

Classical verification of quantum computational advantage

Gregory D. Kahanamoku-Meyer July 14, 2021

> Theory collaborators: Norman Yao (UCB) Umesh Vazirani (UCB) Soonwon Choi (UCB -> MIT)

arXiv:2104.00687

Efficiently-verifiable test that only quantum computers can pass.

Efficiently-verifiable test that only quantum computers can pass.

For polynomially-bounded classical verifier:

 \exists BQP prover s.t. Verifier accepts w.p. > 2/3

Efficiently-verifiable test that only quantum computers can pass.

For polynomially-bounded classical verifier:

Fully classical verifier (and comms.),

Efficiently-verifiable test that only quantum computers can pass.

For polynomially-bounded classical verifier:

Fully classical verifier (and comms.), single black-box prover.

Efficiently-verifiable test that only quantum computers can pass.

For polynomially-bounded classical verifier:

Fully classical verifier (and comms.), single black-box prover. Disprove null hypothesis that prover is classical!

Efficiently-verifiable test that only quantum computers can pass.

Local: powerfully refute the extended Church-Turing thesis

Efficiently-verifiable test that only quantum computers can pass.

Trivial solution: Shor's algorithm

Trivial solution: Shor's algorithm... but we want to do near-term!

Trivial solution: Shor's algorithm... but we want to do near-term!

NISQ: Noisy Intermediate-Scale Quantum devices

Generically: seems hard.

The point of random circuits is that they don't have structure!

Generically: seems hard.

The point of random circuits is that they don't have structure!

Example: sampling "IQP" circuits (products of Pauli X's)

 $H = X_0 X_1 X_3 + X_1 X_2 X_4 X_5 + \cdots$ (1)

Generically: seems hard.

The point of random circuits is that they don't have structure!

Example: sampling "IQP" circuits (products of Pauli X's)

$$H = X_0 X_1 X_3 + X_1 X_2 X_4 X_5 + \cdots$$
 (1)

[Shepherd, Bremner 2009]: Can hide a secret in *H*, such that evolving and sampling gives results correlated with secret

Generically: seems hard.

The point of random circuits is that they don't have structure!

Example: sampling "IQP" circuits (products of Pauli X's)

$$H = X_0 X_1 X_3 + X_1 X_2 X_4 X_5 + \cdots$$
 (1)

[Shepherd, Bremner 2009]: Can hide a secret in *H*, such that evolving and sampling gives results correlated with secret

[Bremner, Josza, Shepherd 2010]: classically simulating IQP Hamiltonians is hard Generically: seems hard.

The point of random circuits is that they don't have structure!

Example: sampling "IQP" circuits (products of Pauli X's)

$$H = X_0 X_1 X_3 + X_1 X_2 X_4 X_5 + \cdots$$
 (1)

[Shepherd, Bremner 2009]: Can hide a secret in *H*, such that evolving and sampling gives results correlated with secret

[Bremner, Josza, Shepherd 2010]: classically simulating IQP Hamiltonians is hard

[GDKM 2019]: Classical algorithm to extract the secret from H

Generically: seems hard.

The point of random circuits is that they don't have structure!

Example: sampling "IQP" circuits (products of Pauli X's)

$$H = X_0 X_1 X_3 + X_1 X_2 X_4 X_5 + \cdots$$
 (1)

[Shepherd, Bremner 2009]: Can hide a secret in *H*, such that evolving and sampling gives results correlated with secret

[Bremner, Josza, Shepherd 2010]: classically simulating IQP Hamiltonians is hard

[GDKM 2019]: Classical algorithm to extract the secret from H

Adding structure opens opportunities for classical cheating

NISQ: Noisy Intermediate-Scale Quantum devices

Interactive proofs of quantumness

Round 1: Prover commits to a specific quantum state Round 2+: Verifier asks for measurement in specific basis

Interactive proofs of quantumness

Round 1: Prover commits to a specific quantum state Round 2+: Verifier asks for measurement in specific basis

By randomizing choice of basis and repeating interaction, can ensure prover would respond correctly in *any* basis

Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640).

Can be extended to verify arbitrary quantum computations! (arXiv:1804.01082)

State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a **2-to-1** collision-resistant (claw-free) function *f*.

State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a **2-to-1** collision-resistant (claw-free) function *f*.

Prover has committed to the state $(|x_0\rangle + |x_1\rangle) |y\rangle$

Subtlety: claw-free does *not* imply hardness of generating measurement outcomes!

Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)

Subtlety: claw-free does *not* imply hardness of generating measurement outcomes! Learning-with-Errors TCF has adaptive hardcore bit

Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)

Trapdoor claw-free functions

TCF	Trapdoor	Claw-free	Adaptive hard-core bit
LWE [1]	✓	✓	\checkmark
x ² mod N [3]	✓	✓	×
Ring-LWE [2]	✓	✓	×
Diffie-Hellman [3]	✓	✓	×

[1] Brakerski, Christiano, Mahadev, Vazirani, Vidick '18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)

[3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Trapdoor claw-free functions

TCF	Trapdoor	Claw-free	Adaptive hard-core bit
LWE [1]	1	1	\checkmark
x ² mod N [3]	1	✓	×
Ring-LWE [2]	✓	✓	×
Diffie-Hellman [3]	1	1	×

BKVV '20 [2]: Non-interactive protocol without adaptive hardcore bit, in random oracle model

[1] Brakerski, Christiano, Mahadev, Vazirani, Vidick '18 (arXiv:1804.00640)

- [2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
- [3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Trapdoor claw-free functions

TCF	Trapdoor	Claw-free	Adaptive hard-core bit
LWE [1]	1	1	\checkmark
x ² mod N [3]	1	✓	×
Ring-LWE [2]	✓	✓	×
Diffie-Hellman [3]	1	1	×

BKVV '20 [2]: Non-interactive protocol without adaptive hardcore bit, in random oracle model

Can we remove AHCB in the standard model?

[1] Brakerski, Christiano, Mahadev, Vazirani, Vidick '18 (arXiv:1804.00640)

- [2] Brakerski, Koppula, Vazirani, Vidick '20 (arXiv:2005.04826)
- [3] GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Replace Hadamard basis measurement with "1-player CHSH"

Brakerski, Christiano, Mahadev, Vidick, Vazirani '18 (arXiv:1804.00640)

Replace Hadamard basis measurement with two-step process: "condense" x_0, x_1 into a single qubit, and then do a "Bell test."

Replace Hadamard basis measurement with two-step process: "condense" x_0, x_1 into a single qubit, and then do a "Bell test."

Now single-qubit state: $|0\rangle$ or $|1\rangle$ if $\overline{x_0 \cdot r = x_1 \cdot r}$, otherwise $|+\rangle$ or $|-\rangle$.

GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Replace Hadamard basis measurement with two-step process: "condense" x_0, x_1 into a single qubit, and then do a "Bell test."

Now single-qubit state: $|0\rangle$ or $|1\rangle$ if $x_0 \cdot r = x_1 \cdot r$, otherwise $|+\rangle$ or $|-\rangle$. Polarization hidden via:

Cryptographic secret (here) ⇔ Non-communication (Bell test) GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Replace Hadamard basis measurement with two-step process: "condense" x_0, x_1 into a single qubit, and then do a "Bell test."

GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

Run protocol many times, collect statistics.

*p*_s: Success rate for standard basis measurement.

 p_{CHSH} : Success rate when performing CHSH-type measurement.

Run protocol many times, collect statistics.

*p*_s: Success rate for standard basis measurement.

*p*_{CHSH}: Success rate when performing CHSH-type measurement.
Under assumption of claw-free function:

Classical bound: $p_s + 4p_{CHSH} - 4 < negl(n)$
Run protocol many times, collect statistics.

*p*_s: Success rate for standard basis measurement.

 p_{CHSH} : Success rate when performing CHSH-type measurement. Under assumption of claw-free function:

> Classical bound: $p_s + 4p_{CHSH} - 4 < \text{negl}(n)$ Ideal quantum: $p_s = 1, p_{CHSH} = \cos^2(\pi/8)$

Run protocol many times, collect statistics.

*p*_s: Success rate for standard basis measurement.

*p*_{CHSH}: Success rate when performing CHSH-type measurement.
Under assumption of claw-free function:

Classical bound: $p_s + 4p_{CHSH} - 4 < \text{negl}(n)$ Ideal quantum: $p_s = 1, p_{CHSH} = \cos^2(\pi/8)$ $p_s + 4p_{CHSH} - 4 = \sqrt{2} - 1 \approx 0.414$ Run protocol many times, collect statistics.

*p*_s: Success rate for standard basis measurement.

*p*_{CHSH}: Success rate when performing CHSH-type measurement.
Under assumption of claw-free function:

Classical bound: $p_s + 4p_{CHSH} - 4 < \text{negl}(n)$ Ideal quantum: $p_s = 1, p_{CHSH} = \cos^2(\pi/8)$ $p_s + 4p_{CHSH} - 4 = \sqrt{2} - 1 \approx 0.414$

Note: Let $p_s = 1$. Then for p_{CHSH} : Classical bound 75%, ideal quantum ~ 85%. Same as regular CHSH!

GDKM, Choi, Vazirani, Yao '21 (arXiv:2104.00687)

• Partial measurement

- Partial measurement
 - Required for multi-round classical interaction

- Partial measurement
 - Required for multi-round classical interaction
- Fidelity requirement

- Partial measurement
 - Required for multi-round classical interaction
- Fidelity requirement
 - High fidelity needed to pass classical bound

- Partial measurement
 - Required for multi-round classical interaction
- Fidelity requirement
 - High fidelity needed to pass classical bound
- Circuit sizes

- Partial measurement
 - \cdot Required for multi-round classical interaction
- Fidelity requirement
 - \cdot High fidelity needed to pass classical bound
- Circuit sizes
 - \cdot Need to implement public-key crypto. on a superposition

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Prof. Christopher Munroe

Dr. Daiwei Zhu

Dr. Crystal Noel

and others!

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

TTTTTT

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

TTTTTT

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

TEFFFE

CALCER & F

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

TEFFFE

CALCER & F

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

TTTTTT

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

TTTTTT

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!

Partial measurement:

How to deal with high fidelity requirement? Need $\sim 83\%$ fidelity in general to pass.

- How to deal with high fidelity requirement? Need $\sim 83\%$ fidelity in general to pass.
- Can show: a prover holding $(|x_0\rangle + |x_1\rangle) |y\rangle$ with ϵ phase coherence passes!

- How to deal with high fidelity requirement? Need $\sim 83\%$ fidelity in general to pass.
- Can show: a prover holding $(|x_0\rangle + |x_1\rangle) |y\rangle$ with ϵ phase coherence passes!
- When we generate $\sum_{x} |x\rangle |f(x)\rangle$, add redundancy to f(x), for bit flip error detection!

Technique: postselection

How to deal with high fidelity requirement? Need $\sim 83\%$ fidelity in general to pass.

Numerical results for $x^2 \mod N$ with $\log N = 512$ bits. Here: make transformation $x^2 \mod N \Rightarrow (kx)^2 \mod k^2N$

 $\mathcal{U}_{f} \ket{x} \ket{0^{\otimes n}} = \ket{x} \ket{f(x)}$

 $\mathcal{U}_{f} \ket{x} \ket{0^{\otimes n}} = \ket{x} \ket{f(x)}$

Getting rid of adaptive hardcore bit helps!

 $x^2 \mod N$ and Ring-LWE have classical circuits as fast as $\mathcal{O}(n \log n)$...

 $\mathcal{U}_{f} \ket{x} \ket{0^{\otimes n}} = \ket{x} \ket{f(x)}$

Getting rid of adaptive hardcore bit helps! $x^2 \mod N$ and Ring-LWE have classical circuits as fast as $\mathcal{O}(n \log n)$... but they are recursive and hard to make reversible.

 $\mathcal{U}_{f} \ket{x} \ket{0^{\otimes n}} = \ket{x} \ket{f(x)}$

Getting rid of adaptive hardcore bit helps! $x^2 \mod N$ and Ring-LWE have classical circuits as fast as $\mathcal{O}(n \log n)$... but they are recursive and hard to make reversible.

Protocol allows us to make circuits irreversible!

Goal: $\mathcal{U}_f |x\rangle |0^{\otimes n}\rangle = |x\rangle |f(x)\rangle$

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

 $|a\rangle \longrightarrow |a\rangle$ $|b\rangle \longrightarrow |b\rangle$ $|0\rangle \longrightarrow |a \land b\rangle$

Classical AND

Quantum AND (Toffoli)

Goal: $\mathcal{U}_f |x\rangle |0^{\otimes n}\rangle = |x\rangle |f(x)\rangle$

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let \mathcal{U}'_f be a unitary generating garbage bits $g_f(x)$:

Goal: $\mathcal{U}_f |x\rangle |0^{\otimes n}\rangle = |x\rangle |f(x)\rangle$

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let \mathcal{U}'_f be a unitary generating garbage bits $g_f(x)$:

Goal: $\mathcal{U}_f |x\rangle |0^{\otimes n}\rangle = |x\rangle |f(x)\rangle$

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let \mathcal{U}'_f be a unitary generating garbage bits $g_f(x)$:

Lots of time and space overhead!

Goal: $\mathcal{U}_f |x\rangle |0^{\otimes n}\rangle = |x\rangle |f(x)\rangle$

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let \mathcal{U}'_f be a unitary generating garbage bits $g_f(x)$:

Can we "measure them away" instead?

Measure garbage bits $g_f(x)$ in Hadamard basis, get some string h. End up with state:

 $\sum_{x} (-1)^{h \cdot g_f(x)} |x\rangle |f(x)\rangle$

Measure garbage bits $g_f(x)$ in Hadamard basis, get some string h. End up with state:

 $\sum_{x} (-1)^{h \cdot g_f(x)} |x\rangle |f(x)\rangle$

In general useless: unique phase $(-1)^{h \cdot g_f(x)}$ on every term.
Measure garbage bits $g_f(x)$ in Hadamard basis, get some string h. End up with state:

$$\sum_{x} (-1)^{h \cdot g_f(x)} |x\rangle |f(x)\rangle$$

In general useless: unique phase $(-1)^{h \cdot g_f(x)}$ on every term.

But after collapsing onto a single output:

 $[(-1)^{h \cdot g_f(x_0)} | x_0 \rangle + (-1)^{h \cdot g_f(x_1)} | x_1 \rangle] | y \rangle$

Measure garbage bits $g_f(x)$ in Hadamard basis, get some string h. End up with state:

 $\sum_{x} (-1)^{h \cdot g_f(x)} |x\rangle |f(x)\rangle$

In general useless: unique phase $(-1)^{h \cdot g_f(x)}$ on every term.

But after collapsing onto a single output:

 $\left[(-1)^{h \cdot g_f(x_0)} | x_0 \rangle + (-1)^{h \cdot g_f(x_1)} | x_1 \rangle \right] | y \rangle$

Verifier can efficiently compute $g_f(\cdot)$ for these two terms!

Measure garbage bits $g_f(x)$ in Hadamard basis, get some string h. End up with state:

 $\sum_{x} (-1)^{h \cdot g_f(x)} |x\rangle |f(x)\rangle$

In general useless: unique phase $(-1)^{h \cdot g_f(x)}$ on every term.

But after collapsing onto a single output:

 $\left[(-1)^{h \cdot g_f(x_0)} | x_0 \rangle + (-1)^{h \cdot g_f(x_1)} | x_1 \rangle \right] | y \rangle$

Verifier can efficiently compute $g_f(\cdot)$ for these two terms!

Can directly convert classical circuits to quantum!

Measure garbage bits $g_f(x)$ in Hadamard basis, get some string h. End up with state:

 $\sum_{x} (-1)^{h \cdot g_f(x)} |x\rangle |f(x)\rangle$

In general useless: unique phase $(-1)^{h \cdot g_f(x)}$ on every term.

But after collapsing onto a single output:

 $\left[(-1)^{h \cdot g_f(x_0)} | x_0 \rangle + (-1)^{h \cdot g_f(x_1)} | x_1 \rangle \right] | y \rangle$

Verifier can efficiently compute $g_f(\cdot)$ for these two terms!

Can directly convert classical circuits to quantum! 1024-bit $x^2 \mod N$ costs only 10⁶ Toffoli gates.

Bottleneck: Evaluating TCF on quantum superposition

Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

• Find more efficient TCFs

Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs

Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- $\boldsymbol{\cdot}$... public-key cryptography is just slow

Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- $\boldsymbol{\cdot}$... public-key cryptography is just slow

Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- \cdot ... public-key cryptography is just slow

"Box-adjacent" ideas:

• Explore other protocols (fix IQP and make it fast?)

Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- ... public-key cryptography is just slow

"Box-adjacent" ideas:

- Explore other protocols (fix IQP and make it fast?)
- Symmetric key/hash-based cryptography?

Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- ... public-key cryptography is just slow

"Box-adjacent" ideas:

- Explore other protocols (fix IQP and make it fast?)
- Symmetric key/hash-based cryptography?

Bottleneck: Evaluating TCF on quantum superposition

"In the box" ideas (not necessarily bad):

- Find more efficient TCFs
- Better quantum circuits for TCFs
- ... public-key cryptography is just slow

"Box-adjacent" ideas:

- Explore other protocols (fix IQP and make it fast?)
- Symmetric key/hash-based cryptography?

Way outside the box?

Backup!

Two-player cooperative game.

If anyone receives tails, want A = B. If both get heads, want $A \neq B$.

Two-player cooperative game.

If anyone receives tails, want A = B. If both get heads, want $A \neq B$.

Two players sharing a Bell pair:

Two-player cooperative game.

If anyone receives tails, want A = B. If both get heads, want $A \neq B$.

Two players sharing a Bell pair:

Two-player cooperative game.

If anyone receives tails, want A = B. If both get heads, want $A \neq B$.

Two players sharing a Bell pair:

Two-player cooperative game.

If anyone receives tails, want A = B. If both get heads, want $A \neq B$.

Two players sharing a Bell pair:

Quantum: cos²(π/8) ≈ 85% Classical: 75% **Problem (not TCF):** Consider a group \mathbb{G} of order *N*, with generator *g*. Given the tuple (g, g^a, g^b, g^c) , determine if c = ab.

Elliptic curve crypto.: $\log N \sim 160$ bits is as hard as 1024 bit factoring!!

Problem (not TCF): Consider a group \mathbb{G} of order *N*, with generator *g*. Given the tuple (g, g^a, g^b, g^c) , determine if c = ab.

Elliptic curve crypto.: $\log N \sim 160$ bits is as hard as 1024 bit factoring!! How to build a TCF? **Problem (not TCF):** Consider a group \mathbb{G} of order *N*, with generator *g*. Given the tuple (g, g^a, g^b, g^c) , determine if c = ab.

Elliptic curve crypto.: $\log N \sim 160$ bits is as hard as 1024 bit factoring!!

How to build a TCF?

Trapdoor [Peikert, Waters '08; Freeman et al. '10]: linear algebra in the exponent

Claw-free [GDKM et al. '21 (arXiv:2104.00687)]: collisions in linear algebra in the exponent!

Full protocol

