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Introduction
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“Grand unification” of quantum algorithms

A Grand Unification of Quantum Algorithms
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Quantum algorithms offer significant speedups over their classical counterparts for a variety of
problems. The strongest arguments for this advantage are borne by algorithms for quantum search,
quantum phase estimation, and Hamiltonian simulation, which appear as subroutines for large fam-
ilies of composite quantum algorithms. A number of these quantum algorithms were recently tied
together by a novel technique known as the quantum singular value transformation (QSVT), which
enables one to perform a polynomial transformation of the singular values of a linear operator em-
bedded in a unitary matrix. In the seminal GSLW’19 paper on QSVT [Gilyén, Su, Low, and Wiebe,
ACM STOC 2019], many algorithms are encompassed, including amplitude amplification, methods
for the quantum linear systems problem, and quantum simulation. Here, we provide a pedagogi-
cal tutorial through these developments, first illustrating how quantum signal processing may be
generalized to the quantum eigenvalue transform, from which QSVT naturally emerges. Parallel-
ing GSLW’19, we then employ QSVT to construct intuitive quantum algorithms for search, phase
estimation, and Hamiltonian simulation, and also showcase algorithms for the eigenvalue threshold
problem and matrix inversion. This overview illustrates how QSVT is a single framework comprising
the three major quantum algorithms, suggesting a grand unification of quantum algorithms.

2105.02859;
QSVT: [GSLW18] 1806.01838



Quantum signal processing
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Quantum signal processing SU(2)
(Qsp)
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Low-Chuang, PRL 2017
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Goal of QSP (real case)

¢ Given f(x) € R[x]. Polynomial of degree d. Even or odd.
lf(x)| < 1on[-1,1].

e Find phase factors ® := (¢g, - - - , bg) € R so that
Re[U(x, ®)]1.1 = Re[(0|U(x, ®)[0)] = f(x), x€[-1,1]
U(x, d) == 92 W(x)e*“ W(x) - - - e-1Z W (x)e'¥eZ.

_ alarccos(x)X _ X ivV1—x2
* W)=e (im x )

e Solution guaranteed to exist



Once upon a time, phase factors were hard to
compute..

Toward the first quantum simulation with
quantum speedup
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Section H.3:

...However, this computation is difficult in practice, so we can only
carry it out for very small instances. Specifically, we found the time
required to calculate the angles to be prohibitive for values of M
greater than about 32...1t is a natural open problem to give a more
practical method for computing the angles.



Algorithms for finding phase factors

* (Gilyen et al 1806.01838; Haah 1806.10236): compute the roots
of a high-degree polynomial to high precision. Limit to ~
hundreds of phase factors with double precision arithmetic.

¢ (Dong, Meng, Whaley, L., 2002.11649): Optimization based
algorithm. No rigorous proof. Standard double precision
arithmetic. > 10000 phase factors.

e (Chao et al, 2003.02831): “capitalization”. No rigorous proof.
Standard double precision arithmetic. > 3000 phase factors.

e Should be able to compute much longer phase sequences. The
problem is practically solved within 2 years!

e (Wang, Dong, L., in prep2): Matrix-product state based structure.
Local convergence from fixed initial guess.
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Optimization based algorithm for finding phase factors



Optimization based formulation

e Parity: only d:= [%1 degrees of freedom to determine f(x).

Sampling on Chebyshev nodes x, = cos (2’;51 ) k=1,..4d.
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Minimization problem
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d
¢* = argmin F(P) —Z Re[U(xk, ®)]1 1 — f(x«)
d i

oc[—m,m)d+

Global minimum F($*) = 0.

e Dimension mismatch: d > d, so solution cannot be unique.



Symmetric QSP

Recall
N P(x) iQX)VT—x2
Ulx. @) = < i)V — X2 PH(x) >

General QSP: Q(x) € C[x].

Symmetric QSP: Q(x) € R[x] =
® = (¢, P1,- .., 01, P0). Symmetric phase factors

Degree of freedom: d = [%1 = matches that in f(x)!

¢ Modified optimization problem
1 d 2
®* = argmin  F(®), F(®):= =) [Re[U(x;, ®)]11 — F(x)|°,
de[—m,m)dt, i—1

symmetric.

(Dong, Meng, Whaley, L., 2002.11649 PRA 2021),https://github.com/gsppack/gsppack



Example: solve linear systems
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Applications

Hamiltonian simulation:
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e Similar performance for other applications such as eigenstate
filtering and solving linear systems



Streamlining the process of finding phase factors

Given a smooth function f(x) (not necessarily a polynomial)

e Option 1: Numerically obtain near-best polynomial
approximation (e.g. Remez method) + numerical optimization.

e Option 2: Direct optimization.

Option 1 is observed to be numerically more stable (objective
function = 0 at global minima) when f(x) is real.

(Dong, Meng, Whaley, L., 2002.11649 PRA 2021),https://github.com/gsppack/gsppack
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Energy landscape of the optimization



Optimization landscape

2 independent symmetric phase factors ¢q, ¢1.
Only global minima (so far).

“l2

Even target function Odd target function

fx)=x2-1 f(x) = %x3 - %x



Local minima exists (and there are many)
There are many local minima at large d.
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Randomly generated odd target function (d = 5). F($!°°) = 0.0084
Two smallest eigenvalue of the Hessian: 0.015, 3.7897 with eigenvectors uy, Us.



Uniqueness of symmetric phase factor

Theorem (Wang, Dong, L., in prep1)
For any P € C[x] and Q € R[x] satisfying
1. deg(P) =d and deg(Q) =d — 1.
2. P has parity (d mod 2) and Q has parity (d — 1 mod 2).
3. (Normalization condition)
vx € [-1,1] 1 |P(x)]2 + (1 — x3)|Q(x)|? = 1.
4. If d is odd, then the leading coefficient of Q is positive.

there exists a unique set of symmetric phase factors
(D = (¢O)¢17‘ T 7¢1)¢0) S Dd SUCh that

B P(x) IQ(x)V1 — x?
Uix.®) = <iQ(x)m P*(x) >



Global minimizer and (P, Q) pair

Corollary

There is a bijection between global minimizers and all admissible
(P(x), Q(x)) pairs with Re[P](x) = f(x).

® P(x) = f(x) + iPim(x)

Need to find complementary polynomials P, (x), Q(x) € R[x].

Normalization condition

1 —f(x)? = Pim(x)? + (1 = x*)Q(x)*.

Seems like an infinite number of choices ([Gilyen et al 2019;
Haah 2019] constructs a class of solutions)



Key: Laurent polynomials

e Forany x € [-1,1], x = +2 with z = ef®. @

e f(x) — f(ZZ-): Laurent polynomial C[z,z~"].

Factorization:

“1\? e R
1f<”22 ) - (p.m(z)+z - q(z)) (plm(z)z s q(z)>,
-1 —1
Pin(2) = Pin (”;) a(2) :—0<”22 )

2
z+z7! —2d
1-—f = - fi R.
( 5 > Bz H(z r), for some 8 €

res

Pin down the roots of RHS = finite # of global minimizers.

e Generalize results in [Gilyen et al 2019; Haah 2019] to find all
global minimizers.



One special initial guess

&g = (7/4,0,...,0,7/4).
e Used in gsppack for all examples.

¢ Robust for virtually all real target functions.
e Corresponds to P(x) =iTy(x), Q(x) = Ug—1(x).

* One special solution for f(x) =0, i.e. ¢ = 0.



Condition number and the magnitude

[1fll oo = maxyep—1,47 [F(X)] =1 —n.

o Realpartof f,
10° A Eigenstate filtering
Matrix inversion

10t Imaginary part of f;
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Condition number of the Hessian at ¢*.
e |ll-conditioned optimization problem as n — 0.

* Given ||f||, < 1, consider cf(x) with |c| < 1.



Not all global minima are equivalent
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e The branch converging to ¢g = (7/4,0,...,0,7/4) is called
maximal solution (also generated by GSLW/Haah method)

e ®g, has the largest “convergence basin”.



Actual faster convergence near g

Initial 1: &g

—*—initial 1

10? —+—initial 2 |;
initial 3
10 ——initial 4 |4
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Distance of maximal solution to ¢

Recall ¢y = (7/4,0,...,0,7/4).

Theorem (Wang, Dong, L., in prep1)
Let ®* be the symmetric phase factors corresponding to the maximal
solution for the target function f(x) with ||f|| . < % Then

|07 = P, < VI2|fl|, -

e Bound independent of d!

e Capitalization (perturbation with high order polynomials) is not
effective for symmetric phase factors.



Well-conditioned Hessian at maximal solution

Corollary
Iflfll < 4:3—8, then
V3
P — o < —
17— @oll, < - =
Furthermore,

Amin (Hess(®*)) > 1.

® Hess(®*) is positive definite.

e Optimization algorithm expects to converge locally.
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Matrix product state based optimization method



Matrix product state structure of QSP

e MPS structure for (0|U(x, $)|0).

o) T o1 T [0} T Ga—1 T Da

° Go(do) = (€9,0), Gy(dg) = (61%9,0)T
° W(X) — eiarccos(x)X’g(d)j) _ g2



Gradient calculation

e Computing the gradient (0|0, U(x, ®)|0) (note the symmetric
structure)

b0 T .1 Gd—i Ga—1 T

(i) i)
Mieqe \4 iddle 'Mughl

* Sweeping based algorithm: O(d?) per sweep.

e Sweeping directions: Edge to center; Edge to center to edge;
Center to edge; Center to edge to center; etc



Fast convergence (very few sweeps)

g | g
3 ° =R
e . .,
8 8.
3 * 3,
#swe;ping ’ ' ' ;sweeping;
Even target function Odd target function

f(x) = cos (500x), d = 367 f(x) = 1 with & = 50, d = 760.



Convergence from @,

Recall ¢y = (7/4,0,...,0,7/4).

Theorem (Wang, Dong, L., in prep2)

There exists a constant C (independent of d and target function) s.t.
for any f(x) with |||, < &=,
k

| FeY) (1)

F(oF) < [1 -
12(1 + d)

where K is the number of sweeping.

Number of sweeps seems to be independent of d. Cost close to
O(d?).
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Open question



Open question: decay behavior of the phase sequence

e A
o
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