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Computational self-

testing protocol

Device must have prepared 

EPR pair and measured single 

qubits in computational or 

Hadamard basis

Certified entropy of 

device’s measurement 

outcomes conditioned 

on side information

Devetak & Winter, Distillation of secret key and entanglement 

from quantum states, Proc. R. Soc. A. 461207–235 (2005)
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Gottesman & Chuang, Quantum Teleportation is a Universal Computational Primitive. Nature. 402: 390–393
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