ©(n) and d = O(n)]

\_

\

/

Already checked that k = ©(n).
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Things | did not talk about:
e All these products can be cast in the language of homology
o streamlines a lot of concepts
o makes proofs simpler

e Find more background in perspective article arXiv:2103.06309

Thank you!
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