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Sparsification IlI:
ujan Graphs, Lifts,
terlacing Families



The Last Two Lectures

Lecture 1. Every weighted undirected G has a
weighted subgraph H with O (n log n) edges

which satisfies
LG < LH < (1 + E)LG

N Pat

random sampling
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The Last Two Lectures

Lecture 1. Every weighted undirected G has a
weighted subgraph H with O (n log n) edges

which satisfies
LG $ LH < (1 + E)LG

€2

Lecture 2. Improved this to 4 n/e?.

Suboptimal for K,, in two ways: weights,
and 2n/e?.



Good Sparsifiers of K,

G=K_ H = random d-regular x (n/d)
@ @
O O
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|Egl = O(n?) |E,| = O(dn)
--------------------------------- d=2/¢
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Regular Unweighted Sparsifiers of K,

G=K H = random d-regular

n

|Egl = O(n?) |Ey| =dn/2
___________________________________ [Friedman’08]
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Regular Unweighted Sparsifiers of K,

G=K, H = random d-regular
will try to
match this
|Egl = O(n?) |Ey| =dn/2

___________________________________ [Friedman’08]
- d-2Vd—-1<Lly<d+2Vd—101;




Why do we care so much about K,,?

Unweighted d-regular approximations of K,, are
called expanders.

They behave like random graphs:
the right # edges across cuts
fast mixing of random walks

Prototypical ‘pseudorandom object’. Many uses
in CS and math (Routing, Coding, Complexity...)



Switch to Adjacency Matrix

Let G be a graph and A be its adjacency matrix

O 1 0 0 1
1 0 1 0 1
O 1 0 1 O
O 0 1 0 1
1 1 0 1 O

eigenvalues A =21, = --- 1,

L=dl - A



Switch to Adjacency Matrix

Let G be a graph and A be its adjacency matrix

_ OO R O
_) O R O K
O R OFR O
L O, OO
O R OR K

eigenvalues A =21, = --- 1,
If d-regular, then A1 = d1 so A=d
If bipartite then eigs are symmetric

about zero so A, = —d

“trivial”



Spectral Expanders

Definition: G is a good expander
if all non-trivial eigenvalues are small

| 00-6(0
d 0

(@ == =



Spectral Expanders

Definition: G is a good expander
if all non-trivial eigenvalues are small

[ ]
00-4(0

L ]

-d 0 d

e.g. Kz and K, 4 have all nontrivial eigs O.
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if all non-trivial eigenvalues are small
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[ Challenge: construct infinite families. ]




Spectral Expanders

Definition: G is a good expander
if all non-trivial eigenvalues are small

[ |
00-0(0

L J
d 0 J

[ Challenge: construct infinite families. ]

Alon-Boppana’86: Can’t beat
[—2vVd — 1,2vd — 1]




The meaning of 2vd — 1

/// i

A(A;) = [-2Vd — 1,2V/d




The meaning of 2vd — 1

(" The nfinite d-ary tree /f}l\
///

A(A7) = [-2Vd — 1,2Vd

Alon-Boppana’86: This is the best possible spectral expander.



Ramanujan Graphs: 2v/d — 1

Definition: G is Ramanujan if all non-trivial eigs
have absolute value at most 2v/d — 1

] 1
L 0 ]| J
-d ovd—1 Wd =1 d



Ramanujan Graphs: 2v/d — 1

Definition: G is Ramanujan if all non-trivial eigs
have absolute value at most 2v/d — 1

[ [ ] 1
L L 0 ]| ]|
-d  ovi—1 d =1 d

4 Friedman’08: A random d-regular graph is almost )
Ramanujan: 2vd — 1 + 0(1)
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4 Friedman’08: A random d-regular graph is almost )
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Margulis, Lubotzky-Phillips-Sarnak’88: Infinite
\sequences of Ramanujan graphs exist ford = p + 1 Y




Ramanujan Graphs: 2v/d — 1

Definition: G is Ramanujan if all non-trivial eigs
have absolute value at most 2v/d — 1

[ [ 1 1
L L ] 1

d ova=1 0 i d .
4 Friedman’08: A random d-regt What about et \
Ramanujan : 2vd — 1 + o(1) d+p+1?

\_
Margulis, Lubotzky-Phillips-Sarnak’88: IN

sequences of Ramanujan graphs exist ford = p + 1
- Pr




[Marcus-Spielman-S’13]

Theorem. Infinite families of bipartite Ramanujan
graphs exist for every d = 3.



[Marcus-Spielman-S’13]

Theorem. Infinite families of bipartite Ramanujan
graphs exist for every d = 3.

Proof is elementary, doesn’t use number theory.
Not explicit.

Based on a new existence argument: method of
interlacing families of polynomials.



[Marcus-Spielman-S’13]

’
Theorem. Infin :é Ars s o qanujan
graphs e o 1 9 \%
Ep) = (1 ) x™
—mox) ..,

Proof is elementary, doesn’t use number theory.
Not explicit.

Based on a new existence argument: method of
interlacing families of polynomials.



Bilu-Linial’06 Approach

Find an operation which doubles the size of a
graph without blowing up its eigenvalues.

[ —00-00—] ]
0
-d  2vd—1 © 2vd-1 d




Bilu-Linial’06 Approach

Find an operation which doubles the size of a
graph without blowing up its eigenvalues.

[ [ ] 1
l [ o0 ]
-d - 2Vd- va-1 d
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Bilu-Linial’06 Approach

Find an operation which doubles the size of a
graph without blowing up its eigenvalues.

[ [ ] 1
l [ o0 ]
-d - 2Vd- va-1 d

5=




2-lifts of graphs
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duplicate every vertex
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2-lifts of graphs

for every pair of edges:
leave on either side (parallel),
or make both cross



2-lifts of graphs

>R

for every pair of edges:
leave on either side (parallel),
or make both cross




2-lifts of graphs 2™ possibilities

>R

for every pair of edges:
leave on either side (parallel),
or make both cross




Eigenvalues of 2-lifts (Bilu-Linial)

Given a 2-lift of G,
create a signed adjacency matrix A4,
with a -1 for crossing edges
and a 1 for parallel edges

Sy

0O -1 0 O
-1 0 1 O
O 1 0 -1
O 0 -1 O
1 1 0 1

O OFr P



Eigenvalues of 2-lifts (Bilu-Linial)

Theorem:
The eigenvalues of the 2-lift are:

A, ..., A} = eigs(A)
U

{17 ..., } = eigs(A;)

As =

O|'40|—\O
P Ok OO
O Fr OFr P

1
0
1
0
1

_ O 0O I O



Eigenvalues of 2-lifts (Bilu-Linial)

Theorem:
The eigenvalues of the 2-lift are the
union of the eigenvalues of A (old)
and the eigenvalues of A, (new)

Conjecture:
Every d-regular graph has a 2-lift
in which all the new eigenvalues
have absolute value at most 2v/d — 1



Eigenvalues of 2-lifts (Bilu-Linial)

Theorem:
The eigenvalues of the 2-lift are the
union of the eigenvalues of A (old)
and the eigenvalues of A, (new)

4 . )
Conjecture:

Every d-regular adjacency matrix A

has a signing A with ||4g|| < 2Vd — 1
- )




Eigenvalues of 2-lifts (Bilu-Linial)

Theorem:

The eigenvalues of the 2-lift are the
union of the eigenvalues of A (old)
and the eigenvalues of A, (new)

4 : )
Conjecture:
Every d-regular adjacency matrix A
has a signing A with ||4g|| < 2Vd — 1

\_ /

Bilu-Linial’06: This is true with 0(\/d log3 d)



Eigenvalues of 2-lifts (Bilu-Linial)

4 . )
Conjecture:

Every d-regular adjacency matrix A

has a signing A, with ||4¢|] < 2vVd — 1
S s [|As|] y

We prove this in the bipartite case.



Eigenvalues of 2-lifts (Bilu-Linial)

2 )
Theorem:

Every d-regular adjacency matrix A

has a signing A. with 1, (4<) < 2V/d — 1
_ gning Ag 1(As) y




Eigenvalues of 2-lifts (Bilu-Linial)

-

\_

~
Theorem:

Every d-regular bipartite adjacency matrix A
has a signing A with ||4]| < 2vd — 1

J

Trick: eigenvalues of bipartite graphs
are symmetric about 0O,
so only need to bound largest



Random Signings

Idea 1: Choose s € {—1,1}™ randomly.



Random Signings

Idea 1: Choose s € {—1,1}™ randomly.

Unfortunately,

Agll > 2vd -1

(Bilu-Linial showed O(\/d log3 d) when
A is nearly Ramanujan )

n|

4

4




Random Signings

Idea 2: Observe that )\ (AS) = Amaz (XAS)
where y 4 () := det(xl — Ay)
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Random Signings

Idea 2: Observe that )\ (AS) = Amaz (XAS)
where y 4 () := det(xl — Ay)

Consider Lgcry1ym XA, (:1;‘)

[ coefficient-wise average




Random Signings

Idea 2: Observe that )\ (AS) = Amaz (XAS)
where y 4 () := det(xl — Ay)

Consider Lgcry1ym XA, ()

Usually useless, but not here!

{XAS }SE{:

—S such that Amaz (XAS) < )‘maw(

-1}™ s an interlacing family.

XA




3-Step Proof Strategy

. Show that some poly does as well as the

S such that Ajaq (XAS) < )\maaz(




3-Step

NOT Amax(XAS) = [E/lmax()(As)

1. Show that some poly does as

ES such that )\ma,x(XAS) < )\max(

foae< A
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3-Step Proof Strategy

1. Show that some poly does as well as the [{,.

ES such that )\ma,x (XAS) < )\maaz( ‘LXAS)

2. Calculate the expected polynomial.

ixa, (1) = pa()

3. Bound the largest root of the expected poly.
)\maa:(luG(x)) < 2\/d —1




3-Step Proof Strategy

1. Show that some poly does as well as the [{,.

ES such that )\ma,x (XAS) < )\maaz( ‘LXAS)

2. Calculate the expected polynomial.

ixa, (1) = pa()

3. Bound the largest root of the expected poly.
)\maa:(luG(x)) < 2\/d —1

[



3-Step Proof Strategy

1. Show that some poly does as well as the [{,.

ES such that )\ma,x (XAS) < )\maw( i'XAS)

2. Calculate the expected polynomial. A
i, €Tr) = T
 Exa, (2) = pio(@) )

3. Bound the largest root of the expected poly.
)\ma,a:(/iG(x)) < 2\/d —1




Step 2: The expected polynomial

Theorem [Godsil-Gutman’81]

For any graph G,
2] Xa,(2) | = pa ()
the matching polynomial of G




The matching polynomial
(Heilmann-Lieb ‘72)

E:mn 2@ m;

1>0

= the number of matchings with i edges



na(r) =a® — 72* 4+ 112° — 2



na(r) =a® — 72* + 112* — 2
L one matching with O edges



na(zr) = x° —;x4 + 112" — 2

7 matchings with 1 edge



>,

na(r) =2 — 72 + 11:1: — 2

\..'{ }'. $EICHES
SOV



ro {j,

*—o



Proof that E| xa.(z) | = pa(x)

S

Expand E|[ det(zl — A,) | using permutations

S

x *1 0 O =1 =1
+1 x £1 0 0 0
0O =1 x *1 0 0
0 0 =1 x *1 0
+1 O 0 =1 x *1
+1 O 0 0 =1 X



Proof that E| xa.(z) | = pa(x)

S

Expand E|[ det(zl — A,) | using permutations

S

same edge: X @ 0 0 1 1
same value @ x *1 0 0 0
0O =1 x *1 0 0
0 0 =1 x *1 0
+1 O 0 =1 x *1
+1 O 0 0 =1 X



Proof that E| xa.(z) | = pa(x)

S

Expand E|[ det(zl — A,) | using permutations

S

same edge: x f1 0 0 @ t1
samevalue *1 x =1 0 0 0
0O =1 x *1 0 0
0 0 =1 x *1 0
@ 0 0 =1 x *1
+1 O 0 0 =1 X



Proof that E| xa.(z) | = pa(x)

S

Expand E|[ det(zl — A,) | using permutations
@D
& ¢

@o

4+ O O I+ X

H
I+ I+
o@o = X
H—@H—
o O = O
I+

I+
O~ X
I+
X = O

I+
= X

Get O If hit any Os



Proof that E| xa.(z) | = pa(x)

S

Expand E|[ det(zl — A,) | using permutations

11 0 0 <1
}_jl +X @ 0 JrO @é
0 @ X +1 0 0
0 0 +1 10
0 0 ¥ +
@ 0 0 0 @ i

Get O If take just one entry for any edge



Proof that E| xa.(z) | = pa(x)

S

Expand E|[ det(zl — A,) | using permutations

S

X 0 o +1 £1
@@ 10 0 0
0 +1 @ 1 0 0
0 0 T x (1) o
1 0 0 @ o
+1 0 0 0 +1 @

Only permutations that count are involutions



Proof that E| xa.(z) | = pa(x)

S

Expand E|[ det(zl — A,) | using permutations

I+
I+

0 +1 +1

= 0 0 0

0 +1 0 0
0 0 @ @ 10
1 0 0 +1 x @
1 0 0 0 @ X

Only permutations that count are involutions



Proof that E| xa.(z) | = pa(x)

S

Expand E|[ det(zl — A,) | using permutations

+1 4

0 +1 +1

= 0 0 0

0 +1 0 0
0 0 @ @ 10
1 0 0 +1 x @
1 0 0 0 @ X

Only permutations that count are involutions

Correspond to matchings



Proof that E| xa.(z) | = pa(x)

S

Expand E|[ det(zl — A,) | using permutations

+1 4

0 +1 +1

= 0 0 0

0 +1 0 0
0 0 @ @ 10
1 0 0 +1 x @
1 0 0 0 @ X

Only permutations that count are involutions

Correspond to matchings

[



3-Step Proof Strategy

1. Show that some poly does as well as the

<

<

4 [ ]

S such that Ajaq (XAS) < )\fmax(

X AL)

(

2. Calculate the expected polynomial.

ixa, (1) = pa()

[Godsil-Gutman’81]

3. Bound the largest root of the expected poly.
)\ma,a:(/iG(x)) < 2\/d —1




3-Step Proof Strategy

<

1. Show that some poly does as well as the [{,.

ES such that )\ma,x (XAS) < )\maw( {"XAS)
2. Calculate the expected polynomial. "/
5 . il- ‘81
Tx AL (517) = LG (x) [Godsil-Gutman’81]

(3. Bound the largest root of the expected poly. A

)\ma,a:(/iG(x)) S 2\/d —1




The matching polynomial
(Heilmann-Lieb ‘72)

pale) = 3 a2 (= 1)'m,

i>0

Theorem (Hellmann-Lieb)
all the roots are real



The matching polynomial
(Heilmann-Lieb ‘72)

pale) = 3 a2 (= 1)'m,

i>0
Theorem (Hellmann-Lieb)

all the roots are real
and have absolute value at most 2vd — 1

[



The matching p[
(H

pa(r) = 2_

i>

Theorem (Hellmann=
all the roots are r
and have absol

//

/

alue at most 2vd — 1

The number 2vd — 1 comes by comparing

to an infinite d —ary tree [Godsil].

[



3-Step Proof Strategy

1. Show that some poly does as well as the

<

<

4 [ ]

S such that Ajaq (XAS) < )\fmax(

2. Calculate the expected polynomial.

ixa, (1) = pa()

X AL)

V

[Godsil-Gutman’81]

3. Bound the largest root of the expected poly.

Amaz (1 (7))

< o/d—1 [Heilmann-Lieb’72]




3-Step Proof Strategy

. A
. Show that some poly does as well as the |y,.

ES such that )\ma,x (XAS) < )\maw( {"XAS)

y
. Calculate the expected polynomial. "/
Tx AL (517) = LG (x) [Godsil-Gutman’81]

. Bound the largest root of the expected poly. "/
< o/d—1 [Heilmann-Lieb’72]

Amaz (1 (7))



3-Step Proof Strategy

q. Show that some poly does as well as the K, . A
_ ES such that )\max (XAS) § )\max( {'XAS))
Implied by:

! {XAS }SE{_

-1}m™ is an interlacing family.”



Averaging Polynomials

Basic Question: Given P, P1 when are the roots
of the p;(x) related to roots of E;p;(x) ?
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Basic Question: Given P, P1 when are the roots
of the p;(x) related to roots of E;p;(x) ?

Answer: Certainly not always

VA \/

l(po+ P) -




Averaging Polynomials

Basic Question: Given P, P1 when are the roots
of the p;(x) related to roots of E;p;(x) ?

Answer: Certainly not always...

X p(x)=(x—1D(x—2)=x*—3x+2

N[ = N =

* gix)=(x—=3)(x —4) =x%—7x + 12

(x —2.5+3i)(x —2.5-V3i) =x? —5x + 7



Averaging Polynomials

Basic Question: Given P, P1 when are the roots
of the p;(x) related to roots of E;p;(x) ?

But sometimes it works:




A Sufficient Condition

Basic Question: Given P, P1 when are the roots
of the p;(x) related to roots of E;p;(x) ?

Answer: When they have a common interlacing.
Definition.q = H?:_ll(:r: — «;) interlaces

p=1IL(x—8;) Iif
Bn < ap_1 < Bpo1... < ayp <.

— R —
ﬂ’l & ;3 /g.?



Theorem. If Pg, P1 have a common
interlacing, =) )\max (pz) S )\maaz( 4:ipi)




Theorem. If Pg, P1 have a common
interlacing, =) )\max (pz) S )\maac( 4:ipi)

Proof.

T

0,1
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Proof.
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Theorem. If Pg, P1 have a common
interlacing, =) )\max (pz) S )\maac( 4:ipi)

Proof.




Theorem. If Pg, P1 have a common
interlacing, =) )\max (pz) S )\maac( 4:ipi)

Proof.




Interlacing Family of Polynomials

Definition: {Ps}.c01ym is an interlacing family

if can be placed on the leaves of a tree so that
when every node is the sum of leaves below &
sets of siblings have common interlacings

Poo

\ Po1
P10
/
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Definition: {Ps}.c01ym is an interlacing family

if can be placed on the leaves of a tree so that
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Interlacing Family of Polynomials

Definition: {Ps}.c01ym is an interlacing family

if can be placed on the leaves of a tree so that
when every node is the sum of leaves below &
sets of siblings have common interlacings

Poo

0
\ Po1
P10
/

P1

p

Po



Interlacing Family of Polynomials

256{0,1}?% Ps = Py

p

(

Theorem: There is an s so that
)\maaf: (ps) S )\maa:(p(b)

\

Poo

0
\ Po1



Interlacing Family of Polynomials

236{0,1}m Ps = Py

p

(

\_

Theorem: There is an s so that
Amaz (ps) < Aax (p(l))

\

J

Poo

0
\ Po1

Proof: By common interlacing, one of po, p1
has )\ma,a: < )\maa:(p(l))



Interlacing Family of Polynomials

236{0,1}m Ps = Py

Po

P1

(

\_

Theorem: There is an s so that
Amaz (ps) < Aax (p(l))

\

J

Poo

Po1

P10
/

P11

Proof: By common interlacing, one of po, p1
has )\ma,a: < )\maa:(p(l))



Interlacing Family of Polynomials
Poo

Po
\Qp(n
P10
/

236{0,1}m Ps = Py

P1
4 . ) P11
Theorem: There is an s so that
Amaz (ps) < Aax (p(l))
\_ y,

Proof: By common interlacing, one of Poo , Po1
has )\ma,x S )\ma,a: (pO)
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P10
/
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P1
4 . ) P11
Theorem: There is an s so that
Amaz (ps) < Aax (p(l))
\_ y,

Proof: By common interlacing, one of Poo , Po1
has )\ma,x < )\ma,a: (pO)



Interlacing Family of Polynomials

236{0,1}m Ps = Py

Poo

Po
\Qp(n

P1

(

\_

Theorem: There is an s so that
Amaz (ps) < Aax (p(l))

\

J

P10
/

P11

Proof: By common interlacing, one of Poo , Po1

has )\ma,x < )\maa: (pO)"" I:l



An interlacing family

\_

Theorem:
Let ps(z) = xa, ()

{Ps}scqi1ym is an interlacing family

J




To prove interlacing family

Let psl,...,Sk ('CE) — v [pslr"asm(x) ]

Sk+1s5- -+ 3Sm

Leaves of tree = signings s, ..., Sy,
Internal nodes = partial signings sy, ..., Sk

Po



To prove interlacing family

Let psl,...,Sk ('CE) — v [pslr"asm(x) ]

Sk+1s5- -+ 3Sm

Leaves of tree = signings s, ..., Sy,
Internal nodes = partial signings sy, ..., Sk

Poo
Need to find common Po
interlacing for every
: T Po1
internal node Do
/ P10
P1



How to Prove Common Interlacing

Lemma (Fisk’08, folklore): Suppose p(x) and
q(x) are monic and real-rooted. Then:

1 a common interlacing r of p and g

i

VY convex combinations,
ap + (1 —a)q
has real roots.



To prove interlacing family

Let psl,...,Sk (x) — v [p317°°'78m($) ]

Sk+1s5- -+ 3Sm

Need to prove that for all s1,...,s%, A € [0,1]
)\psla' . 7Sk71(aj) —I_ (1 o )\)psla' . 7Sk7_1(x)

IS real rooted Do
1 Do1

Po ——/




To prove interlacing family

Let psl,...,Sk ('CE) — v [pslr"asm(x) ]

Sk+1s5- -+ 3Sm

Need to prove that for all s1,...,s%, A € [0,1]
)\psla' . 7Sk71(aj) —I_ (1 o )\)psla' . 7Sk7_1(x)
IS real rooted

s$1,...,8 are fixed
Sk+1 Is / with probability ) -7 with 1 — A\

Sk+2,...,Sm are uniformly 41




Generalization of Heilmann-Lieb

Suffices to prove that

ey [ ps(z) ] s real rooted

for every product distribution
on the entries of s



Generalization of Heilmann-Lieb

Suffices to prove that

ey [ ps(z) ] s real rooted

for every product distribution
on the entries of s:

2. v [ I a=a
se{£1}™ 1:5;,=1 1:85;,=—1

Aly ooy Ay E [0,1]



Transformation to PSD Matrices

Suffices to show real rootedness of

Ese{il}mps(a? — d) — Ese{il}m det(az[ — (d[ — AS))
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Transformation to PSD Matrices

Suffices to show real rootedness of

Ese{il}mps(a? — d) — Ese{il}m det(az[ — (d[ — AS))

Why is this useful?
As =3 icp 5ij(0i0] +6;0;)

dl — Ay = (6; —6;)(6; — 6;)"

Sij =1

+ > (i 46;)(6i + ;)"

Sij =—1



Transformation to PSD Matrices

dl — Ay =) (6; —6;)(6; — 6;)"

Sij =1

+ D> (G +0,)(6+ ;)"

Sij =—1



Transformation to PSD Matrices

dl — A=) (6 —8;)(6; — ;)"

Es det(xI — (dI — A;)) = Edet (xI — z Uijvérj)

ijEE

(51' — 5]-) with probability A;;

where v;; = «
ij \(Si i 5]-) with probability (1—-4;;)




Master Real-Rootedness Theorem

Given any independent random vectors

Vi) e, Uy € R2 their expected characteristic
polymomial

idet| xI — z vv;

l

has real roots.



Master Real-Rootedness Theorem

Given any independent random vectors

Vi) e, Uy € R2 their expected characteristic
polymomial

idet| xI — 2 vv;

l

has real roots.

How to prove this? J




The Multivariate Method

A. Sokal, 90’s-2005:

“...itis often useful to consider the multivariate
polynomial ... even if one is ultimately interested in
a particular one-variable specialization”

Borcea-Branden 2007+: prove that univariate
polynomials are real-rooted by showing that
they are nice transformations of real-rooted

multivariate polynomials.



Real Stable Polynomials

Definition. p € R|x4, ..., x,,] is real stable if every
univariate restriction in the strictly positive orthant:

p(t)=fX+ty) y>0
is real-rooted.
If it has real coefficients, it is called real stable.



Real Stable Polynomials

Definition. p € C|x4, ..., x| is real stable if every
univariate restriction in the strictly positive orthant:

p(t)=fX+ty) y>0
is real-rooted.




Real Stable Polynomials

Definition. p € R|x4, ..., x,,] is real stable if every
univariate restriction in the strictly positive orthant:

p(t)=fX+ty) y>0
is real-rooted.




Real Stable Polynomials

Definition. p € R|x4, ..., x,,] is real stable if every
univariate restriction in the strictly positive orthant:

p(t)=fX+ty) y>0
is real-rooted.

=

|




Real Stable Polynomials

Definition. p € R|x4, ..., x,,] is real stable if every
univariate restriction in the strictly positive orthant:

p(t)=fX+ty) y>0

is real-rooted.
2- L \\~__—'—-——u.....
-.:_“*h'\

|




Real Stable Polynomials

Definition. p € R|x4, ..., x,,] is real stable if every
univariate restriction in the strictly positive orthant:

p(t)=fX+ty) y>0
is real-rooted.

Not positive




A Useful Real Stable Poly

Borcea-Brandeéen ‘08:
For PSD matrices A1, ..., Ag

det(zi ZZAZ)

IS real stable



A Useful Real Stable Poly

Borcea-Brandeéen ‘08:
For PSD matrices A1, ..., Ag

det(zi ZZAZ)

IS real stable

Proof: Every positive univariate restriction is the
characteristic polynomial of a symmetric matrix.

det (2 xiAi ~+ tz yiAi) = det(tl + S)
l

I



Excellent Closure Properties

Definition: P € R{21,..., 2]
is real stable if imag(z;) >0 foralli

Implies p(z1,...,2,) #0.

If P & R[Zl, Ceey Zn] is real stable, then so is
1.p(a,zy,...,2,) foranya € R

2. (1 — azi)p(zl, i Zy) [Lieb-Sokal’81]



A Useful Real Stable Poly

Borcea-Brandeéen ‘08:
For PSD matrices A1, ..., Ag

det(zi ZZAZ)

IS real stable

Plan: apply closure properties to this
to show that IEdet(xI — D vivf) is real stable.



Central Identity

Suppose vy, ..., Uy, are independent random
vectors with 4; := IEvl-vl-T. Then

Edet (xl — z vivf)

l
m

— H (1 - a%) det (xl + 2 zl-Al-)

=1 L

Z1="=Zm=0



Central Identity

Suppose vy, ..., Uy, are independent random
vectors with 4; := IEviv;T. Then

Edet (xl — z vivf)

l

il el 3

=1 [

Z1="=Zm=0

Key Principle: random rank one updates = (1 — d,) operators.



Proof of Master Real-
Rootedness Theorem

Suppose vy, ..., Uy, are independent random
vectors with 4; := IEviv;T. Then

Edet (xl — z vivf)

l

_ ﬁ (1 - a%) det (xl + 2 ziAi)

=1 [

Z1="=Zm=0



Proof of Master Real-
Rootedness Theorem

Suppose vy, ..., Uy, are independent random

vectors with 4; := IEvivl-T. Then W)D\b

Edet (xl — z Vv

l

m

0
— H(l _a_Zl- th(XI +zzi‘4i

=1




Proof of Master Real-
Rootedness Theorem

Suppose vy, ..., Uy, are independent random
vectors with 4; := IEvivl-T. Then

Edet (xl — z viv;r)

/

0
— 1_[ <1 — a_Zl) det (XI + z ZiAi

=1 [

Z1="=Zm=0

Real Slable. ! C losurt vnder Q‘B)



Proof of Master Real-
Rootedness Theorem

Suppose vy, ..., Uy, are independent random
vectors with 4; := IEvivl-T. Then

[Edet(x]— i viv;r)
/

\ l

_ ﬁ (1 - aizi) det (xl + z ziAl-)

=1 [




Proof of Master Real-
Rootedness Theorem

Suppose vy, ..., Uy, are independent random
vectors with 4; := IEvivl-T. Then

=7
@z st st =7 el

ﬁ (1 _ a_zl) det (xl + 2 zl-Al-)

=1 l

Z1="=Zm=0



The Whole Proof

IEdet(xI — D viviT) is real-rooted for all indep. v;.



The Whole Proof

rank one structure naturally
reveals interlacing.

Exa (d — x) is real-rooted for all product
distributions on signings.

IEdet(xI — D viviT) is real-rooted for all indep. v;.



The Whole Proof

[Exa (x) is real-rooted for all product
distributions on signings.

IEdet(xI — D viviT) is real-rooted for all indep. v;.



The Whole Proof

{XAS( )}

(1 .. Is an interlacing family

[Exa (x) is real-rooted for all product
distributions on signings.

IEdet(xI — D viviT) is real-rooted for all indep. v;.



The Whole Proof

S suchthat Amgx (XAS) < )\maaz(

{XAS( )}

xe{+1

[Exa (x) is real-rooted for all product

distributions on signings.

X A.)

.. Is an interlacing family

IEdet(xI — D viviT) is real-rooted for all indep. v;.



3-Step Proof Strategy

1. Show that some poly does as well as the [K,. _‘/

ES such that )\ma,x (XAS) < )\maaz( ‘LXAS)

2. Calculate the expected polynomial.

ixa, (1) = pa()

~

~

3. Bound the largest root of the expected poly.
)\maa:(luG(x)) < 2\/d —1

[



Infinite Sequences of Bipartite
Ramanujan Graphs

Find an operation which doubles the size of a
graph without blowing up its eigenvalues.

[ [ ] 1
l [ o0 ]
-d - 2Vd- va-1 d

5=




Main Theme

Reduced the existence of a good matrix to:
1. Proving real-rootedness of an
expected polynomial.

2. Bounding roots of the expected
polynomial.



Main Theme

Reduced the existence of a good matrix to:
1. Proving real-rootedness of an
expected polynomial.
(rank-1 structure + real stability)

2. Bounding roots of the expected
polynomial.
(matching poly + combinatorics)



Beyond complete graphs

Unweighted sparsifiers of general graphs?



Beyond complete graphs




Weights are Required in General

G

e—0

This edge has
high resistance.



What if all edges are equally important?

G

S




Unweighted Decomposition Thm.

G

Theorem [MSS’13]: If all edges have resistance O(n/m),
there is a partition of G into unweighted 1 4+ €-

sparsifiers, each with O (ﬁ) edges.

€2



Unweighted Decomposition Thm.

G

Theorem [MSS’13]: If all edges have resistance < «,
there is a partition of G into unweighted 0 (1)-
sparsifiers, each with O(ma) edges.



Unweighted Decomposition Thm.

G

Theorem [MSS’13]: If all edges have resistance «, there
is a partition of G into two unweighted 1 + a-

approximations, each with half as many edges.



Unweighted Decomposition Thm.

,0“"‘-"....’0‘ . T ~ i

4 Vivi =5

I

T . -

E viv] =1 I § vivi ® 5
i

[

Theorem [MSS’13]: Given any vectors Y, v;v;] = I and
|v;| < €, there is a partition into approximately

1/2-spherical quadratic forms, each é + 0(e).



Proof: Analyze expected charpoly of a random
partition:
Edet(xI — Y, v;v] ) det(xI — Y, v;v])

»o.......-““‘,o’ 1 /
i l

Theorem [MSS’13]: Given any vectors Y, v;v;] = I and
|v;| < €, there is a partition into approximately

1/2-spherical quadratic forms, each é + 0(e).



L S S

Other applications:
Kadison-Singer Problem
Uncertainty principles.

o.......-““" l/
- I
T
Swrer ) Lt
i l

Theorem [MSS’13]: Given any vectors Y, v;v;] = I and
|v;| < €, there is a partition into approximately

1/2-spherical quadratic forms, each é + 0(e).



Summary of Algorithms

Result _________Edges | Weights Time _

Spielman-5'08 O(nlogn) Yes O~(m)

o 4

Random Sampling with Effective Resistances




Summary of Algorithms

Result _________Edges | Weights Time _

Spielman-5'08 O(nlogn) Yes O~(m)
Batson-Spielman-S'09  O(n) Yes 0(n*)




Summary of Algorithms

Result _________Edges | Weights Time _

Spielman-5'08 O(nlogn) Yes O~(m)
Batson-Spielman-S’09  O(n) Yes 0(n*)
Marcus-Spielman-S’13  O(n) No 02"

NNV I
Edet (xl — Z vv; ) det (xl — Z vv; )

l l




Open Questions

Non-bipartite graphs

Algorithmic construction
(computing generalized u is hard)

More general uses of interlacing families



Open Questions

Nearly linear time algorithm for 4n/e? size
sparsifiers

Improve to 2n/e? for graphs?

Fast combinatorial algorithm for
approximating resistances



