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Quantum Codes

Shor (1995)
● quantum errors can be corrected
● hide a state in non-local degrees of freedom
● perform (commuting) check measurements to infer error

Parameters of Quantum Codes:
● number of physical qubits n
● number of encoded qubits k
● smallest weight of an undetectable error d (distance)

[[n,k,d]]
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Classical Codes & CSS Quantum Codes

Bravyi-Leemhuis-Terhal (2010):
Any [[n,k,d]] stabilizer code can be 

mapped onto a [[4n,2k,2d]] CSS code.

Classical (linear, binary) codes CSS quantum codes

Defined by two check matrices

with condition:

HX HZ
tr

 = 0

3



LDPC Quantum Codes
LDPC (Quantum) Codes

Two conditions:

1. Each check operates on O(1) (qu)bits

2. Each (qu)bit participates in O(1) checks

● Classical: H needs to be sparse / CSS: HX and HZ must be sparse

● Classical LDPC codes: good codes (k = 𝚹(n) and d = 𝚹(n)) 

● Big open question: Can LDPC quantum codes be good?

○ hard: HX HZ
tr

 = 0

○ take good code HX then HZ can not be sparse!

● Until recently: not even distance scaling beyond polylog(n) √n 4



Fiber bundle codes

Hastings-Haah-O’Donnell

09/2020

History of LDPC Quantum codes with large distances

Balanced product codes

Breuckmann-Eberhardt

Kitaev: Toric code

1996

Freedman-Meyer-Luo

2002

Evra-Kaufman-Zémor

04/2020

Kaufman-Tessler

08/2020

Lifted product codes

Panteleev-Kalachev

12/2020
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Product Constructions

Classical Code 1 Classical Code 2 Quantum Code

● Can take product of two classical codes

● Quantum code inherits properties of input codes

Tillich-Zémor (2013), Bravyi-Hastings (2014), Audoux-Couvreur (2015), Zeng-Pryadko (2019), Evra-Kaufman-Zémor (2020)
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Product Constructions

● Algebraic approach is technical

● Want to talk about codes in terms of topology

Check

Bit

Can be identified with a circle graph:

● edges are bits

● vertices are checks

Take repetition code on 3 bits as an example:

● 3 bits

● codewords are 000 and 111

● 3 parity checks 
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Product Constructions

Expressing this as matrices:

Observation:
● Kronecker product: size of quantum code is product of the input code lengths
● distance is the same as for input codes
● can achieve at most d = 𝚹(√n) 8

classical classical
quantum



Fiber Bundle Codes
Hastings-Haah-O’Donnell (also Freedman-Meyer-Luo): 
introduce twists into the product to increase distance

● toric code: shortest non-contractible loop = distance

● take LxL torus: distance is L

● can twist torus to increase length of one of the loops

9



Fiber Bundle Codes

with high probability

Twists can be described in the language of fiber bundles:
● Base manifold
● Fiber manifold
● local data describing twists

Hastings-Haah-O’Donnell:

Random code as base

+ circle as fiber (repetition codes) 

+ random twists
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Fiber Bundle Codes
Step 1: Construction of fiber bundle

Input:

● base code has n’ bits

● fiber is repetition code of size ℓ = Θ(n’)

● twists are random and of length Θ(√ℓ)

Result:

● code has n = Θ(ℓ n’) = Θ(n’2) qubits

● encodes k = Θ(n’) qubits w.h.p.

● X-distance is Θ(√ℓ n’) = Θ(n3/4) w.h.p.

● Z-distance is Θ(ℓ) = Θ(n1/2) w.h.p.

● still limited by the Z-distance! 11



Fiber Bundle Codes
Step 2: Distance balancing (Hastings ‘17, Evra et al. ‘20)

Imbalanced
Quantum 

Code

Classical 
Code

Balanced
Quantum 

Code

‘imbalanced’ 
surface code

‘balanced’
3D code

Input:
● quantum code A with parameters [[nA,kA,dX,dZ]]
● classical code B with parameters [nB,kB,d]

Output:
Quantum code with

● n’ = Θ(nA nB)
● k’ = Θ(kA kB)
● distances 

○ d’X = dX and 
○ d’Z = d dZ

● when dXdz scales faster than √n we break 

polylog(n)√n-distance barrier

● their example: dX ≥ Ω(n3/4) and dZ ≥ Ω(n1/2)

● obtain code with d ≥ Ω(n3/5) 12



Fiber Bundle Codes
Step 3: Reducing check weights

Checks of random code have polylog(n) weight
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Lifted Product Codes
Main idea:

Lift the tensor product of classical codes from 𝔽2 

to an ℓ-dimensional, commutative 𝔽2-algebra R

The tensor product over R gives quantum codes which are smaller by a factor of ℓ

Lifted product: 
Take ‘check matrices’ H1 & H2 with entries in R
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Lifted Product Codes

● H2 is constructed from ‘random cyclic lifts’ of a special graph called expander graph (more on that later)

● Similar to fiber bundle construction: random lifts ≈ random twists

● Slightly more structured than HHO:  No weight reduction needed

Agarwal et al., SIAM Journal on Discrete Mathematics, vol. 33, no. 3, 2019

Connection to Hastings-Haah-O’Donnell:
Think of x as shift-operator along fiber of length ℓ

Special case: consider the 𝔽2-algebra

and let H2 be the repetition code of length ℓ  (checks generated by 1+x)
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Lifted Product Codes

Almost linear distance:

● classical code of length n’

● choose ℓ = Θ(exp(n’))

● obtain quantum code of size n = Θ(ℓ n’)

● encodes k = Θ(n’) = Θ(log(n)) qubits

● using a very elegant ‘averaging trick’ they 

show that d = Θ(ℓ) = Θ(n/log(n))
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Lifted Product Codes

Dimension Balancing

Can take further (regular) tensor products to trade distance for encoded qubits

● [[N,K,D]] quantum code Q

● [n’,k’,d’] classical code C

● Q⊗C⊗C* gives code with [[Θ(n’2N),Θ(k’2K),Ω(d’D)]]

Classical 
Code

Quantum 
Code

Classical 
Code

Quantum 
Code

17



Balanced Product Quantum Codes

Tensor product
+

symmetry reduction

Classical Code 1

Classical Code 2

Symmetry group

Quantum Code

How do we obtain symmetrical codes?18



Expander Graphs

Graphs which have strong connectivity property

Measured by Cheeger constant h
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Interested in expander graphs of constant degree



Expander Graphs

Hyperbolic graphs are expanders

Lubotzky-Phillips-Sarnak (1988)

● Optimal expanders

● Cayley graphs of PGL(2,𝔽q) or PSL(2,𝔽q)

● Can be thought of as hyperbolic tessellations

● HHO & PK use random graphs which are good expanders
● We use an explicit (non-random) construction
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Expander Codes

Sipser-Spielman (1996)

● Combine:

○ Family of expander graphs

○ Local block codes

● Obtain family of good classical codes

21



Expander Codes

Example
● Hyperbolic graph

● Edges are bits 

& vertices are parity checks

● Not checking for parity only 

(as in toric code)

● Check for code words of a 

local code L

All code words of the 
[7,4,3] Hamming code 

(up to cyclic shifts)

animation by Greg Egan
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Expander Codes

Put code word of Hamming 
code around a vertex
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Expander Codes
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Expander Codes
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Expander Codes

Expansion of graph X
+

distance of local code L

→enforce code words of 
weight Θ(n)!
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Expander Codes

Counting degrees of freedom (bits) and constraints (checks) 
we get bound:

k ≥ const. x n

Obtain classical codes with parameters

[n, k=Θ(n), d=Θ(n)]

“Good codes”
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Balanced Products

Topological notion:
Consider two topological spaces X & Y on which group H acts from left & right, respectively.

For any pair in their cartesian product

We define the anti-diagonal action

The balanced product X xH Y is then given by the quotient space:
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Balanced Product Quantum Codes

Use balanced product to take product with repetition code

Geometric intuition:
● expander code comes with associated Riemann surface
● wrap surface around itself (giving rise to twists)
● glue-in circles (repetition codes)

Input:
● expander code with cyclic symmetry
● repetition code
● cyclic symmetry group H
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For the experts:
● Deal with a double complex
● Checks are defined through boundary 

operators respecting balanced product
● Current Example:

○ One type of check is simply the 
check matrix of the expander code!



Balanced Product Codes
Codes constructed using balanced product:

1. Take s-regular expander graph X to be Cayley graph of PGL(2,𝔽q):

a. |PGL(2,𝔽q)| = q(q2-1) 

b. contains cyclic subgroup H of order |H|= q

2. Local code L guaranteed to exist

Taking product with suitable classical code gives k = Θ(n4/5) and d ≥ Ω(n3/5)

Properties of the code:

● Number of qubits n = 3 x number of edges in X

● Number of logicals k = Θ(n2/3)

● Z-distance dZ = Θ(n)

● X-distance dX ≥ Ω(n1/3)
using Panteleev-Kalachev bounds

Better bounds could be 
attainable if we knew other 

Cayley expanders
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Concrete Example

Genus-14 surface with order-13 cyclic symmetry

Local Code:  Hamming [7,4,3]

Quantum code:
● 1014 physical qubits
● 6 logical qubits
● Monte Carlo: 

○ X-distance ≤ 13
○ Z-distance ≤ 18

● check-weights 6 (X-checks) and 4-8 (Z-checks)
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Balanced Products are symmetric

● Fiber bundle & Lifted product codes:

○ defined in terms of base and fiber

○ There are restrictions on what the fiber can be

● Balanced product codes: 

○ different point of view

○ product is more general

○ associated group algebra can be non-commutative 32



Conjecture:
Consider two suitable classical codes C1 & C2 (good & LDPC) of length n with common 

symmetry group G of size 𝚹(n).

The balanced product C1 ⊗G C2 is a good LDPC quantum code [k = 𝚹(n) and d = 𝚹(n)]

Conjecture on Good LDPC Quantum Codes

Already checked that k = 𝚹(n). 33



Thank you!
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Things I did not talk about:

● All these products can be cast in the language of homology

○ streamlines a lot of concepts

○ makes proofs simpler

● Find more background in perspective article arXiv:2103.06309


