Noise vs Imprecision in the Hardness of Random Quantum Circuits

Bill Fefferman

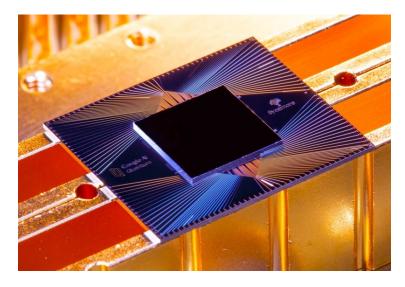
(University of Chicago)

Based on "On the complexity and verification of quantum random circuit sampling" with A. Bouland, C. Nirkhe, U. Vazirani (Nature Physics, arXiv: 1803.04402)

And "Noise and the frontier of quantum supremacy" with A. Bouland, Z. Landau, Y. Liu (Talk at QIP 2021, arXiv: 2102.01738)

Simons Institute talk, July 13, 2021

The first "Quantum supremacy" claims have now been made...



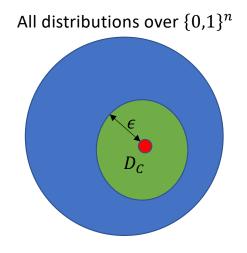
Random Circuit Sampling (Google "Sycamore") in late 2019

Gaussian BosonSampling (USTC "Jiuzhang") in late 2020

This talk: the latest complexity theoretic evidence to believe these experiments might be solving hard problems for classical computers

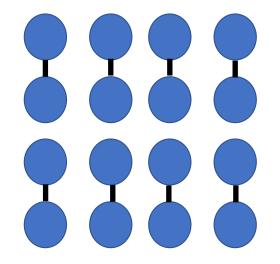
These experiments have a similar theoretical framework

- They both solve "random quantum circuit sampling"
 - i.e., the hard problem is to sample from the output distribution of a randomly chosen quantum circuit
- Initial theory goal: prove impossibility of an efficient *"classical Sampler"* algorithm that:
 - takes as input a random circuit C with output distribution D_C over $\{0,1\}^n$
 - outputs a sample from *any* distribution X so that:
 - $|X D_C|_{TV} \le \epsilon$ with high probability over choice of circuit C



Google's RCS proposal [Boixo et. al. 2017]

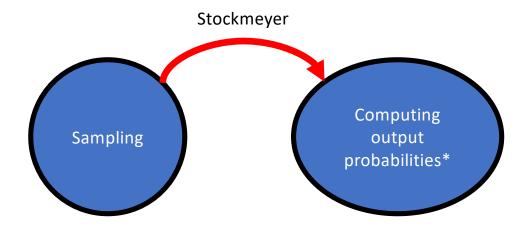
- Generate a quantum circuit C on n qubits on a 2D lattice, with $d \sim \sqrt{n}$ layers of (Haar) random nearest-neighbor gates
 - In practice use a discrete approximation to the Haar random distribution
- Start with |0ⁿ input state, apply random quantum circuit and measure in computational basis



(single layer of Haar random two qubit gates applied on 2D grid of qubits)

Proof first step: from sampling to computing

 By well-known reductions [Stockmeyer '85], [Aaronson & Arkhipov '11] it suffices to prove that *estimating* the output probability of a *random* quantum circuit is #P-hard

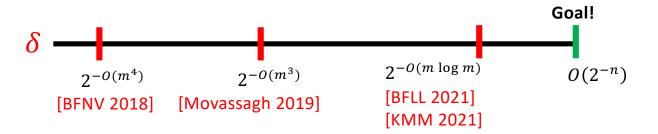


Formal statement of q. supremacy conjecture

- Definition: Let the "output probability", $p_0(C) = |\langle 0^n | C | 0^n \rangle|^2$
- Then consider the δ *Random Circuit Estimation* problem:

Given as input circuit C, output q so that $|q - p_0(C)| \le \delta$ with probability 2/3 over C

- To prove goal, it suffices to show that the $\delta = O\left(\frac{1}{2^n}\right)$ problem is **#P**-hard
- Known hardness results with respect to C on n qubits, size $m = O(n \cdot d)$



Hardness conjecture for BosonSampling

- In the case of BosonSampling, similar arguments take us "even closer" to the goal!
- With respect to BosonSampling with n photons, n^2 modes:

$$\delta = \frac{1}{e^{O(n^4)}} \text{ [AA 2011]} \qquad \frac{1}{e^{6n \log n}} \text{ [BFLL 2021]} \qquad \frac{1}{e^{n \log n}}$$

- So we're only off by a factor of 6 in the exponent!
- So close yet so far we've hit a barrier *more on this later!*

Roadmap for the rest of talk

- 1. Proof of hardness result from [F., with Bouland, Nirkhe & Vazirani '18]
 - To do this, will first discuss Lipton's average-case hardness result for computing the Permanent of a random matrix
 - Then we'll adapt Lipton's result from Permanent to output probability of random quantum circuit
- 2. We'll prove that these results are "robust to uncorrected depolarizing noise" [F., with Bouland, Landau & Liu'21]
 - And this robustness actually gives a barrier against improving our hardness result to larger imprecision δ

Average case hardness for **Permanent** [Lipton '91]

- **Permanent** of $n \times n$ matrix is **#P**-hard in the worst-case [Valiant '79]
 - $Per[X] = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i,\sigma(i)}$
- Algebraic property: Per[X] is a degree *n* polynomial with n^2 variables
- Need compute Per[X] of worst-case matrix X
 - But we only have access to algorithm O that correctly computes *most* permanents over \mathbb{F}_p i.e., $\Pr_{Y \in_R \mathbb{F}_n^n \times n} [O(Y) = Per[Y]] \ge 1 \frac{1}{poly(n)}$
- Choose n + 1 fixed non-zero points $t_1, t_2 \dots, t_{n+1} \in \mathbb{F}_p$ and uniformly random matrix R
- Consider line A(t) = X + tR
 - Observation 1 "marginal property": for each i, $A(t_i)$ is a random matrix over $\mathbb{F}_p^{n \times n}$
 - Observation 2: "univariate polynomial": Per[A(t)] is a degree n polynomial in t
- But now these n + 1 points uniquely define the polynomial, so use polynomial extrapolation to evaluate Per[A(0)] = Per[X]

[BFNV'18]: Hardness for Random Quantum Circuits

- Algebraic property: much like Per[X], output probability of random quantum circuits has polynomial structure
 - Consider circuit $C = C_m C_{m-1} \dots C_1$
 - Polynomial structure comes from Feynman path integral:
 - $\langle 0^n | C | 0^n \rangle = \sum_{y_2, y_3, \dots, y_m \in \{0,1\}^n} \langle 0^n | C_m | y_m \rangle \langle y_m | C_{m-1} | y_{m-1} \rangle \dots \langle y_2 | C_1 | 0^n \rangle$
- This is a polynomial of degree m in the gate entries of the circuit
- So the output probability $p_0(C)$ is a polynomial of degree 2m

First attempt at adapting Lipton's proof

- Choose and fix $\{H_i\}_{i \in [m]}$ Haar random gates
- Now consider new circuit $C' = C'_m C'_{m-1} \dots C'_1$ so that for each gate $C'_i = C_i H_i$
 - Notice that each gate in C' is completely random "marginal property"
- **Problem:** no univariate polynomial structure connects worst-case circuit *C* with the scrambled circuit *C*' !!

Correlating via quantumness

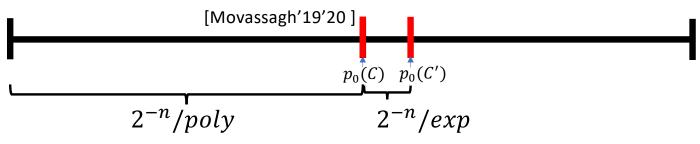
- We need the analogue to Lipton's "univariate polynomial structure"
- **Main idea:** "Implement tiny fraction of H_i^{-1} "
 - i.e., $C'_i = C_i H_i e^{-ih_i \theta}$
 - If $\theta = 1$ the corresponding circuit C' = C, and if $\theta \approx small$, each gate is close to Haar random
 - Now take several non-zero but small θ and apply polynomial extrapolation (as per Lipton's proof)

This is still not the "right way" to scramble!

- Problem: $e^{-ih_i\theta}$ is not polynomial in θ
- Solution: take fixed truncation of Taylor series for $e^{-ih_i\theta}$
 - i.e., each gate of C' is $C_i H_i \sum_{k=0}^{K} \frac{(-ih_i\theta)^k}{k!}$
 - So each gate entry is a polynomial in θ and so is $p_0(C')$
 - Now extrapolate and compute $q(1) = p_0(C)$

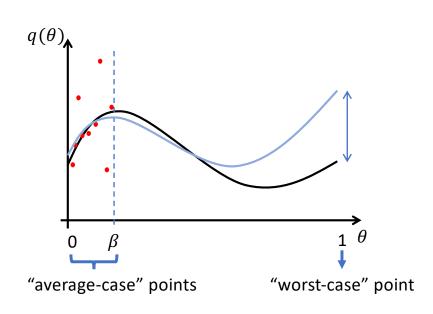
How to motivate the truncations?

- Recall, our goal was **not** to prove the hardness of *exactly* computing $p_0(C)$ but rather in computing an *estimate* $|y p_0(C)| \le O\left(\frac{1}{2^n}\right)$
- Now, our result is proving hardness of computing the output probability of a slightly non-unitary "truncated" circuit $p_0(C')$ which is *extremely close* to $p_0(C)$
- [BFNV'18]: *Estimating* $p_0(C')$ is hard iff *estimating* $p_0(C)$ is hard
 - Intuitively, because the "truncation error" is so much smaller than the size of the additive error we are conjecturing is hard.



On robustness to *imprecision* [BFLL'21]

- See also independent work of [Kondo et. al. '21]!
- Recall: I claimed it's #P-hard to:
 - Output an estimate $|y p_0(C)| \le 2^{-O(m \log m)}$ w.p 2/3 over C
- [Main technical lemma] Given:
 - O(m²) "faulty" evaluation points {(θ_i, y_i)} to a polynomial q(θ) of degree m where:
 - 1. θ_i are equally spaced in the interval $[0, \beta = 1/m]$
 - 2. And we know **at least** 2/3 of y_i are δ -close to $q(\theta_i)$
- Then there's an algorithm (uses **NP** oracle) that outputs *z*:
 - $|z q(1)| \le \delta 2^{O(m \log \beta^{-1})} = \delta 2^{O(m \log m)}$ whp
- Upshot: if δ is small enough then we can use these faulty evaluation points to estimate q(1), which is hard!



Understanding hardness of *noisy* random quantum circuits [BFLL'21]

- Without error-correction noise eventually overwhelms
 - e.g., Google's RCS experiment ~0.2% fidelity and 99.8% noise
- How can we model this theoretically for RCS?
- Each random gate C_i is followed by two qubit depolarizing noise channel:

•
$$\mathcal{E}_{i} = (1 - \gamma)\rho + \frac{\gamma}{15} \sum_{\alpha, \beta \in \mathcal{P} \times \mathcal{P} - (I,I)} (\sigma_{\alpha} \otimes \sigma_{\beta}) \rho(\sigma_{\alpha} \otimes \sigma_{\beta})$$

- That is, we can think about choosing a noisy random circuit by:
 - First pick ideal circuit $C = C_m C_{m-1} \dots C_1$ from the random circuit distribution
 - Then environment chooses operators N, from a distribution \mathcal{N} (i.e., via \mathcal{E}_i)
 - We get a sample from output distribution of $N \cdot C$ without learning the noise operators

Similar hardness arguments work with noise!

- By linearity, can write the output probability of the noisy circuit as:
 - $E_{N \sim \mathcal{N}}[|\langle 0^n | N \cdot C | 0^n \rangle|^2] = E_{N \sim \mathcal{N}}[p_0(N \cdot C)]$
- This can be written as a weighted sum of Feynman path integrals:
 - $\sum_{N} \Pr_{\mathcal{N}}[N] \cdot \left| \sum_{y_1, y_2, \dots, y_m \in \{0,1\}^n} \langle 0^n | N_m C_m | y_m \rangle \dots \langle y_2 | N_1 C_1 | 0^n \rangle \right|^2$
 - Key point: this is still a polynomial of degree 2m in the ideal gate entries
- So by the same arguments as before, we have a worst-to-average case reduction for computing $E_{N \sim \mathcal{N}}[p_{0^n}(N \cdot C)]$ to within $\pm 2^{-O(m \log m)}$
- [Fujii '16] has shown that this quantity is also **#P**-hard to compute in the worst-case if noise rate, γ , is a sufficiently small constant

But there's also a (trivial) classical algorithm!

- **Issue:** uncorrected depolarization noise causes output distribution to rapidly converge to uniform as system size grows
 - And it's clearly not hard to output a probability from the uniform distribution!
- How accurate is this trivial algorithm (i.e., what is the imprecision?)
 - **Conjecture**: for random circuits $2^{-O(m)}$ [e.g., Boixo, Smelyanskiy, Neven '17]!
 - We can prove this in certain simplified toy models of random circuits [BFLL'21]

The "noise barrier" to improving robustness

- On the one hand we've established that computing output probabilities of **noisy** random circuits of size m is **hard** to within imprecision $2^{-O(m \log m)}$
- On the other hand, we think it's classically **easy** to solve this problem to within imprecision $2^{-O(m)}$
- Upshot: So if we want to dramatically improve this robustness in the *noiseless* case we need to invent new proof techniques that are *not* robust to noise.

Conclusions

- We improved the imprecision to additive error of computing the output probability of a random quantum circuit of size m to additive error $2^{-O(m \log m)}$
- This hardness remains if the circuit is *noisy*, but in this case we think this same imprecision is *essentially tight*
- We'll likely need very new ideas to get much further!

Thanks!