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The first “Quantum supremacy” claims 
have now been made…

Random Circuit Sampling (Google 
“Sycamore”) in late 2019

Gaussian BosonSampling (USTC 
“Jiuzhang”) in late 2020

This talk: the latest complexity theoretic evidence to believe these 
experiments might be solving hard problems for classical computers



These experiments have a similar theoretical 
framework
• They both solve “random quantum circuit sampling”

• i.e., the hard problem is to sample from the output 
distribution of a randomly chosen quantum circuit

• Initial theory goal: prove impossibility of an efficient 
“classical Sampler” algorithm that:
• takes as input a random circuit C with output distribution 𝐷!

over 0,1 "

• outputs a sample from any distribution 𝑋 so that:
• 𝑋 − 𝐷! "# ≤ 𝜖 with high probability over choice of circuit C

All distributions over 0,1 !

𝜖

𝐷"



Google’s RCS proposal [Boixo et. al. 2017]

• Generate a quantum circuit C on 𝑛 qubits on a 
2D lattice, with 𝑑 ∼ 𝑛 layers of (Haar) random 
nearest-neighbor gates
• In practice use a discrete approximation to the Haar

random distribution

• Start with |0n〉 input state, apply random 
quantum circuit and measure in computational 
basis (single layer of Haar random two 

qubit gates applied on 2D grid of 
qubits)



Proof first step: from sampling to computing
• By well-known reductions [Stockmeyer ’85], [Aaronson & Arkhipov ’11] it 

suffices to prove that estimating the output probability of a random 
quantum circuit is #P-hard

Sampling
Computing 

output 
probabilities*

Stockmeyer



Formal statement of q. supremacy conjecture
• Definition: Let the “output probability”, 𝑝& 𝐶 = 0' 𝐶 0' (

• Then consider the 𝛿 − 𝑹𝒂𝒏𝒅𝒐𝒎 𝑪𝒊𝒓𝒄𝒖𝒊𝒕 𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒊𝒐𝒏 problem:

• To prove goal, it suffices to show that the 𝛿 = 𝑂 )
(!

problem is #P-hard

• Known hardness results with respect to C on 𝑛 qubits, size 𝑚 = 𝑂(𝑛 ⋅ 𝑑)

Given as input circuit C, output q so that 𝑞 − 𝑝$ 𝐶 ≤ 𝜹 with 
probability 2/3 over C

Goal!

𝛿
2#$(&!)

[Movassagh 2019]
𝑂 2#!2#$(& ()* &)

[BFLL 2021]
[KMM 2021]
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[BFNV 2018]



Hardness conjecture for BosonSampling

• In the case of BosonSampling, similar arguments take us “even 
closer” to the goal!
• With respect to BosonSampling with 𝑛 photons, 𝑛( modes:

• So we’re only off by a factor of 6 in the exponent!
• So close – yet so far – we’ve hit a barrier – more on this later!

Goal!

𝛿
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[AA 2011]
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Roadmap for the rest of talk

1. Proof of hardness result from [F., with Bouland, Nirkhe & Vazirani ‘18]
• To do this, will first discuss Lipton’s average-case hardness result for computing 

the Permanent of a random matrix
• Then we’ll adapt Lipton’s result from Permanent to output probability of random 

quantum circuit

2. We’ll prove that these results are “robust to uncorrected depolarizing 
noise” [F., with Bouland, Landau & Liu’21]
• And this robustness actually gives a barrier against improving our hardness 

result to larger imprecision 𝛿



Average case hardness for Permanent [Lipton ‘91]

• Permanent of 𝑛 × 𝑛 matrix is #P-hard in the worst-case [Valiant ‘79]
• 𝑃𝑒𝑟 𝑋 = ∑!∈#!∏$%&

' 𝑋$,!($)
• Algebraic property: 𝑃𝑒𝑟[𝑋] is a degree 𝑛 polynomial with 𝑛+ variables
• Need compute 𝑃𝑒𝑟 𝑋 of worst-case matrix 𝑋

• But we only have access to algorithm 𝑂 that correctly computes most permanents over 𝔽"
• i.e., Pr

%∈.𝔽/0 × 0
𝑂 𝑌 = 𝑃𝑒𝑟 𝑌 ≥ 1 − (

)*+,(.)

• Choose 𝑛 + 1 fixed non-zero points 𝑡&, 𝑡+… , 𝑡',& ∈ 𝔽- and uniformly random 
matrix 𝑅
• Consider line 𝐴(𝑡) = 𝑋 + 𝑡𝑅

• Observation 1 “marginal property”: for each 𝑖, 𝐴(𝑡#) is a random matrix over 𝔽"$ × $
• Observation 2: “univariate polynomial”: 𝑃𝑒𝑟[𝐴(𝑡)] is a degree 𝑛 polynomial in 𝑡

• But now these 𝑛 + 1 points uniquely define the polynomial, so use polynomial 
extrapolation to evaluate 𝑃𝑒𝑟[𝐴(0)] = 𝑃𝑒𝑟[𝑋]



[BFNV’18]: Hardness for Random Quantum Circuits

• Algebraic property: much like 𝑃𝑒𝑟[𝑋], output probability of random 
quantum circuits has polynomial structure
• Consider circuit 𝐶 = 𝐶+𝐶+,-…𝐶-
• Polynomial structure comes from Feynman path integral:

• ⟨0" 𝐶 0"⟩ = ∑.! ,." ,…,.#∈ 1,- $ 0" 𝐶+ 𝑦+ 𝑦+ 𝐶+,- 𝑦+,- … 𝑦2 𝐶- 0"

• This is a polynomial of degree 𝑚 in the gate entries of the circuit
• So the output probability 𝑝&(𝐶) is a polynomial of degree 2𝑚



First attempt at adapting Lipton’s proof
• Choose and fix 𝐻. .∈[1] Haar random gates 
• Now consider new circuit 𝐶3 = 𝐶13 𝐶14)3 …𝐶)3 so that for each gate 
𝐶.3 = 𝐶.𝐻.
• Notice that each gate in 𝐶′ is completely random – “marginal property”

• Problem: no univariate polynomial structure connects worst-case 
circuit 𝐶 with the scrambled circuit 𝐶3 !!



Correlating via quantumness

• We need the analogue to Lipton’s “univariate polynomial structure”
• Main idea: “Implement tiny fraction of 𝐻.4)” 

• i.e., 𝐶34 = 𝐶3𝐻3𝑒,35%6

• If 𝜃 = 1 the corresponding circuit 𝐶′ = 𝐶, and if 𝜃 ≈ 𝑠𝑚𝑎𝑙𝑙, each gate is 
close to Haar random

• Now take several non-zero but small 𝜃 and apply polynomial extrapolation (as 
per Lipton’s proof)



This is still not the “right way” to scramble!

• Problem: 𝑒4.5&6 is not polynomial in 𝜃
• Solution: take fixed truncation of Taylor series for 𝑒4.5&6

• i.e., each gate of 𝐶4 is 𝐶3𝐻3 ∑7819 ,35%6 &

7!
• So each gate entry is a polynomial in 𝜃 and so is 𝑝1(𝐶′)
• Now extrapolate and compute 𝑞(1) = 𝑝1(𝐶)



How to motivate the truncations?
• Recall, our goal was not to prove the hardness of exactly computing 
𝑝&(𝐶) but rather in computing an estimate 𝑦 − 𝑝& 𝐶 ≤ 𝑂 )

(!

• Now, our result is proving hardness of computing the output probability 
of a slightly non-unitary “truncated” circuit 𝑝&(𝐶′) which is extremely 
close to 𝑝& 𝐶
• [BFNV’18]: Estimating 𝑝&(𝐶′) is hard iff estimating 𝑝&(𝐶) is hard

• Intuitively, because the “truncation error” is so much smaller than the size of 
the additive error we are conjecturing is hard.

𝑝!(𝐶)

2,"/𝑝𝑜𝑙𝑦 2,"/𝑒𝑥𝑝

𝑝!(𝐶")

[Movassagh’19’20 ]



On robustness to imprecision [BFLL’21]
• See also independent work of [Kondo et. al. ‘21]!
• Recall: I claimed it’s #P-hard to:

• Output an estimate 𝑦 − 𝑝+ 𝐶 ≤ 2,-(. /01.) w.p 
2/3 over C

• [Main technical lemma] Given:
• O(𝑚2) “faulty” evaluation points {(𝜃# , 𝑦#)} to a 

polynomial q(𝜃) of degree 𝑚 where:
1. 𝜃' are equally spaced in the interval [0, 𝛽 = 1/m]
2. And we know at least 2/3 of 𝑦' are 𝛿-close to q(𝜃')

• Then there’s an algorithm (uses NP oracle) that 
outputs 𝑧:
• 𝑧 − 𝑞 1 ≤ 𝛿2-(. /01 3()) = 𝛿2-(. /01.) whp

• Upshot: if 𝛿 is small enough then we can use 
these faulty evaluation points to estimate q(1), 
which is hard!

0 1𝛽 𝜃

𝑞(𝜃)

“average-case” points “worst-case” point



Understanding hardness of noisy random 
quantum circuits [BFLL’21]
• Without error-correction noise eventually overwhelms

• e.g., Google’s RCS experiment  ~0.2% fidelity and 99.8% noise

• How can we model this theoretically for RCS?
• Each random gate 𝐶. is followed by two qubit depolarizing noise channel:

• ℰ3 = 1 − 𝛾 𝜌 + @
-A
∑B,C∈𝒫×𝒫,(F,F)( 𝜎B ⊗ 𝜎C)𝜌(𝜎B ⊗ 𝜎C)

• That is, we can think about choosing a noisy random circuit by:
• First pick ideal circuit 𝐶 = 𝐶+𝐶+,-…𝐶- from the random circuit distribution
• Then environment chooses operators 𝑁, from a distribution 𝒩 (i.e., via ℰ3)
• We get a sample from output distribution of 𝑁 ⋅ 𝐶 without learning the noise 

operators



Similar hardness arguments work with noise!

• By linearity, can write the output probability of the noisy circuit as:
• 𝐸G∼𝒩 0" 𝑁 ⋅ 𝐶 0" 2 = 𝐸G∼𝒩 𝑝1(𝑁 ⋅ 𝐶)

• This can be written as a weighted sum of Feynman path integrals:
• ∑G Pr𝒩 𝑁 ⋅ ∑.) ,.! ,…,.#∈ 1,- $ 0" 𝑁+𝐶+ 𝑦+ … 𝑦2 𝑁-𝐶- 0"

2

• Key point: this is still a polynomial of degree 2𝑚 in the ideal gate entries

• So by the same arguments as before, we have a worst-to-average case 
reduction for computing 𝐸7∼𝒩[𝑝&!(𝑁 ⋅ 𝐶)] to within ±24:(1 <=> 1)

• [Fujii ‘16] has shown that this quantity is also #P-hard to compute in 
the worst-case if noise rate, 𝛾, is a sufficiently small constant



But there’s also a (trivial) classical algorithm!

• Issue: uncorrected depolarization noise causes output distribution to 
rapidly converge to uniform as system size grows
• And it’s clearly not hard to output a probability from the uniform distribution!

• How accurate is this trivial algorithm (i.e., what is the imprecision?)
• Conjecture: for random circuits 𝟐,𝑶(𝒎) [e.g., Boixo, Smelyanskiy, Neven ‘17]!
• We can prove this in certain simplified toy models of random circuits [BFLL’21]



The “noise barrier” to improving robustness

• On the one hand we’ve established that computing output 
probabilities of noisy random circuits of size 𝑚 is hard to within 
imprecision 𝟐4𝑶(𝒎 𝒍𝒐𝒈 𝒎)

• On the other hand, we think it’s classically easy to solve this problem 
to within imprecision 𝟐4𝑶(𝒎)

• Upshot: So if we want to dramatically improve this robustness in the 
noiseless case we need to invent new proof techniques that are not 
robust to noise.



Conclusions

• We improved the imprecision to additive error of computing the output 
probability of a random quantum circuit of size 𝑚 to additive error 
24:(1 <=> 1)

• This hardness remains if the circuit is noisy, but in this case we think this 
same imprecision is essentially tight
• We’ll likely need very new ideas to get much further!



Thanks!


