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“Grand unification” of quantum algorithms

2105.02859;
QSVT: [GSLW18] 1806.01838
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Quantum signal processing

Low-Chuang, PRL 2017
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Goal of QSP (real case)

• Given f (x) ∈ R[x ]. Polynomial of degree d . Even or odd.
|f (x)| < 1 on [−1,1].

• Find phase factors Φ := (φ0, · · · , φd ) ∈ Rd+1 so that

Re[U(x ,Φ)]1,1 ≡ Re[〈0|U(x ,Φ)|0〉] = f (x), x ∈ [−1,1]

U(x ,Φ) := eiφ0Z W (x)eiφ1Z W (x) · · · eiφd−1Z W (x)eiφd Z .

• W (x) = ei arccos(x)X =

(
x i

√
1− x2

i
√

1− x2 x

)
.

• Solution guaranteed to exist
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Once upon a time, phase factors were hard to
compute..

Section H.3:
...However, this computation is difficult in practice, so we can only
carry it out for very small instances. Specifically, we found the time
required to calculate the angles to be prohibitive for values of M
greater than about 32...It is a natural open problem to give a more
practical method for computing the angles.
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Algorithms for finding phase factors

• (Gilyen et al 1806.01838; Haah 1806.10236): compute the roots
of a high-degree polynomial to high precision. Limit to ∼
hundreds of phase factors with double precision arithmetic.

• (Dong, Meng, Whaley, L., 2002.11649): Optimization based
algorithm. No rigorous proof. Standard double precision
arithmetic. > 10000 phase factors.

• (Chao et al, 2003.02831): “capitalization”. No rigorous proof.
Standard double precision arithmetic. > 3000 phase factors.

• Should be able to compute much longer phase sequences. The
problem is practically solved within 2 years!

• (Wang, Dong, L., in prep2): Matrix-product state based structure.
Local convergence from fixed initial guess.
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Optimization based formulation

• Parity: only d̃ := dd+1
2 e degrees of freedom to determine f (x).

• Sampling on Chebyshev nodes xk = cos
(

2k−1
4d̃

π
)

, k = 1, ..., d̃ .

• Minimization problem

Φ∗ = argmin
Φ∈[−π,π)d+1

F (Φ), F (Φ) :=
1

d̃

d̃∑
k=1

∣∣Re[U(xk ,Φ)]1,1 − f (xk )
∣∣2 ,

• Global minimum F (Φ∗) = 0.

• Dimension mismatch: d > d̃ , so solution cannot be unique.
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Symmetric QSP
Recall

U(x ,Φ) =

(
P(x) iQ(x)

√
1− x2

iQ∗(x)
√

1− x2 P∗(x)

)
• General QSP: Q(x) ∈ C[x ].

• Symmetric QSP: Q(x) ∈ R[x ] ⇒
Φ = (φ0, φ1, . . . , φ1, φ0). Symmetric phase factors

• Degree of freedom: d̃ = dd+1
2 e ⇒ matches that in f (x)!

• Modified optimization problem

Φ∗ = argmin
Φ∈[−π,π)d+1,

symmetric.

F (Φ), F (Φ) :=
1

d̃

d̃∑
i=1

∣∣Re[U(xi ,Φ)]1,1 − f (xi)
∣∣2 ,

(Dong, Meng, Whaley, L., 2002.11649 PRA 2021),https://github.com/qsppack/qsppack
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Example: solve linear systems

1/(κx) ≈ f (x), κ = 10, d = 303.
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Applications

Hamiltonian simulation:

• Similar performance for other applications such as eigenstate
filtering and solving linear systems
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Streamlining the process of finding phase factors

Given a smooth function f (x) (not necessarily a polynomial)
• Option 1: Numerically obtain near-best polynomial

approximation (e.g. Remez method) + numerical optimization.

• Option 2: Direct optimization.

Option 1 is observed to be numerically more stable (objective
function = 0 at global minima) when f (x) is real.

(Dong, Meng, Whaley, L., 2002.11649 PRA 2021),https://github.com/qsppack/qsppack
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Optimization landscape

2 independent symmetric phase factors φ0, φ1.
Only global minima (so far).

Even target function
f (x) = x2 − 1

2

Odd target function
f (x) = 1√

3
x3 − 2√

3
x
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Local minima exists (and there are many)
There are many local minima at large d .

F (Φloc + xu1 + yu2)

Randomly generated odd target function (d = 5). F (Φloc) = 0.0084

Two smallest eigenvalue of the Hessian: 0.015, 3.7897 with eigenvectors u1, u2.
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Uniqueness of symmetric phase factor

Theorem (Wang, Dong, L., in prep1)
For any P ∈ C[x ] and Q ∈ R[x ] satisfying

1. deg(P) = d and deg(Q) = d − 1.
2. P has parity (d mod 2) and Q has parity (d − 1 mod 2).
3. (Normalization condition)
∀x ∈ [−1,1] : |P(x)|2 + (1− x2)|Q(x)|2 = 1.

4. If d is odd, then the leading coefficient of Q is positive.
there exists a unique set of symmetric phase factors
Φ := (φ0, φ1, · · · , φ1, φ0) ∈ Dd such that

U(x ,Φ) =

(
P(x) iQ(x)

√
1− x2

iQ(x)
√

1− x2 P∗(x)

)
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Global minimizer and (P,Q) pair

Corollary
There is a bijection between global minimizers and all admissible
(P(x),Q(x)) pairs with Re[P](x) = f (x).

• P(x) = f (x) + iPIm(x)

• Need to find complementary polynomials PIm(x),Q(x) ∈ R[x ].

• Normalization condition

1− f (x)2 = PIm(x)2 + (1− x2)Q(x)2.

• Seems like an infinite number of choices ([Gilyen et al 2019;
Haah 2019] constructs a class of solutions)
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Key: Laurent polynomials
• For any x ∈ [−1,1], x = z+z−1

2 with z = eiθ.

• f (x)→ f (z+z−1

2 ): Laurent polynomial C[z, z−1].

• Factorization:

1− f

(
z + z−1

2

)2

=

(
pIm(z) +

z − z−1

2
q(z)

)(
pIm(z)−

z − z−1

2
q(z)

)
,

pIm(z) := PIm

(
z + z−1

2

)
, q(z) := Q

(
z + z−1

2

)
,

1− f

(
z + z−1

2

)2

= βz−2d
∏
r∈S

(z − r), for some β ∈ R.

• Pin down the roots of RHS ⇒ finite # of global minimizers.

• Generalize results in [Gilyen et al 2019; Haah 2019] to find all
global minimizers.
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One special initial guess

Φ0 = (π/4,0, . . . ,0, π/4).
• Used in qsppack for all examples.

• Robust for virtually all real target functions.

• Corresponds to P(x) = iTd (x),Q(x) = Ud−1(x).

• One special solution for f (x) = 0, i.e. c = 0.
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Condition number and the magnitude

‖f‖∞ = maxx∈[−1,1] |f (x)| = 1− η.

Condition number of the Hessian at Φ∗.

• Ill-conditioned optimization problem as η → 0.

• Given ‖f‖∞ < 1, consider cf (x) with |c| < 1.
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Not all global minima are equivalent

∥∥Φ∗(k)− Φclass
0

∥∥
2

f (x) = 10−k
(

1
4 T6 + 5

4 T4 + 1
8 T2 − 1

8 T0

)
.

• class 1→
(
π
4 , 0, 0, 0, 0, 0,

π
4

)
• class 2→

(
π
4 , 0,

π
4 ,−

π
2 ,

π
4 , 0,

π
4

)
• class 3→

(
π
4 , 0,−

π
4 ,

π
2 ,−

π
4 , 0,

π
4

)
• class 4→

(
π
4 ,

π
4 , 0,−

π
2 , 0,

π
4 ,

π
4

)

• The branch converging to Φ0 = (π/4,0, . . . ,0, π/4) is called
maximal solution (also generated by GSLW/Haah method)

• Φ0 has the largest “convergence basin”.
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Actual faster convergence near Φ0

Initial 1: Φ0
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Distance of maximal solution to Φ0

Recall Φ0 = (π/4,0, . . . ,0, π/4).

Theorem (Wang, Dong, L., in prep1)
Let Φ∗ be the symmetric phase factors corresponding to the maximal
solution for the target function f (x) with ‖f‖∞ < 1√

2
. Then

||Φ∗ − Φ0||2 ≤
√

12 ‖f‖∞ .

• Bound independent of d !

• Capitalization (perturbation with high order polynomials) is not
effective for symmetric phase factors.
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Well-conditioned Hessian at maximal solution

Corollary
If ‖f‖∞ ≤

1
48d̃

, then

||Φ∗ − Φ0||2 ≤
√

3
24d̃

Furthermore,
λmin (Hess(Φ∗)) ≥ 1.

• Hess(Φ∗) is positive definite.

• Optimization algorithm expects to converge locally.
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Matrix product state structure of QSP

• MPS structure for 〈0|U(x ,Φ)|0〉.

• G0(φ0) = (eiφ0 ,0),Gd (φd ) = (eiφd ,0)>

• W(x) = ei arccos(x)X ,G(φj) = eiφj Z
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Gradient calculation

• Computing the gradient 〈0|∂φi U(x ,Φ)|0〉 (note the symmetric
structure)

• Sweeping based algorithm: O(d2) per sweep.

• Sweeping directions: Edge to center; Edge to center to edge;
Center to edge; Center to edge to center; etc
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Fast convergence (very few sweeps)

Even target function
f (x) = cos (500x), d̃ = 367

Odd target function
f (x) = 1

κx with κ = 50, d̃ = 760.
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Convergence from Φ0

Recall Φ0 = (π/4,0, . . . ,0, π/4).

Theorem (Wang, Dong, L., in prep2)
There exists a constant C (independent of d and target function) s.t.
for any f (x) with ‖f‖∞ ≤

1
Cd̃

,

F (Φk ) ≤

[
1− 1

12(1 + d̃)

]k

F (Φ0) (1)

where k is the number of sweeping.

Number of sweeps seems to be independent of d . Cost close to
O(d2).
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Open question: decay behavior of the phase sequence
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