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Graphs

G=(V.E,w) undirected
[V] =n
w: E—>R,




Sparsification

Approximate any graph G by a sparse graph
H.




Sparsification

Approximate any graph G by a sparse graph
H.

—H is faster to compute with than G
— Nontrivial statement about G
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Some properties of interest

Sizes of cuts “bottlenecks”
Clusters “‘communities”
Distances

Random walks

Single / multicommodity flows

Electrical flows + other physical processes
Coloring

Hamiltonian / Eulerian cycle

Subgraph counts e.g. triangles
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Sizes of cuts “bottlenecks”
Clusters “communities”
Distances

Random walks

Single / multicommodity flows

Electrical flows + other physical processes
Coloring

Hamiltonian / Eulerian cycle

Subgraph counts e.g. triangles



Cut Approximation [Benczur-Karger’'96]

H approximates G if
for every subset S C V
sum of weights of edges leaving S is preserved
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Example: The Complete Graph

G=K H = random d-regular
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|[Eg| = O(n?) |E| = O(dn)
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Example: The Complete Graph

G=K H = random d-regular
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Example: The Complete Graph

G=K H = random d-regular
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Example: The Complete Graph

i

|[Eg| = O(n?) |E| = O(dn)

witc(65) = 15| - (5] [wtn(8S) = (d/n)|S| - []
L with high probability ]

G=K H = random d-regular
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Example: The Complete Graph

G=K H = random d-regular
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Example: The Complete Graph

G=K H = random d-regular x (n/d)

n
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Cut Approximation [Benczur-Karger’'96]

H approximates G if
for every subset S C V
sum of weights of edges leaving S is preserved
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[Benczur-Karger’96]: For every G can quickly
find H with O(nlogn/g?) edges.




Cut Approximation [Benczur-Karger’'96]

(G and H are essentially

H approximates ( .
PP the same for min cut,

for every subst sparsest cut, etc.
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[Benczur-Karger’96]: For every G can quickly
find H with O(nlogn/g?) edges.



Cut Approximation [Benczur-Karger’'96]

(G and H are essentially

the same for min cut,
for every subst sparsest cut, etc.

BES 1EAVI i eserved

J\> e \ _e®
"~ @
5o

H approximates ¢

Going below O(n) would
disconnect the graph.
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[Benczur-Karger’96]: For every G can quickly
find H with O(nlogn/g?) edges.




Physical Approximation
[Spielman-Teng’04]

(i.e., spectral approximation)



Resistor Network Metaphor




Resistor Network Metaphor

=

edge = 1() resistor



Resistor Network Metaphor

=

potentials x:V — R



Resistor Network Metaphor

potentials x:V — R



Resistor Network Metaphor

2
energy & (x) = ZijEE(xi o xj)



Resistor Network Metaphor

2
energy & (x) = ZijEE(xi o xj)

—124+124224524+124+22= 36



Physical Approximation [ST'04]

Definition. H = (V, F,u) is a k —approximation
of G = (V, E,w) if for all potentials x:V — R:

Eg(x) < E;(x) < k- Ey(x)

“Electrically Equivalent”



Physical Approximation [ST'04]

Definition. H = (V, F,u) is a k —approximation
of G = (V, E,w) if for all potentials x:V — R:

2 ul-j(xl- — Xj)z < z Wij (Xi — Xj)z < K- z uij(xl- — Xj)z

i[jEF ijEE ijEF

“Electrically Equivalent”



Physical Approximation [ST'04]

Definition. H = (V, F,u) is a k —approximation
of G = (V, E,w) if for all potentials x:V — R:

z uij(xl- — Xj)z < z Wij (Xi — Xj)z < K- Z ul-j(xl- — Xj)z

i[jEF ijEE ijEF

Laplacian matrix [ xLox [ xT'Lyx




Physical Approximation [ST'04]

Definition. H = (V, F,u) is a k —approximation
of G = (V, E,w) if for all potentials x:V — R:

xTLyx < x"Lex < k- xTLyx

where| L; = Zij Wij(5i — 5j)(5i o 5j)T

is the Laplacian matrix of G.



Physical Approximation [ST'04]

Definition. H = (V, F,u) is a k —approximation
of G = (V, E,w) if for all potentials x:V — R:

xTLyx < x"Lex < k- xTLyx

where| L; = Zij Wij(5i — 5j)(5i o 5j)T

if 1 =1
is the Laplacian matrix of G. ( )



Properties of the Laplacian

L = z wyj (8 = 8)(8: — &) = 2 WijLij

ijEE ijEE

xTLex = 0 so positive semidefinite L; > 0.

A = B means xTAx > x'Bx



Properties of the Laplacian

L = z wyj (8 = 8)(8: — &) = 2 WijLij

ijEE ijeE
xTLex = 0 so positive semidefinite L; > 0.

nullspace = span{(1,1, ..., 1)} for connected G.

ZijEE Wi (Xi — xj)z = 0iffx; = xj foreveryij € E



Properties of the Laplacian

L = z wyj (8 = 8)(8: — &) = 2 WijLij

ijEE ijEE
xTLex = 0 so positive semidefinite L; > 0.
nullspace = span{(1,1, ..., 1)} for connected G.

Will talk about inverse Lgl = 0 orthogonal to nullspace.



Properties of the Laplacian

L = z wyj (8 = 8)(8: — &) = 2 WijLij

ijEE ijeE
xTLex = 0 so positive semidefinite L; > 0.

nullspace = span{(1,1, ..., 1)} for connected G.

Will talk about inverse Lgl = 0 orthogonal to nullspace.

Can talk about square root Lgl/z because Lz* = 0.



Physical Approximation [ST'04]

Definition. H = (V, F,u) is a k —approximation
of G = (V,E,w) if:

LHsLGik.LH

where| L; = Zij Wij(5i — 5j)(5i o 5j)T

is the Laplacian matrix of G.



Why?



0. Energy Encodes Cuts

xV - {0,1}
0 0




0. Energy Encodes Cuts

xV - {0,1}
0 0

0 1

Ec(x)=1"+17+1"=13



0. Energy Encodes Cuts

xV - {0,1}
0 0

0 1

Physical approx. implies cut approx.



€ is stronger than cut approx

G = cycle

Min cut = 2



€ is stronger than cut approx

G Z»Culf C\f)fm)‘ H



€ is stronger than cut approx
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€ is stronger than cut approx

-1 nt
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€ is stronger than cut approx

Not physical approx.



1. Energy controls physical processes
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Electrical Flow:

minimizes energy
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Electrical Flow:
minimizes energy

Spring Network:
settles at min. energy




1. Energy controls physical processes

Electrical Flow:

minimizes energy

Spring Network:
settles at min. energy

Heat Flow:



1. Energy controls physical processes

Electrical Flow: « AN

Minimizes ent gplving any of these
reduces to solving a

Spring Network: | [aplacian linear system |
settles at min ILx = Db

Heat Flow:




1. Solving Lx = b fast [ST'04]

x"Lox~x"L, x:can solve systems
in Lg by solving systems in L,,.



1. Solving Lx = b fast [ST'04]

x"Lox~x"L, x:can solve systems
in Lg by solving systems in L,,.

Naive: O(n3)
FMM, Williams’11: O(n?%373)
ST'04 O(mlog3° n)

KMP’10 O(mlog n)



1. Solving Lx = b fast [ST'04]

x"Lox~x"L, x:can solve systems
in Lg by solving systems in L,,.

Naive: O(n3)
FMM, Williams’11: O(n?%373)
ST'04 O(mlog3° n)

KMP’10 ﬂ(mlog n)

' V(G can find H with
{Thm [>T'04] O(nlog®n) edges.




1. Solving Lx = b fast [ST'04]

x"Lox~x"L, x:can solve systems
in Lg by solving systems in L,,.

Lx =0b

Electrical Flow | | Heat Flow | | Spring Network



1. Solving Lx = b fast [ST'04]

x"Lox~x"L, x:can solve systems
in Lg by solving systems in L,,.

Lx =0b

Electrical Flow | | Heat Flow | | Spring Network

Max Flow [CKMST11, LRS13, M13] Graph Partitioning [OSV11]
Random Spanning Tree [KMOS8] Regression on Graphs [ZGLO3]
Resistance Distance [SS08]



2. Spectral Graph Theory

Courant-Fischer Thm: x” L x determines A;(L¢)

Thus for physical approx. H of G:
(1 —e)N(G) < N(H) < (14 e)N(G)
Now H inherits many combinatorial properties:
random walks, colorings, spanning trees, etc.



3. Natural Setting

Spectral formulation more tractable:
x"Lx better behaved over R" than {0,1}".

Cuts are discrete objects.
Quadratic forms are continuous objects,
with a richer set of global transformations.
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Example: The Complete Graph

G=K H = random d-regular x (n/d)
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Example: The Complete Graph

G=K H = random d-regular x (n/d)
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Example: The Complete Graph

G=K H = random d-regular x (n/d)
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Example: Dumbell

G,

G=G1+G+G3
1'Gr = 21 Gz + 21 Gox + xTGga:



Example: Dumbell
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must have
weight 1



Example: Dumbell

must have
weight O(n)
G, G, / Gs
O O O O
H H, i
" é O O © 3



Will show how to do this
for every graph...



Theorem. Every weighted graph G has a weighted
subgraph H with at most 9n logn /E2 edges s.t.
LG < LH < (1 + E)LG.

Moreover, H can be found in time 0~ (m/e?).



Basic idea: Random Sampling

Choose each edge e with some probability p,.

take k independent samples.
If included, add to H with weight 1/kp,.

b.bl
eezLG.
e

ElLy] = ElLe] = ) pe-~

eeG



Basic idea: Random Sampling

Choose each edge e with some probability p,.

take k independent samples.
If included, add to H with weight 1/kp,.

b.bl
eezLG.
e

ElLy] = ElLe] = ) pe-~

eeG

Law of large numbers: as k — oo,
Ly = Lg
Question: how fast does this happen?



Attempt: Uniform Sampling

Works for K., : 0 O

Y

*O(nlogn) samples for i.i.d. edges



Attempt: Uniform Sampling

Works for K., : O O

) ¢

Bad for dumbbell:

Need 2(m) samples to catch the bridge edge.



Attempt: Uniform Sampling

Need to bias distribution
towards this edge _ ) @ O

Bad for dumbbell:

Need 2(m) samples to catch the bridge edge.



Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.



Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.
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Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.

KT N

5

| A

electrical flow minimizes energy



Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.

KT N

5

| A
Reff(e) = 1% =1



Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.
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Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.

vom
M%@
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Reff(e) = (2/3)* + (1/3)?* + (1/3)* = 2/3



Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.

vom
M%@
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many alternate paths = lower resistance
= electrically “redundant”



Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.

4 )

few alternate paths = high resistance
= electrically “important”

many alternate paths = lower resistance
_ = electrically “redundant” Y




Effective Resistance

Reff(e) = energy dissipation when a unit current
is injected/removed across ends of e.

4 )

few alternate paths = high resistance
= electrically “important”

many alternate paths = lower resistance
_ = electrically “redundant” Y

[ Idea: sample edges according to effective resistances. ]




Theorem. Every weighted graph G has a weighted
subgraph H with at most 9n logn /E2 edges s.t.
LG % LH < (1 + E)LG.

Moreover, H can be found in time 0~ (m/e?).

-

\_

Algorithm: sample 9n logn /e edges independently
according to effective resistances.

~

J




3 Step Proof

1. Reduction to a linear algebra problem

. Solution of linear algebra problem by random
matrix theory.

. Fast computation of sampling probabilities



[Spielman-S’08]

% > %
Part 1: Reduction to Linear
Algebra




Original Goal
Given (;

Find sparse H

satisfying LG < LH < K - LG



Outer Product Expansion

Recall:

L= Y (6;—6;)(6;— ;)" = > beby.
1€l ecl



Outer Product Expansion

Recall:

L= Y (6;—6;)(6;— ;)" = > beby.
1€l ecl

For a weighted subgraph H:

LH — Z Sebebg
eck

where se=wt(e) in H.



Original Goal
Given (;

Find sparse H

satisfying

Lg X Ly X K- Lg



Original Goal

Gven Lo =) bbl by =6 -0

Find sparse

Se = 0

satisfying

Lag=Ly=) cq sebeb!l < k- Lg



Quadratic Forms as Ellipsoids

{bebe }

Lo =Y bbbl  by=6—70;

ecG



Quadratic Forms as Ellipsoids

xTLx <1




Quadratic Forms as Ellipsoids
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Quadratic Forms as Ellipsoids




Containment of Ellipsoids




Invariant Under Rescaling




Invariant Under Rescating-~







Invariant Under Rescaling

e

~ 7’

MLGM % MLHM % K - MLGM



Invariant Under Re¢ choose v = 1.'/7




Invariant Under Re¢ choose v = 1.'/7

K-l



Invariant Under Rescaling

“H divided by G”
“relative Laplacian”

I L Lyl <u-



Invariant Under Rescaling




Invariant Under Rescaling

Rescaled

incidence vector

v, = L;1/z b,




Invariant Under Rescaling

Rescaled S E vl =1
incidence vector | _~ RN

_ 7—1/2 ¢ N



Equivalent Problem

Given | = E ’Ue’UZ
e

Find sparse

Se = 0

satisfying

I < Zeegsevevg < k-1



Core Problem




Core Problem

Ze<u7 U€>2 =1

variance is the same ]

in every direction




Core Problem

[ O~(n) vectors in R" }

SeUe



Core Problem

- e =

I < Z Sevevg <kl
&



Examples of the Reduction

Graph La=>. bebl 1 = Z VeV

% oK %

~1/2;,

Ve = Li e



Examples of the Reduction

Graph Leg=>,bbl T=>_ v}
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Examples of the Reduction

-~ . - T LI A A T Z T
G Q: Why rescale to identity? - e U€U€
A: All test directions are equally important -
in multiplicative approximation. ,’ ‘\
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Examples of the Reduction

—~— [ - A w—— 7 1+ 1 T . Z T
G Q: Why rescale to identity? - e U€U€
A: All test directions are equally important -
in multiplicative approximation. ,’ ‘\
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Effective Resistance View

For a graph G, the vectors are v, = Lél/zbe

Lengths of vectors are:
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Effective Resistance View

For a graph G, the vectors are v, = Lg,l/zb6
Lengths of vectors are:
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Electrical Flow minimizes energy:
L 1 7
minimize e Lex — (xl- — xj)
Subject to x 11



Effective Resistance View

For a graph G, the vectors are v, = Lg,l/zb6
Lengths of vectors are:

[vell? = 1LG" *be||? = bT L' be

Electrical Flow minimizes energy:

L 1T
minimize SX Lex — (xi - xj)
Subject to x 11
Optimality conditions: Lex = (5i — 5j) = by;

Optimal energy: ;LG bij



Effective Resistance View

For a graph G, the vectors are v, = Lél/zbe

Lengths of vectors are:

lvell2 = |1 L5 ?be||2 = BT L b, = Reff (e)



Effective Resistance View

—1/2
For a graph G, the vectors are v, = L / b,
Lengths of vectors are:

lvell2 = |1 L5 ?be||2 = BT L b, = Reff (e)

ﬁ
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Confirmation of Electrical Intuition

* Want G an H to be electrically equivalent

* Edges with higher Reff are more electrically
significant = have higher norm after rescaling
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Core Problem

m vectors in R" ]___[ O~(n) vectors in R" J
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Part 2: Randomizeg¥.

solution of linear algebra
problem



Core Problem

m vectors in R" ]_ __ _[ O(n) vectors in R" J
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Approximating the ldentity

Given Y; v;v] = I, consider the random matrix

vv;

Di

X =

with probability p;

ThenEX =Y. v;vi =1.

Take k i.i.d. samples X4, ..., X;.. Would like
1
(1—-e) < szi < (1+¢e)l
i



The Chernoff Bound

Suppose X3, ..., X are i.i.d. random variables with

0< X; <M and EX; =1.

_ ke?
< Z2exp Y,

Then

1V
m

|1
P Ein—l
_ L



The Chernoff Bound

k = 4M /e? samples give

1
;ZXi ~e l

with constant probability. EX; = 1.

_ ke?
< Z2exp Y,

dom variables with

Then

1V
m

|1
P Ein—l
_ L



The Chernoff Bound

Suppose X3, ..., X are i.i.d. random variables with

0< X; <M and EX; =1.

_ ke?
< Z2exp Y,

Then

1V
m

|1
P Ein—l
_ L



The Matrix Chernoff Bound
[Rudelson’99, AW’02, Tropp’11]

Suppose X4, ..., X are i.i.d. random
matrices with

Xi and [EXl = 1.

Then

1|1
Pl 2, % -
i [

1V
m
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(D
P
O
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The Matrix Chernoff Bound
[Rudelson’99, AW’02, Tropp’11]

k =4M /€% samples give dom
ka .
with constant probability. EX; = 1.
Then
1 kez
P EZXL'— > e| < 2dexp .
: i




The Matrix Chernoff Bound
[Rudelson’99, AW’02, Tropp’11]

Suppose X4, ..., X are i.i.d. random
matrices with

Xi and [EXl = 1.

Then

1|1
Pl 2, % -
i [

1V
m
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P
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In our case

viv] .
X = with prob. p;,
Pi
« . . viv-T
Want to minimize M = max > l
l L

To make this this tight for all v; set p;

EX = 1.

— IMax

l




In our case

T
ViV .
X = with prob. p;, EX = |.
Pi
T 2
- e Vv v
Want to minimize M = max |[|—|| = maX” il
l Pi l Di
||vi]]2

To make this this tight for all v; set p; =

|[vil]*
M

But 2.;pi = X



In our case

T
ViV .
X = with prob. p;, EX = |.
Pi
T 2
- e Vv v
Want to minimize M = max |[|—|| = maX” il
l Pi l Di
||vi]]2

To make this this tight for all v; set p; =

||v;]]4 Tr(vivi
BUtZipi:Zi v =2i (IV;l)



In our case

viv] .
X = with prob. p;,
Pi
« . . viv-T
Want to minimize M = max > l
l L

To make this this tight for all v; set p;

vl 2 _ Z_Tr(viv?)
l

But 2 pi = 2, Y

_ Tr(Zl- viv{)
M




In our case

T
ViV .
X = with prob. p;, EX = I.
Di

Ry 112

Want to minimize M = max b || = m_ax”v‘”
l Pi L Di

112

To make this this tight for all v; set p; = ”vnllel

e il e Trew!) _ mraeph _n
But 20 = i = Xi—, M M



In our case

vV .
X = with prob. p;, EX = I.
p.
- | a
Must have M = n Nl [[vi] |2
) | || = max
Thm: 4nlogn/e“ samples suffice. i Di




How to Approximate the Identity

Given ZZ v@-v,’f —

(Sample nlog n/e2 vectors randomly with
replacement, by | p, HUZHQ

\Set S; — 1/]07; for chosen vectors.

J

Rudelson’99: This works whp:
1—e=x> svv; X1+e



How to Approximate the Identity

_ For a graph, p, «< Reff:(e)
Given ZZ v@-v,’f —

/Sample nlog n/e2 vecto| s randomly with
replacement, by | p; o< ||v; ‘2,

\Set S; — 1/]07; for chosen vectors.

J

Rudelson’99: This works whp:
1—e=x> svv; X1+e



How to Approximate any Matrix

Given Z?j ’U,L-’U,iT —V

(Sample n log n/e2 vectors randomly with
replacement, by |p; o< ||V =122

Set §; — 1/]07; for chosen vectors.

. J

Rudelson’99: This works whp:
1—e=x> svv; X1+e



Theorem. Every weighted graph G has a weighted
subgraph H with at most 41 log n /E2 edges s.t.
LG < LH < (1 + E)LG.

-

\_

Algorithm: sample 4nlogn /e? edges independently
according to effective resistances.

~

J




Theorem. Every weighted graph G has a weighted
subgraph H with at most 9n logn /E2 edges s.t.
LG < LH < (1 + E)LG.

Moreover, H can be found in time

-

\_

Algorithm: sample 9n logn /e edges independently
according to approximate effective resistances.

~

J




[Spielman-S’08]

Part 3: Fast Calculation of
Sampling Probabilities



Resistances are Distances

Outer product expansion:

Lg=> bbbl =B'B for rows(B) = {bl}

| 000 |
B = /o—l 00 | SiaﬂCb 633&'\'“‘@‘
f nadencg madny
\(o;\oo /




Resistances are Distances

Outer product expansion:
Lg=> bbbl =B'B for rows(B) = {bl}
Sampling probabilities:
oe|2 = b7 L5 b,
=blL,'B"BL_"b,
= |BL: (8 — 6,)]7 for e = 1j.



Nearly Linear Time



Nearly Linear Time

So care about distances between cols. of BL

BL_157;

BL_l(Sj



Dimension Reduction

Johnson-Lindenstrauss Lemma [JL'84]:

Suppose x4, ..., X, are points in R,

Let Q.+, be a random k —dimensional projection.
Then

1@x; — Qxi|l, = (1 x e)||x; — x|
With high probability as long as

k > 10logn /€?



Dimension Reduction

Johnson-Lindenstrauss Lemma [JL'84]:
Suppose x4, ..., X, are points in R,
Let Q. be a random

Then

[1Qx; — Qx;||, < (1 £ €)||x; — xj]],
With high probability as long as

k > 10logn /€?



Johnson-Lindenstrauss with e = 1/2

So care about distances between cols. of BL

Random ()

[ QBL_léz

BL™14; QBL~15;

Rm Rlog n



Nearly Linear Time

So care about distances between cols. of BL
Johnson-Lindenstrauss: Take random Q. y m
Set Z=QBL1

(logn xm) (m X n)l (logn X n)

o prL-1 7




Nearly Linear Time

(logn X n)




Nearly Linear Time

(logn x n)

Find rows of Z,,,, ,, by _ZJ

ZeQBLT e
z=qg | Reff(ij) ~ || Z(0; —6;)|]"

zl=(@8),




Nearly Linear Time

logn X n

Find rows of Z,,,, ,, by (_gZJ)
Z=QBL1 o ,

seqs | Reff(ij) ~ [|Z(5, — 5,
zl=(@8),

Solve Oflogn) linear systems in L using
fast Laplacian solver solver

learns all pairwise resistances by probing a few
random electrical flows.



Nearly Linear Time

logn X n

Find rows of Z,,,, ,, by (_gZJ)
Z=QBL1 o ,
si=qs | Reff(ij) ~ [ 25— 3,
zl=(@8),

Solve Oflogn) linear systems in L using
fast Laplacian solver solver

Can show approximate R, suffice.
(only change M by a constant factor)

[



Actual Algorithm

mut' undirected graph ¢ = (V,E,w) \
Output: subgraph Hwith L, < Ly < (1 +€)Lg

1. Let Qiognxmbe a scaled random projection.

Compute approximate resistance matrix
7Z = QBL*
by solving log n Laplacian systems
2. Repeat the following 9nlogn/e? times:

choose edge e = ij w.p. p, « ||Z(8; — 6))||?

k add e to H with weights, = 1/p, /




Actual Algorithm

mut' undirected graph ¢ = (V,E,w) \
Output: subgraph Hwith L, < Ly < (1 +€)Lg

1. Let Qiognxmbe a scaled random projection.

Compute approximate resistance matrix
7Z = QBL*
by solving log n Laplacian systems
2. Repeat the following 9nlogn/e? times:

choose edge e = ij w.p. p, « ||Z(8; — 6))||?

K add e to H with weight s, = 1/p, /
+improvements by [Koutis-Levin-Peng’12]




Chicken / Egg?

Solve Lcx = b



Chicken / Egg?

Solve Lcx = b

Compute sparsifier




Chicken / Egg?

Solve Lcx = b

Compute sparsifier

Solve O(logn) random linear systems
LG.X — bi




[Koutis-Miller-Peng’10] resolve this

Solve Lcx = b

Compute sparsifier

Solve O(logn) random linear systems
LGX — bi




Two Useful Ways to view a Graph

electrical network
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TW. Reff(e) = [|1LY?b, |12 = ||ve||? IPh

electrical network
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Two Useful Tools

Matrix Chernoff Bound

P

1
DR
: [

>

€

< 2d exp(

Johnson-Lindenstrauss Lemma

Rm

Random @

QBLil(Si

Bﬁ/?gﬁ

Rlog n

ke?

4M

|



Advantages over pure combinatorics

There is a global rescaling transformation:

L~ Ly ift LYPLyL.V? ~ 1

Powerful random matrix tools apply naturally:
1. Matrix Chernoff bound
2. Johnson-Lindenstrauss Lemma



Some Improvements

mlog?n
2

[Koutis-Levin-Peng’12] O (

[Kelner-Levin’11] 1-pass streaming algorithm
[Koutis’14] parallel algorithm

[Kapralov, Lee, Musco x2, Sidford’14]
1-pass dynamic streaming algorithm



Coming Up: A Slow Algorithm

Part Il: Sparsifiers with 0(”/62) edges.

Based on more delicate understanding of how
eigenvalues of a matrix evolve on adding edges.

0 Q ©... OO



Two Open Questions

Faster approximation of effective resistances.

More physical processes on graphs.



Deterministic Solution
[Batson-Spielman-S’09]

Spectral Sparsification Theorem:

ih!

iven Y .. wvv] = I, there are s; > 0 wi




Deterministic Solution [BSS'09]

Spectral Sparsification Theorem:

G

1ven Zigm bebz — L there are s, > 0 wit

b

e (1—¢Lg)=2> . sivivy = (1+€)Lg

o supp(s) < 4in — 1)/€.




Deterministic Solution [BSS'09]

Spectral Sparsification Theorem:

G

1Ve Zigm bebz — Lo there are s, > 0 wit

b

¢ \—e)Lg =) svv] < (1+€)Lg

o p(s) <4(n—1)/€.

\_ —

H— "
Open: Fast Algorithm? % |:>.’. o




