


“Black-box” proofs of quantumness

Efficiently-verifiable test that only quantum computers can pass.

For polynomially-bounded classical verifier:

Fully classical verifier (and comms.), single black-box prover.
Disprove null hypothesis that prover is classical!
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NISQ verifiable quantum advantage

Trivial solution: Shor’s algorithm

... but we want to do near-term!

NISQ: Noisy Intermediate-Scale Quantum devices
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Adding structure to sampling problems

Generically: seems hard.

The point of random circuits is that they don’t have structure!

Example: sampling “IQP” circuits (products of Pauli X’s)

H = X0X1X3 + X1X2X4X5 + · · · (1)

[Shepherd, Bremner 2009]: Can hide a secret in H, such that evolving
and sampling gives results correlated with secret

[Bremner, Josza, Shepherd 2010]: classically simulating IQP
Hamiltonians is hard

[GDKM 2019]: Classical algorithm to extract the secret from H

Adding structure opens opportunities for classical cheating
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NISQ: Noisy Intermediate-Scale Quantum devices
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Interactive proofs of quantumness

Round 1: Prover commits to a specific quantum state

Round 2+: Verifier asks for measurement in specific basis

By randomizing choice of basis and repeating interaction,
can ensure prover would respond correctly in any basis

Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640).

Can be extended to verify arbitrary quantum computations! (arXiv:1804.01082)
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State commitment (round 1): trapdoor claw-free functions

How does the prover commit to a state?

Consider a 2-to-1 collision-resistant (claw-free) function f .

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform
superposition

f←−−−−−−−−−−− Pick 2-to-1 function f∑
x |x〉 |f (x)〉

Measure 2nd register as y y−−−−−−−−−−−→ Store y as commitment

Prover has committed to the state (|x0〉 + |x1〉) |y〉
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LWE protocol

Prover Verifier

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform
superposition:

∑
x |x〉 |f (x)〉

f←−−−−−−−−−−− Pick trapdoor claw-free
function f

Measure 2nd register as y y−−−−−−−−−−−→ Compute x0, x1 from y using
trapdoor

Measure qubits of
|x0〉+ |x1〉 in given basis

basis←−−−−−−−−−−− Pick standard or Hadamard
basis

result−−−−−−−−−−−→ Validate result against x0, x1

Subtlety: claw-free does not imply hardness of
generating measurement outcomes!

Learning-with-Errors TCF has adaptive hardcore bit

Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640)
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Trapdoor claw-free functions

TCF Trapdoor Claw-free Adaptive hard-core bit
LWE [1] 3 3 3

x2 mod N [3] 3 3 7

Ring-LWE [2] 3 3 7

Diffie-Hellman [3] 3 3 7

BKVV ’20 [2]: Non-interactive protocol without adaptive hardcore bit,
in random oracle model

Can we remove AHCB in the standard model?

[1] Brakerski, Christiano, Mahadev, Vazirani, Vidick ’18 (arXiv:1804.00640)

[2] Brakerski, Koppula, Vazirani, Vidick ’20 (arXiv:2005.04826)

[3] GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)
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LWE protocol

Prover Verifier

10100111100
11010110011
11101100100
10011000011

Evaluate f on uniform
superposition:

∑
x |x〉 |f (x)〉

f←−−−−−−−−−−− Pick trapdoor claw-free
function f

Measure 2nd register as y y−−−−−−−−−−−→ Compute x0, x1 from y using
trapdoor

Measure qubits of
|x0〉+ |x1〉 in given basis

basis←−−−−−−−−−−− Pick standard or Hadamard
basis

result−−−−−−−−−−−→ Validate result against x0, x1

Replace Hadamard basis measurement with “1-player CHSH”

Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18 (arXiv:1804.00640)
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Interactive measurement: computational Bell test

Replace Hadamard basis measurement with two-step process:
“condense” x0, x1 into a single qubit, and then do a “Bell test.”

10100111100
11010110011
11101100100
10011000011

...
...

...

|x0〉 |x0 · r〉+ |x1〉 |x1 · r〉
r←−−−−−−−−−−− Pick random bitstring r

Measure all but ancilla in
Hadamard basis

d−−−−−−−−−−−→

Now single-qubit state: |0〉 or |1〉 if x0 · r = x1 · r, otherwise |+〉 or |−〉.
Polarization hidden via:

Cryptographic secret (here) ⇔ Non-communication (Bell test)

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)
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...

|x0〉 |x0 · r〉+ |x1〉 |x1 · r〉
r←−−−−−−−−−−− Pick random bitstring r

Measure all but ancilla in
Hadamard basis

d−−−−−−−−−−−→

Measure qubit in basis basis←−−−−−−−−−−− Pick (Z + X) or (Z − X) basis
result−−−−−−−−−−−→ Validate against r, x0, x1, d

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)
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Computational Bell test: classical bound

Run protocol many times, collect statistics.

ps: Success rate for standard basis measurement.

pCHSH: Success rate when performing CHSH-type measurement.

Under assumption of claw-free function:

Classical bound: ps + 4pCHSH − 4 < negl(n)
Ideal quantum: ps = 1,pCHSH = cos2(π/8)

ps + 4pCHSH − 4 =
√
2− 1 ≈ 0.414

Note: Let ps = 1. Then for pCHSH:
Classical bound 75%, ideal quantum ∼ 85%. Same as regular CHSH!

GDKM, Choi, Vazirani, Yao ’21 (arXiv:2104.00687)
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Challenges for implementation

• Partial measurement

• Required for multi-round classical interaction

• Fidelity requirement

• High fidelity needed to pass classical bound

• Circuit sizes

• Need to implement public-key crypto. on a superposition
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Partial measurements in the lab

Trapped Ion Quantum Information lab at U. Maryland

Working on demonstration of protocols in trapped ions!
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Technique: postselection

How to deal with high fidelity requirement? Need ∼ 83% fidelity in
general to pass.

Can show: a prover holding (|x0〉 + |x1〉) |y〉 with ε phase coherence
passes!

When we generate
∑

x |x〉 |f (x)〉, add redundancy to f (x), for bit flip
error detection!
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Technique: postselection

How to deal with high fidelity requirement? Need ∼ 83% fidelity in
general to pass.
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Improving circuit sizes

Most demanding step in all these protocols: evaluating TCF

Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

Getting rid of adaptive hardcore bit helps!

x2 mod N and Ring-LWE have classical circuits as fast as O(n log n)...

but they are recursive and hard to make reversible.

Protocol allows us to make circuits irreversible!
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Technique: taking out the garbage

Goal: Uf |x〉 |0⊗n〉 = |x〉 |f (x)〉

When converting classical circuits to quantum:

Garbage bits: extra entangled outputs due to unitarity

Let U ′
f be a unitary generating garbage bits gf (x):

Can we “measure them away” instead?
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Technique: taking out the garbage

Measure garbage bits gf (x) in Hadamard basis, get some string h.
End up with state:

∑
x
(−1)h·gf (x) |x〉 |f (x)〉

In general useless: unique phase (−1)h·gf (x) on every term.

But after collapsing onto a single output:

[(−1)h·gf (x0) |x0〉 + (−1)h·gf (x1) |x1〉] |y〉

Verifier can efficiently compute gf (·) for these two terms!

Can directly convert classical circuits to quantum!
1024-bit x2 mod N costs only 106 Toffoli gates.
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Paths forward

Bottleneck: Evaluating TCF on quantum superposition

“In the box” ideas (not necessarily bad):

• Find more efficient TCFs
• Better quantum circuits for TCFs
• ... public-key cryptography is just slow

“Box-adjacent” ideas:

• Explore other protocols (fix IQP and make it fast?)
• Symmetric key/hash-based cryptography?

Way outside the box?
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Backup!
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The CHSH game (Bell test)

Two-player cooperative game.

If anyone receives tails, want A = B. If both get heads, want A 6= B.

Two players sharing a Bell pair:
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Decisional Diffie-Hellman (DDH)

Problem (not TCF): Consider a group G of order N, with generator g.
Given the tuple (g,ga,gb,gc), determine if c = ab.

Elliptic curve crypto.: logN ∼ 160 bits is as hard as 1024 bit factoring!!

How to build a TCF?

Trapdoor [Peikert, Waters ’08; Freeman et al. ’10]: linear algebra in
the exponent

Claw-free [GDKM et al. ’21 (arXiv:2104.00687)]: collisions in linear
algebra in the exponent!
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Full protocol
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