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Quantum complexity

Quantum (circuit) complexity is a standard concept in quantum

information theory. Applications abound:

I Which operations are hard and which are easy?

I Classical analogue is one of the most pervasive objects in CS.

I Definition of topological phases of matter.

I Black holes in AdS/CFT.



A traditional definition of complexity

How many 2-local gates are necessary to implement a unitary (or a

state)?

U =

Denote the number of gates in a minimal decomposition by C(U).



How complex is this thing I am looking at?

Notoriously hard to compute or even to bound!



Complexity growth: A universal phenomenon?

How does complexity grow in typical local dynamics?

Linear growth beyond saturation of entanglement entropy.

[Brown, Susskind]
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Random quantum circuits: A model for local dynamics

Random quantum circuits: Draw gates iid from the Haar measure

on SU(4) and contract along a fixed arrangement/architecture.

(a) (b) (c)

[Brandão, Chemissany, Hunter-Jones, Kueng, Preskill]



Why should Brown & Susskind’s conjecture be true?

I Linear growth: The unitary group is big and circuits should be

expected to generate ever new unitaries.

I Complexity as entanglement beyond entropies.[Nahum, Ruhman, Vijay,

Haah]

I Wormhole growth paradox in AdS/CFT.

I Saturation: Every unitary can be implemented with O(4n)

many gates.

I Most unitaries are very complex: SU(2n) is of dimension

4n − 1, while a circuit with R gates is described by at most

dimSU(4) ∗ R parameters.

Proof idea: Can this argument be refined?
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Linear growth

Theorem

U = random quantum circuit in architecture A.

T=# of disjoint backward lightcones in A.

C(U) ≥ T

9
− n

3
,

with unit probability, until the number of gates grows to

T ≥ 4n − 1.

Brickwork circuits:

C(U) ≥ # of gates

9n2
− n

3
.
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The circuit as a map

We view the contraction as a smooth map with an image U(A):



A dimension for U(A)

What kind of set is U(A)?

I Tarski-Seidenberg principle: The image of a polynomial map

is semialgebraic.

I A semialgebraic set is the solution to a set of polynomial

equations and inequalities.

I A finite union of manifolds. =⇒ Highest dimension in this

decomposition.
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Comparing dimensions works!

Using tools from differential topology and algebraic geometry:

Lemma

If dimU(A′) < dimU(A), then U(A′) has probability 0 for random

quantum circuits in architecture A.

I Every unitary with circuit complexity ≤ R ′ in some U(A′) with

#gates(A′) ≤ R ′.

I dimU(A′) ≤ O(R ′).

I Suffices to lower bound dimU(A).



The dimension as a proxy for complexity

C(U) dimU(A)



Dimensions and the rank

I dimU(A) equals the maximal rank of FA.

I It suffices to find a single circuit such that the Jacobian of FA

has high rank.

I Jacobianx(FA) =
(
∂1F

A|x ∂2F
A|x . . . ∂dimSU(4)RF

A|x
)

I rank at x = rank of Jacobianx(FA)
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Dimensions and the rank

Partial derivatives of FA:
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An inductively defined Clifford circuit

Every Pauli operator can be reduced to Z in a causal slice:

Choosing Pauli strings and Clifford circuits inductively:
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Open problems

More operational version of the result?

I Partial result: Error tolerance for uncontrollably small error.

I How ”winded” is U(A′) in U(A)?

I Distinguishability from the completely depolarizing channel:

t-designs in depth O(nt)? [Brandão, Chemissany, Hunter-Jones, Kueng,

Preskill][Brandão, Harrow, Horodecki][Hunter-Jones]

Time evolution of time independent Hamiltonians? Thermofield

double state?

I Lots of evidence:[Brown, Susskind], [Aaronson, Susskind], [Brandão

Bohdanowicz],[Balasubramanian et.al.][Susskind, Stanford]

I
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