Graph Sparsification I: Effective Resistance Sampling

Nikhil Srivastava
Microsoft Research India

Simons Institute, August 262014

Graphs

$\mathbf{G}=(V, E, w)$ undirected
$|V|=n$
$w: E \rightarrow \boldsymbol{R}_{+}$

Sparsification

Approximate any graph \boldsymbol{G} by a sparse graph H.

Sparsification

Approximate any graph \boldsymbol{G} by a sparse graph H.

$-\boldsymbol{H}$ is faster to compute with than \boldsymbol{G}

- Nontrivial statement about G

Sample Application

Output

Sample Application

Sample Application

Some properties of interest

Sizes of cuts
Clusters
Distances
Random walks
Single / multicommodity flows
Electrical flows + other physical processes
Coloring
Hamiltonian / Eulerian cycle
Subgraph counts
e.g. triangles

Some properties of interest

Sizes of cuts

Clusters

"bottlenecks"

"communities"

Distances
Random walks
Single / multicommodity flows
Electrical flows + other physical processes
Coloring
Hamiltonian / Eulerian cycle
Subgraph counts
e.g. triangles

Cut Approximation [Benczur-Karger'96]

\boldsymbol{H} approximates \boldsymbol{G} if for every subset $S \subset V$
sum of weights of edges leaving S is preserved

Example: The Complete Graph

$G=K_{n}$

H = random d-regular

$\left|E_{G}\right|=O\left(n^{2}\right)$

$\left|E_{H}\right|=O(d n)$

Example: The Complete Graph

$G=K_{n}$

$$
\left|E_{G}\right|=O\left(n^{2}\right)
$$

H = random d-regular

$\left|E_{H}\right|=O(d n)$

$$
w t_{G}(\delta S)=|S| \cdot|\bar{S}|
$$

Example: The Complete Graph

$\mathrm{G}=\mathrm{K}_{\mathrm{n}}$

$$
\left|E_{G}\right|=O\left(n^{2}\right)
$$

$\mathbb{E} w t_{H}(\delta S)=(d / n)|S| \cdot|\bar{S}|$

Example: The Complete Graph

$\mathrm{G}=\mathrm{K}_{\mathrm{n}}$

$$
\left|E_{G}\right|=O\left(n^{2}\right)
$$

$\mathbf{H}=$ random d-regular

$$
\left|E_{H}\right|=O(d n)
$$

$$
w t_{H}(\delta S) \simeq(d / n)|S| \cdot|\bar{S}|
$$

with high probability

Example: The Complete Graph

$\mathrm{G}=\mathrm{K}_{\mathrm{n}}$ $\mathbf{H}=$ random d-regular

$\left|E_{G}\right|=O\left(n^{2}\right)$

$\left|E_{H}\right|=O(d n)$
$\forall S \subset V, \quad \frac{w t_{G}(\delta S)}{w t_{H}(\delta S)} \simeq(n / d)$

Example: The Complete Graph

$$
\mathrm{G}=\mathrm{K}_{\mathrm{n}} \quad \mathrm{H}=\text { random d-regular } \times(\mathrm{n} / \mathrm{d})
$$

Cut Approximation [Benczur-Karger'96]

\boldsymbol{H} approximates \boldsymbol{G} if for every subset $S \subset V$
sum of weights of edges leaving \boldsymbol{S} is preserved

[Benczur-Karger'96]: For every \boldsymbol{G} can quickly find \boldsymbol{H} with $\mathbf{O}\left(\mathrm{nlogn} / \varepsilon^{2}\right)$ edges.

Cut Approximation [Benczur-Karger'96]

[Benczur-Karger'96]: For every \boldsymbol{G} can quickly find \boldsymbol{H} with $\mathbf{O}\left(\mathrm{n} \operatorname{logn} / \varepsilon^{2}\right)$ edges.

Cut Approximation [Benczur-Karger'96]

 the same for min cut, sparsest cut, etc.

Going below $O(n)$ would disconnect the graph.
 for every subs

Physical Approximation [Spielman-Teng'04]

(i.e., spectral approximation)

Resistor Network Metaphor

Resistor Network Metaphor

Resistor Network Metaphor

potentials $x: V \rightarrow \mathbb{R}$

Resistor Network Metaphor

potentials $x: V \rightarrow \mathbb{R}$

Resistor Network Metaphor

energy $\varepsilon_{G}(x)=\sum_{i j \in E}\left(x_{i}-x_{j}\right)^{2}$

Resistor Network Metaphor

energy $\mathcal{E}_{G}(x)=\sum_{i j \in E}\left(x_{i}-x_{j}\right)^{2}$

$$
=1^{2}+1^{2}+2^{2}+5^{2}+1^{2}+2^{2}=36
$$

Physical Approximation [ST’04]

Definition. $H=(V, F, u)$ is a κ-approximation of $G=(V, E, w)$ if for all potentials $x: V \rightarrow \mathbb{R}$:

$$
\mathcal{E}_{H}(x) \leq \mathcal{E}_{G}(x) \leq \kappa \cdot \varepsilon_{H}(x)
$$

"Electrically Equivalent"

Physical Approximation [ST'04]

Definition. $H=(V, F, u)$ is a κ-approximation of $G=(V, E, w)$ if for all potentials $x: V \rightarrow \mathbb{R}$:

$$
\sum_{i j \in F} u_{i j}\left(x_{i}-x_{j}\right)^{2} \leq \sum_{i j \in E} w_{i j}\left(x_{i}-x_{j}\right)^{2} \leq \kappa \cdot \sum_{i j \in F} u_{i j}\left(x_{i}-x_{j}\right)^{2}
$$

"Electrically Equivalent"

Physical Approximation [ST’04]

Definition. $H=(V, F, u)$ is a κ-approximation of $G=(V, E, w)$ if for all potentials $x: V \rightarrow \mathbb{R}$:

$$
\sum_{i j \in F} u_{i j}\left(x_{i}-x_{j}\right)^{2} \leq \sum_{i j \in E} w_{i j}\left(x_{i}-x_{j}\right)^{2} \leq \kappa \cdot \sum_{i j \in F} u_{i j}\left(x_{i}-x_{j}\right)^{2}
$$

Laplacian matrix

$$
x^{T} L_{G} x
$$

$$
x^{T} L_{H} x
$$

Physical Approximation [ST’04]

Definition. $H=(V, F, u)$ is a κ-approximation of $G=(V, E, w)$ if for all potentials $x: V \rightarrow \mathbb{R}$:

$$
x^{T} L_{H} x \leq x^{T} L_{G} x \leq \kappa \cdot x^{T} L_{H} x
$$

where $L_{G}=\sum_{i j} w_{i j}\left(\delta_{i}-\delta_{j}\right)\left(\delta_{i}-\delta_{j}\right)^{T}$ is the Laplacian matrix of \boldsymbol{G}.

Physical Approximation [ST’04]

Definition. $H=(V, F, u)$ is a κ-approximation of $G=(V, E, w)$ if for all potentials $x: V \rightarrow \mathbb{R}$:

$$
x^{T} L_{H} x \leq x^{T} L_{G} x \leq \kappa \cdot x^{T} L_{H} x
$$

where $L_{G}=\sum_{i j} w_{i j}\left(\delta_{i}-\delta_{j}\right)\left(\delta_{i}-\delta_{j}\right)^{T}$
is the Laplacian matrix of \boldsymbol{G}.

$$
\underbrace{i} \begin{array}{cc}
1 & -1 \\
i & 1 \\
i & j
\end{array})
$$

Properties of the Laplacian

$$
L_{G}=\sum_{i j \in E} w_{i j}\left(\delta_{i}-\delta_{j}\right)\left(\delta_{i}-\delta_{j}\right)^{T}=\sum_{i j \in E} w_{i j} L_{i j}
$$

$x^{T} L_{G} x \geq 0$ so positive semidefinite $L_{G} \succcurlyeq 0$.

$$
A \succcurlyeq B \text { means } x^{T} A x \geq x^{T} B x
$$

Properties of the Laplacian

$$
L_{G}=\sum_{i j \in E} w_{i j}\left(\delta_{i}-\delta_{j}\right)\left(\delta_{i}-\delta_{j}\right)^{T}=\sum_{i j \in E} w_{i j} L_{i j}
$$

$x^{T} L_{G} x \geq 0$ so positive semidefinite $L_{G} \succcurlyeq 0$.
nullspace $=\operatorname{span}\{(1,1, \ldots, 1)\}$ for connected G.
$\sum_{i j \in E} w_{i j}\left(x_{i}-x_{j}\right)^{2}=0$ iff $x_{i}=x_{j}$ for every $i j \in E$

Properties of the Laplacian

$$
L_{G}=\sum_{i j \in E} w_{i j}\left(\delta_{i}-\delta_{j}\right)\left(\delta_{i}-\delta_{j}\right)^{T}=\sum_{i j \in E} w_{i j} L_{i j}
$$

$x^{T} L_{G} x \geq 0$ so positive semidefinite $L_{G} \succcurlyeq 0$.
nullspace $=\operatorname{span}\{(1,1, \ldots, 1)\}$ for connected G.

Will talk about inverse $L_{G}^{-1} \succcurlyeq 0$ orthogonal to nullspace.

Properties of the Laplacian

$$
L_{G}=\sum_{i j \in E} w_{i j}\left(\delta_{i}-\delta_{j}\right)\left(\delta_{i}-\delta_{j}\right)^{T}=\sum_{i j \in E} w_{i j} L_{i j}
$$

$x^{T} L_{G} x \geq 0$ so positive semidefinite $L_{G} \succcurlyeq 0$.
nullspace $=\operatorname{span}\{(1,1, \ldots, 1)\}$ for connected G.

Will talk about inverse $L_{G}^{-1} \succcurlyeq 0$ orthogonal to nullspace.

Can talk about square root $L_{G}^{-1 / 2}$ because $L_{G}^{-1} \succcurlyeq 0$.

Physical Approximation [ST'04]

Definition. $H=(V, F, u)$ is a κ-approximation of $G=(V, E, w)$ if:

$$
L_{H} \preccurlyeq L_{G} \preccurlyeq \kappa \cdot L_{H}
$$

where $L_{G}=\sum_{i j} w_{i j}\left(\delta_{i}-\delta_{j}\right)\left(\delta_{i}-\delta_{j}\right)^{T}$ is the Laplacian matrix of \boldsymbol{G}.

Why?

O. Energy Encodes Cuts

$$
x: V \rightarrow\{0,1\}
$$

0. Energy Encodes Cuts

$x: V \rightarrow\{0,1\}$

$\mathcal{E}_{G}(x)=1^{2}+1^{2}+1^{2}=3$

0. Energy Encodes Cuts

$$
x: V \rightarrow\{0,1\}
$$

Physical approx. implies cut approx.

\mathcal{E} is stronger than cut approx

$G=$ cycle

Min cut $=2$

\mathcal{E} is stronger than cut approx

G 2-cut approx H
\mathcal{E} is stronger than cut approx

\mathcal{E} is stronger than cut approx

$$
\varepsilon_{q}=n-1+(n-1)^{2} \gg \quad \varepsilon_{H}=n-1
$$

\mathcal{E} is stronger than cut approx

$$
\varepsilon_{q}=n-1+(n-1)^{2} \gg \quad \varepsilon_{H}=n-1
$$

1. Energy controls physical processes

Electrical Flow:

minimizes energy

1. Energy controls physical processes

Electrical Flow:

minimizes energy

Spring Network:
settles at min. energy

1. Energy controls physical processes

Electrical Flow:

minimizes energy

Spring Network: settles at min. energy

Heat Flow:

1. Energy controls physical processes

Electrical Flow:
minimizes en

Spring Network: settles at min

Solving any of these
reduces to solving a
Laplacian linear system

$$
L x=b
$$

Heat Flow:

1. Solving $L x=b$ fast [ST'04]

$\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{L}_{\boldsymbol{G}} \boldsymbol{X}{ }^{\sim} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{L}_{\boldsymbol{H}} \boldsymbol{x}$: can solve systems in L_{G} by solving systems in L_{H}.

1. Solving $L x=b$ fast [ST'04]

$\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{L}_{\boldsymbol{G}} \boldsymbol{X}{ }^{\sim} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{L}_{\boldsymbol{H}} \boldsymbol{X}$: can solve systems

in L_{G} by solving systems in L_{H}.

Naïve:
$O\left(n^{3}\right)$
FMM, Williams'11:
$\mathrm{O}\left(\mathrm{n}^{2.373}\right)$
ST'04
KMP'10
$O\left(m \log ^{30} n\right)$
$\mathrm{O}(\mathrm{mlog} \mathrm{n})$

1. Solving $L x=b$ fast [S T'04]

$\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{L}_{\boldsymbol{G}} \boldsymbol{X}{ }^{\sim} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{L}_{\boldsymbol{H}} \boldsymbol{X}$: can solve systems in L_{G} by solving systems in L_{H}.

Naïve:
$O\left(n^{3}\right)$
FMM, Williams'11:
$\mathrm{O}\left(\mathrm{n}^{2.373}\right)$
ST '04
KM P'10
The [S T'04]
$O\left(m \log ^{30} n\right)$
$\beta(m \log n)$
$\forall G$ can find H with $O\left(n \log ^{8} n\right)$ edges.

1. Solving $L x=b$ fast [ST'04]

$\boldsymbol{X}^{\boldsymbol{T}} L_{\boldsymbol{G}} \boldsymbol{X}{ }^{\sim} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{L}_{\boldsymbol{H}} \boldsymbol{X}$: can solve systems

$$
\text { in } L_{G} \text { by solving systems in } L_{H} \text {. }
$$

$$
L x=b
$$

Electrical Flow
Heat Flow
Spring Network

1. Solving $L x=b$ fast [ST'04]

$\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{L}_{\boldsymbol{G}} \boldsymbol{X}{ }^{\sim} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{L}_{\boldsymbol{H}} \boldsymbol{X}$: can solve systems in L_{G} by solving systems in L_{H}.

$$
L x=b
$$

Electrical Flow

Heat Flow

Spring Network

Max Flow [CKMST11, LRS13, M13]
Random Spanning Tree [KM08] Resistance Distance [SSO8]

Graph Partitioning [OSV11]
Regression on Graphs [ZGLO3]

2. Spectral Graph Theory

Courant-Fischer Thm: $\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{L}_{G} \boldsymbol{x}$ determines $\lambda_{i}\left(L_{G}\right)$
$\lambda_{\max }(L)=\max \frac{x^{T} L x}{x^{T} x} \quad \lambda_{\min }(L)=\min \frac{x^{T} L x}{x^{T} x}$

Thus for physical approx. \mathbf{H} of \mathbf{G} :

$$
(1-\epsilon) \lambda_{i}(G) \leq \lambda_{i}(H) \leq(1+\epsilon) \lambda_{i}(G)
$$

Now \mathbf{H} inherits many combinatorial properties: random walks, colorings, spanning trees, etc.

3. Natural Setting

Spectral formulation more tractable:
$\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}$ better behaved over \mathbf{R}^{n} than $\{0,1\}^{n}$.

Cuts are discrete objects.
Quadratic forms are continuous objects, with a richer set of global transformations.

Examples

Example: The Complete Graph

$\mathrm{G}=\mathrm{K}_{\mathrm{n}} \quad \mathrm{H}=$ random d-regular $\mathrm{x}(\mathrm{n} / \mathrm{d})$

Example: The Complete Graph

$$
\mathrm{G}=\mathrm{K}_{\mathrm{n}} \quad \mathrm{H}=\text { random d-regular } \times(\mathrm{n} / \mathrm{d})
$$

Example: The Complete Graph

$$
\mathbf{G}=\mathrm{K}_{\mathrm{n}} \quad \mathrm{H}=\text { random d-regular } \times(\mathrm{n} / \mathrm{d})
$$

Example: Dumbell

Example: Dumbell

Example: Dumbell

Will show how to do this for every graph...

Theorem. Every weighted graph \mathbf{G} has a weighted subgraph \mathbf{H} with at most $9 n \log n / \epsilon^{2}$ edges s.t.

$$
L_{G} \preccurlyeq L_{H} \leqslant(1+\epsilon) L_{G} .
$$

Moreover, H can be found in time $O^{\sim}\left(m / \epsilon^{2}\right)$.

Basic idea: Random Sampling

Choose each edge e with some probability p_{e}. take k independent samples.
If included, add to H with weight $1 / k p_{e}$.

$$
\mathbb{E}\left[L_{H}\right]=\mathbb{E}\left[L_{e}\right]=\sum_{e \in G} p_{e} \cdot \frac{b_{e} b_{e}^{T}}{p_{e}}=L_{G}
$$

Basic idea: Random Sampling

Choose each edge e with some probability p_{e}. take k independent samples.
If included, add to H with weight $1 / k p_{e}$.

$$
\mathbb{E}\left[L_{H}\right]=\mathbb{E}\left[L_{e}\right]=\sum_{e \in G} p_{e} \cdot \frac{b_{e} b_{e}^{T}}{p_{e}}=L_{G}
$$

Law of large numbers: as $k \rightarrow \infty$,

$$
L_{H} \rightarrow L_{G}
$$

Question: how fast does this happen?

Attempt: Uniform Sampling

Works for K_{n} :

*O(nlogn) samples for i.i.d. edges

Attempt: Uniform Sampling

Works for K_{n} :

Bad for dumbbell:

Need $\Omega(m)$ samples to catch the bridge edge.

Attempt: Uniform Sampling

Need to bias distribution towards this edge

Bad for dumbbell:

Need $\Omega(m)$ samples to catch the bridge edge.

Effective Resistance

$\operatorname{Reff}(e)=$ energy dissipation when a unit current is injected/removed across ends of e.

Effective Resistance

$\operatorname{Reff}(e)=$ energy dissipation when a unit current is injected/removed across ends of e.

Effective Resistance

$\operatorname{Reff}(e)=$ energy dissipation when a unit current is injected/removed across ends of e.

electrical flow minimizes energy

Effective Resistance

$\operatorname{Reff}(e)=$ energy dissipation when a unit current is injected/removed across ends of e.

$\operatorname{Reff}(e)=1^{2}=1$

Effective Resistance

$\operatorname{Reff}(e)=$ energy dissipation when a unit current is injected/removed across ends of e.

Effective Resistance

$\operatorname{Reff}(e)=$ energy dissipation when a unit current is injected/removed across ends of e.

$\boldsymbol{\operatorname { R e f f }}(e)=(2 / 3)^{2}+(1 / 3)^{2}+(1 / 3)^{2}=2 / 3$

Effective Resistance

$\operatorname{Reff}(e)=$ energy dissipation when a unit current is injected/removed across ends of e.

many alternate paths = lower resistance
= electrically "redundant"

Effective Resistance

$\operatorname{Reff}(e)=$ energy dissipation when a unit current is injected/removed across ends of e.
few alternate paths = high resistance
= electrically "important"
many alternate paths = lower resistance = electrically "redundant"

Effective Resistance

$\operatorname{Reff}(e)=$ energy dissipation when a unit current is injected/removed across ends of e.
few alternate paths = high resistance = electrically "important"
many alternate paths = lower resistance = electrically "redundant"

Idea: sample edges according to effective resistances.

Theorem. Every weighted graph \mathbf{G} has a weighted subgraph \mathbf{H} with at most $9 n \log n / \epsilon^{2}$ edges s.t.

$$
L_{G} \leqslant L_{H} \leqslant(1+\epsilon) L_{G} .
$$

Moreover, H can be found in time $O^{\sim}\left(m / \epsilon^{2}\right)$.

Algorithm: sample $9 n \log n / \epsilon^{2}$ edges independently according to effective resistances.

3 Step Proof

1. Reduction to a linear algebra problem
2. Solution of linear algebra problem by random matrix theory.
3. Fast computation of sampling probabilities

[Spielman-S'08]

Part 1: Reduction to Linear Algebra

Original Goal

Given G

Find sparse H
satisfying

$$
L_{G} \preceq L_{H} \preceq \kappa \cdot L_{G}
$$

Outer Product Expansion

Recall:

$$
L_{G}=\sum_{i j \in E}\left(\delta_{i}-\delta_{j}\right)\left(\delta_{i}-\delta_{j}\right)^{T}=\sum_{e \in E} b_{e} b_{e}^{T}
$$

Outer Product Expansion

Recall:

$$
L_{G}=\sum_{i j \in E}\left(\delta_{i}-\delta_{j}\right)\left(\delta_{i}-\delta_{j}\right)^{T}=\sum_{e \in E} b_{e} b_{e}^{T}
$$

For a weighted subgraph \boldsymbol{H} :

$$
L_{H}=\sum_{e \in E} s_{e} b_{e} b_{e}^{T}
$$

where $s_{e}=w t(e)$ in H.

Original Goal

Given

 GFind sparse H
satisfying

$$
L_{G} \preceq L_{H} \preceq \kappa \cdot L_{G}
$$

Original Goal

Given

$$
L_{G}=\sum_{e \in G} b_{e} b_{e}^{T}
$$

$$
b_{i j}=\delta_{i}-\delta_{j}
$$

Find sparse

$$
s_{e} \geq 0
$$

satisfying

$$
L_{G} \preceq L_{H}=\sum_{e \in G} s_{e} b_{e} b_{e}^{T} \preceq \kappa \cdot L_{G}
$$

Quadratic Forms as Ellipsoids

$$
L_{H}=\sum_{e \in E} s_{e} b_{e} b_{e}^{T}
$$

Containment of Ellipsoids

$$
\begin{array}{ll}
\prime & L_{G} \\
\hdashline & L_{G} \leqslant L_{H} \leqslant \kappa \cdot L_{G}
\end{array}
$$

Invariant Under Rescaling

$$
M(
$$

Invariant Under Re choose $M=L_{\sigma}^{-1 / 2}$

$$
L_{G}^{-1 / 2} L_{G} L_{G}^{-1 / 2} \leqslant L_{G}^{-1 / 2} L_{H} L_{G}^{-1 / 2} \leqslant \kappa \cdot L_{G}^{-1 / 2} L_{G} L_{G}^{-1 / 2}
$$

Invariant Under Re choose $M=L_{G}^{-1 / 2}$

$$
I \leqslant L_{G}^{-1 / 2} L_{H} L_{G}^{-1 / 2} \leqslant \kappa \cdot I
$$

Invariant Under Rescaling

Invariant Under Rescaling

$$
I \preccurlyeq \sum_{e} s_{e} L_{G}^{-1 / 2} b_{e} b_{e}^{T} L_{G}^{-1 / 2} \preccurlyeq \kappa \cdot I
$$

Invariant Under Rescaling

Rescaled
incidence vector
$v_{e}:=L_{G}^{-1 / 2} b_{e}$

$$
I \preccurlyeq \sum_{e} S_{e} v_{e} v_{e}^{T} \preccurlyeq \kappa \cdot I
$$

Invariant Under Rescaling

Equivalent Problem

Given

$$
I=\sum_{e} v_{e} v_{e}^{T}
$$

Find sparse

$$
s_{e} \geq 0
$$

satisfying

$$
I \preceq \sum_{e \in G} s_{e} v_{e} v_{e}^{T} \preceq \kappa \cdot I
$$

Core Problem

Core Problem

，ーーーー m vectors in R^{n}

$$
I=\sum_{e} v_{e} v_{e}^{T}
$$

$\sum_{e}\left\langle u, v_{e}\right\rangle^{2}=1$
 variance is the same in every direction

Core Problem

Core Problem

Examples of the Reduction

Graph

$$
L_{G}=\sum_{e} b_{e} b_{e}^{T}
$$

$I=\sum_{e} v_{e} v_{e}^{T}$

$$
v_{e}=L_{G}^{-1 / 2} b_{e}
$$

Examples of the Reduction

Graph

$I=\sum_{e} v_{e} v_{e}^{T}$

Examples of the Reduction

Examples of the Reduction

Effective Resistance View

For a graph \boldsymbol{G}, the vectors are $v_{e}=L_{G}^{-1 / 2} b_{e}$ Lengths of vectors are:

$$
\left\|v_{e}\right\|^{2}=\left\|L_{G}^{-1 / 2} b_{e}\right\|^{2}=b_{e}^{T} L_{G}^{-1} b_{e}
$$

Effective Resistance View

For a graph \boldsymbol{G}, the vectors are $v_{e}=L_{G}^{-1 / 2} b_{e}$ Lengths of vectors are:

$$
\left\|v_{e}\right\|^{2}=\left\|L_{G}^{-1 / 2} b_{e}\right\|^{2}=b_{e}^{T} L_{G}^{-1} b_{e}
$$

Electrical Flow minimizes energy:
minimize
$\frac{1}{2} x^{T} L_{G} x-\left(x_{i}-x_{j}\right)$
Subject to

$$
x \perp 1
$$

Effective Resistance View

For a graph \boldsymbol{G}, the vectors are $v_{e}=L_{G}^{-1 / 2} b_{e}$ Lengths of vectors are:

$$
\left\|v_{e}\right\|^{2}=\left\|L_{G}^{-1 / 2} b_{e}\right\|^{2}=b_{e}^{T} L_{G}^{-1} b_{e}
$$

Electrical Flow minimizes energy:

$$
\begin{array}{ll}
\text { minimize } & \frac{1}{2} x^{T} L_{G} x-\left(x_{i}-x_{j}\right) \\
\text { Subject to } & x \perp 1
\end{array}
$$

Optimality conditions:

$$
\begin{aligned}
& L_{G} x=\left(\delta_{i}-\delta_{j}\right)=b_{i j} \\
& b_{i j}^{T} L_{G}^{-1} b_{i j}
\end{aligned}
$$

Optimal energy:

Effective Resistance View

For a graph \boldsymbol{G}, the vectors are $v_{e}=L_{G}^{-1 / 2} b_{e}$ Lengths of vectors are:

$$
\left\|v_{e}\right\|^{2}=\left\|L_{G}^{-1 / 2} b_{e}\right\|^{2}=b_{e}^{T} L_{G}^{-1} b_{e}=\operatorname{Reff}_{G}(e)
$$

Effective Resistance View

For a graph \boldsymbol{G}, the vectors are $v_{e}=L_{G}^{-1 / 2} b_{e}$ Lengths of vectors are:

$$
\left\|v_{e}\right\|^{2}=\left\|L_{G}^{-1 / 2} b_{e}\right\|^{2}=b_{e}^{T} L_{G}^{-1} b_{e}=\operatorname{Reff}_{G}(e)
$$

Confirmation of Electrical Intuition

- Want \boldsymbol{G} an \boldsymbol{H} to be electrically equivalent
- Edges with higher Reff are more electrically significant = have higher norm after rescaling

$$
v_{e}=L_{G}^{-1 / 2} b_{e}
$$

Core Problem

Core Problem

Approximating the Identity

Given $\sum_{i} v_{i} v_{i}^{T}=I$, consider the random matrix

$$
X=\frac{v_{i} v_{i}^{T}}{p_{i}}
$$

with probability p_{i}

Then $\mathbb{E} X=\sum_{i} v_{i} v_{i}^{T}=I$.

Take k i.i.d. samples X_{1}, \ldots, X_{k}. Would like

$$
(1-\epsilon) I \preccurlyeq \frac{1}{k} \sum_{i} X_{i} \preccurlyeq(1+\epsilon) I
$$

The Chernoff Bound

Suppose X_{1}, \ldots, X_{k} are i.i.d. random variables with

$$
0 \leq X_{i} \leq M \quad \text { and } \quad \mathbb{E} X_{i}=1
$$

Then

$$
\mathbb{P}\left[\left|\frac{1}{k} \sum_{i} X_{i}-1\right| \geq \epsilon\right] \leq 2 \exp \left(-\frac{k \epsilon^{2}}{4 M}\right)
$$

The Chernoff Bound

$$
\begin{gathered}
k=4 M / \epsilon^{2} \text { samples give } \\
\frac{1}{k} \sum_{i} X_{i} \approx_{\epsilon} 1
\end{gathered}
$$

with constant probability.

$$
\mathbb{E} X_{i}=1
$$

Then

$$
\mathbb{P}\left[\left|\frac{1}{k} \sum_{i} X_{i}-1\right| \geq \epsilon\right] \leq 2 \exp \left(-\frac{k \epsilon^{2}}{4 M}\right)
$$

The Chernoff Bound

Suppose X_{1}, \ldots, X_{k} are i.i.d. random variables with

$$
0 \leq X_{i} \leq M \quad \text { and } \quad \mathbb{E} X_{i}=1
$$

Then

$$
\mathbb{P}\left[\left|\frac{1}{k} \sum_{i} X_{i}-1\right| \geq \epsilon\right] \leq 2 \exp \left(-\frac{k \epsilon^{2}}{4 M}\right)
$$

The Matrix Chernoff Bound [Rudelson'99, AW’02, Tropp'11]

Suppose X_{1}, \ldots, X_{k} are i.i.d. random $d \times d$ matrices with

$$
0 \preccurlyeq X_{i} \preccurlyeq M \cdot I \text { and } \quad \mathbb{E} X_{i}=I .
$$

Then

$$
\mathbb{P}\left[\left\|\frac{1}{k} \sum_{i} X_{i}-I\right\| \geq \epsilon\right] \leq 2 d \exp \left(-\frac{k \epsilon^{2}}{4 M}\right)
$$

The Matrix Chernoff Bound [Rudelson'99, AW'02, Tropp'11]

$k=4 M \log d / \epsilon^{2}$ samples give

$$
\frac{1}{k} \sum_{i} X_{i} \approx_{\epsilon} I
$$

with constant probability.
dom $d \times d$

$$
\mathbb{E} X_{i}=I
$$

Then

$$
\mathbb{P}\left[\left\|\frac{1}{k} \sum_{i} X_{i}-I\right\| \geq \epsilon\right] \leq 2 d \exp \left(-\frac{k \epsilon^{2}}{4 M}\right)
$$

The Matrix Chernoff Bound [Rudelson'99, AW’02, Tropp'11]

Suppose X_{1}, \ldots, X_{k} are i.i.d. random $d \times d$ matrices with

$$
0 \preccurlyeq X_{i} \preccurlyeq M \cdot I \text { and } \quad \mathbb{E} X_{i}=I .
$$

Then

$$
\mathbb{P}\left[\left\|\frac{1}{k} \sum_{i} X_{i}-I\right\| \geq \epsilon\right] \leq 2 d \exp \left(-\frac{k \epsilon^{2}}{4 M}\right)
$$

In our case

$$
X=\frac{v_{i} v_{i}^{T}}{p_{i}} \quad \text { with prob. } p_{i}, \quad \mathbb{E} X=I .
$$

Want to minimize $M=\max _{i}\left\|\frac{v_{i} v_{i}^{T}}{p_{i}}\right\|=\max _{i} \frac{\left\|v_{i}\right\|^{2}}{p_{i}}$
To make this this tight for all v_{i} set $p_{i}=\frac{\left\|v_{i}\right\|^{2}}{M}$.

In our case

$$
X=\frac{v_{i} v_{i}^{T}}{p_{i}} \quad \text { with prob. } p_{i}, \quad \mathbb{E} X=I .
$$

Want to minimize $M=\max _{i}\left\|\frac{v_{i} v_{i}^{T}}{p_{i}}\right\|=\max _{i} \frac{\left\|v_{i}\right\|^{2}}{p_{i}}$
To make this this tight for all v_{i} set $p_{i}=\frac{\left\|v_{i}\right\|^{2}}{M}$.
But $\sum_{i} p_{i}=\sum_{i} \frac{\left\|v_{i}\right\|^{2}}{M}$

In our case

$$
X=\frac{v_{i} v_{i}^{T}}{p_{i}} \quad \text { with prob. } p_{i}, \quad \mathbb{E} X=I .
$$

Want to minimize $M=\max _{i}\left\|\frac{v_{i} v_{i}^{T}}{p_{i}}\right\|=\max _{i} \frac{\left\|v_{i}\right\|^{2}}{p_{i}}$
To make this this tight for all v_{i} set $p_{i}=\frac{\left\|v_{i}\right\|^{2}}{M}$.
But $\sum_{i} p_{i}=\sum_{i} \frac{\left\|v_{i}\right\|^{2}}{M}=\sum_{i} \frac{\operatorname{Tr}\left(v_{i} v_{i}^{T}\right)}{M}$

In our case

$$
X=\frac{v_{i} v_{i}^{T}}{p_{i}} \quad \text { with prob. } p_{i}, \quad \mathbb{E} X=I .
$$

Want to minimize $M=\max _{i}\left\|\frac{v_{i} v_{i}^{T}}{p_{i}}\right\|=\max _{i} \frac{\left\|v_{i}\right\|^{2}}{p_{i}}$
To make this this tight for all v_{i} set $p_{i}=\frac{\left\|v_{i}\right\|^{2}}{M}$.

But $\sum_{i} p_{i}=\sum_{i} \frac{\left\|v_{i}\right\|^{2}}{M}=\sum_{i} \frac{\operatorname{Tr}\left(v_{i} v_{i}^{T}\right)}{M}=\frac{\operatorname{Tr}\left(\sum_{i} v_{i} v_{i}^{T}\right)}{M}$

In our case

$$
X=\frac{v_{i} v_{i}^{T}}{p_{i}} \quad \text { with prob. } p_{i}, \quad \mathbb{E} X=I .
$$

Want to minimize $M=\max _{i}\left\|\frac{v_{i} v_{i}^{T}}{p_{i}}\right\|=\max _{i} \frac{\left\|v_{i}\right\|^{2}}{p_{i}}$
To make this this tight for all v_{i} set $p_{i}=\frac{\left\|v_{i}\right\|^{2}}{M}$.

But $\sum_{i} p_{i}=\sum_{i} \frac{\left\|v_{i}\right\|^{2}}{M}=\sum_{i} \frac{\operatorname{Tr}\left(v_{i} v_{i}^{T}\right)}{M}=\frac{\operatorname{Tr}\left(\sum_{i} v_{i} v_{i}^{T}\right)}{M}=\frac{n}{M}$

In our case

$$
X=\frac{v_{i} v_{i}^{T}}{n_{i}} \quad \text { with prob. } p_{i}, \quad \mathbb{E} X=I .
$$

p_{i}
Must have $M=n$
Thm: $4 n \log n / \epsilon^{2}$ samples suffice.

$$
\begin{aligned}
& T \|=\max _{i} \frac{\left\|v_{i}\right\|^{2}}{p_{i}} \\
& \text { et } p_{i}=\frac{\left\|v_{i}\right\|^{2}}{M} .
\end{aligned}
$$

But $\sum_{i} p_{i}=\sum_{i} \frac{\left\|v_{i}\right\|^{2}}{M}=\sum_{i} \frac{\operatorname{Tr}\left(v_{i} v_{i}^{T}\right)}{M}=\frac{\operatorname{Tr}\left(\sum_{i} v_{i} v_{i}^{T}\right)}{M}=\frac{n}{M}$

How to Approximate the Identity

Given $\sum_{i} v_{i} v_{i}^{T}=I$
Sample $n \log n / \epsilon^{2} \quad$ vectors randomly with replacement, by $p_{i} \propto\left\|v_{i}\right\|^{2}$.
Set $s_{i}=1 / p_{i}$ for chosen vectors.

Rudelson'99: This works why:

$$
1-\epsilon \preceq \sum_{i} s_{i} v_{i} v_{i}^{T} \preceq 1+\epsilon
$$

How to Approximate the Identity

Given $\sum v_{i}=I \quad$ For a graph, $p_{e} \propto \boldsymbol{\operatorname { R e f }}_{\boldsymbol{G}}(\boldsymbol{e})$

Sample $n \log n / \epsilon^{2}$ vector randomly with replacement, by $p_{i} \propto\left\|v_{i}\right\|^{2}$.
Set $s_{i}=1 / p_{i}$ for chosen vectors.

Rudelson'99: This works why:

$$
1-\epsilon \preceq \sum_{i} s_{i} v_{i} v_{i}^{T} \preceq 1+\epsilon
$$

How to Approximate any Matrix

Given $\sum_{i} v_{i} v_{i}^{T}=V$
Sample $n \log n / \epsilon^{2} \quad$ vectors randomly with replacement, by $p_{i} \propto\left\|V^{-1 / 2} v_{i}\right\|^{2}$.
Set $s_{i}=1 / p_{i}$ for chosen vectors.

Rudelson'99: This works why:

$$
1-\epsilon \preceq \sum_{i} s_{i} v_{i} v_{i}^{T} \preceq 1+\epsilon
$$

Theorem. Every weighted graph \mathbf{G} has a weighted subgraph \mathbf{H} with at most $4 n \log n / \epsilon^{2}$ edges s.t.

$$
L_{G} \leqslant L_{H} \leqslant(1+\epsilon) L_{G} .
$$

Algorithm: sample $4 n \log n / \epsilon^{2}$ edges independently according to effective resistances.

Theorem. Every weighted graph \mathbf{G} has a weighted subgraph \mathbf{H} with at most $9 n \log n / \epsilon^{2}$ edges s.t.

$$
L_{G} \leqslant L_{H} \leqslant(1+\epsilon) L_{G} .
$$

Moreover, H can be found in time $O^{\sim}\left(m / \epsilon^{2}\right)$.

Algorithm: sample $9 n \log n / \epsilon^{2}$ edges independently according to approximate effective resistances.

[Spielman-S'08]

Part 3: Fast Calculation of Sampling Probabilities

Resistances are Distances

Outer product expansion:

$$
\begin{gathered}
L_{G}=\sum_{e} b_{e} b_{e}^{T}=B^{T} B \\
B=\left(\begin{array}{cc}
1000 & \text { for } \operatorname{rows}(B)=\left\{b_{e}^{T}\right\} \\
0-1001 \\
\vdots
\end{array}\right. \\
\begin{array}{c}
\text { signed edge-vertex } \\
\text { incudence matnx }
\end{array}
\end{gathered}
$$

Resistances are Distances

Outer product expansion:
$L_{G}=\sum_{e} b_{e} b_{e}^{T}=B^{T} B \quad$ for $\operatorname{rows}(B)=\left\{b_{e}^{T}\right\}$
Sampling probabilities:

$$
\begin{aligned}
\left\|v_{e}\right\|^{2} & =b_{e}^{T} L_{G}^{-1} b_{e} \\
& =b_{e}^{T} L_{G}^{-1} B^{T} B L_{G}^{-1} b_{e} \\
& =\left\|B L_{G}^{-1}\left(\delta_{i}-\delta_{j}\right)\right\|^{2} \quad \text { for } e=i j
\end{aligned}
$$

Nearly Linear Time

Nearly Linear Time

$\boldsymbol{\operatorname { R e f f }}(i j)=\left\|B L^{-1}\left(\delta_{i}-\delta_{j}\right)\right\|^{2}$

So care about distances between cols. of $B L^{-1}$

Dimension Reduction

Johnson-Lindenstrauss Lemma [JL'84]:

Suppose x_{1}, \ldots, x_{n} are points in \mathbb{R}^{d}.
Let $Q_{k \times n}$ be a random k-dimensional projection.
Then

$$
\left\|Q x_{i}-Q x_{j}\right\|_{2}=(1 \pm \epsilon)\left\|x_{i}-x_{j}\right\|_{2}
$$

With high probability as long as

$$
k \geq 10 \log n / \epsilon^{2}
$$

Dimension Reduction

Johnson-Lindenstrauss Lemma [JL'84]:
Suppose x_{1}, \ldots, x_{n} are points in \mathbb{R}^{d}.
Let $Q_{k \times n}$ be a random Bernoulli matrix.
Then

$$
\left\|Q x_{i}-Q x_{j}\right\|_{2} \propto(1 \pm \epsilon)\left\|x_{i}-x_{j}\right\|_{2}
$$

With high probability as long as

$$
k \geq 10 \log n / \epsilon^{2}
$$

Johnson-Lindenstrauss with $\epsilon=1 / 2$

$\boldsymbol{\operatorname { R e f f }}(i j)=\left\|B L^{-1}\left(\delta_{i}-\delta_{j}\right)\right\|^{2}$

So care about distances between cols. of $B L^{-1}$

Nearly Linear Time

$$
\operatorname{Reff}(i j)=\left\|B L^{-1}\left(\delta_{i}-\delta_{j}\right)\right\|^{2}
$$

So care about distances between cols. of $\boldsymbol{B L}^{-1}$ Johnson-Lindenstrauss: Take random $\boldsymbol{Q}_{\text {logn x } m}$

Set $\mathbf{Z}=\mathbf{Q B L} \mathbf{L}^{-1}$

Nearly Linear Time

$(\log n \times n)$

Nearly Linear Time

$(\log n \times n)$
Find rows of $Z_{\log _{n \times n}}$ by
$Z=Q B L^{-1}$
ZL=QB

$\boldsymbol{\operatorname { R e f f }}(i j) \sim\left\|Z\left(\delta_{i}-\delta_{j}\right)\right\|^{2}$

$z_{i} L=(Q B)_{i}$

Nearly Linear Time

Find rows of $Z_{\log _{n \times n}}$ by

$$
(\log n \times n)
$$

$Z=Q B L^{-1}$
ZL=QB
$\mathbf{R e f f}(i j) \sim\left\|Z\left(\delta_{i}-\delta_{j}\right)\right\|^{2}$
$z_{i} L=(Q B)_{i}$
Solve $\boldsymbol{O}(\operatorname{logn})$ linear systems in \boldsymbol{L} using fast Laplacian solver solver
learns all pairwise resistances by probing a few random electrical flows.

Nearly Linear Time

Find rows of $Z_{\log _{n \times n}}$ by
$Z=Q B L^{-1}$
CL= QB
$\mathbf{R e f f}(i j) \sim\left\|Z\left(\delta_{i}-\delta_{j}\right)\right\|^{2}$
$z_{i} L=(Q B)_{i}$
Solve $\boldsymbol{O}(\operatorname{logn})$ linear systems in \boldsymbol{L} using fast Laplacian solver solver

Can show approximate $\boldsymbol{R}_{\text {eff }}$ suffice.
(only change M by a constant factor)

Actual Algorithm

Input: undirected graph $G=(V, E, w)$
Output: subgraph \mathbf{H} with $L_{G} \preccurlyeq L_{H} \preccurlyeq(1+\epsilon) L_{G}$

1. Let $Q_{\log n \times m}$ be a scaled random projection.

Compute approximate resistance matrix

$$
Z=Q B L^{+}
$$

by solving $\log n$ Laplacian systems
2. Repeat the following $9 n \log n / \epsilon^{2}$ times: choose edge $e=i j$ w.p. $p_{e} \propto\left\|Z\left(\delta_{i}-\delta_{j}\right)\right\|^{2}$ add e to H with weight $s_{e}=1 / p_{e}$

Actual Algorithm

Input: undirected graph $G=(V, E, w)$
Output: subgraph \mathbf{H} with $L_{G} \leqslant L_{H} \leqslant(1+\epsilon) L_{G}$

1. Let $Q_{\log n \times m}$ be a scaled random projection.

Compute approximate resistance matrix

$$
Z=Q B L^{+}
$$

by solving $\log n$ Laplacian systems
2. Repeat the following $9 n \log n / \epsilon^{2}$ times: choose edge $e=i j$ w.p. $p_{e} \propto\left\|Z\left(\delta_{i}-\delta_{j}\right)\right\|^{2}$ add e to H with weight $s_{e}=1 / p_{e}$

Chicken / Egg?

Solve $L_{G} x=b$

Chicken / Egg?

Solve $L_{G} x=b$

Compute sparsifier

Chicken / Egg?

Solve $L_{G} x=b$

Compute sparsifier

Solve $O(\log n)$ random linear systems

$$
L_{G} x=b_{i}
$$

[Koutis-Miller-Peng'10] resolve this

Solve $L_{G} x=b$

Compute sparsifier

Solve $O(\log n)$ random linear systems

$$
L_{G} x=b_{i}
$$

Two Useful Ways to view a Graph

electrical network

bunch of vectors

$$
\text { 起 } L_{G}=\sum_{e} b_{e} b_{e}^{T}
$$

Tw $\operatorname{Reff}(e)=\left\|L_{G}^{-1 / 2} b_{e}\right\|^{2}=\left\|v_{e}\right\|^{2} \quad$ ph

electrical network

bunch of vectors

Two Useful Tools

Matrix Chernoff Bound

$$
\mathbb{P}\left[\left\|\frac{1}{k} \sum_{i} X_{i}-I\right\| \geq \epsilon\right] \leq 2 d \exp \left(-\frac{k \epsilon^{2}}{4 M}\right)
$$

Johnson-Lindenstrauss Lemma

Advantages over pure combinatorics

There is a global rescaling transformation:

$$
L_{G} \approx L_{H} \quad \text { iff } L_{G}^{-1 / 2} L_{H} L_{G}^{-1 / 2} \approx I
$$

Powerful random matrix tools apply naturally:

1. Matrix Chernoff bound
2. Johnson-Lindenstrauss Lemma

Some Improvements

[Koutis-Levin-Peng'12] $O\left(\frac{m \log ^{2} n}{\epsilon^{2}}\right)$
[Kelner-Levin'11] 1-pass streaming algorithm
[Koutis'14] parallel algorithm
[Kapralov, Lee, Musco x2, Sidford'14]
1-pass dynamic streaming algorithm

Coming Up: A Slow Algorithm

Part II: Sparsifiers with $O\left(n / \epsilon^{2}\right)$ edges. Based on more delicate understanding of how eigenvalues of a matrix evolve on adding edges.

Two Open Questions

Faster approximation of effective resistances.

More physical processes on graphs.

Deterministic Solution [Batson-Spielman-S'09]

Spectral Sparsification Theorem:

Given $\sum_{i \leq m} v_{i} v_{i}^{T}=I_{n}$ there are $s_{i} \geq 0$ with:

- $(1-\epsilon) I \preceq \sum_{i} s_{i} v_{i} v_{i}^{T} \preceq(1+\epsilon) I$
- $\operatorname{supp}(s) \leq 4 n / \epsilon^{2}$.

Deterministic Solution [BSS'09]

Spectral Sparsification Theorem:

Given $\sum_{i \leq m} b_{e} b_{e}^{T}=L_{G}$ there are $s_{e} \geq 0$ with:

- $(1-\epsilon) L_{G} \preceq \sum_{i} s_{i} v_{i} v_{i}^{T} \preceq\left(1+\epsilon L_{G}\right.$
- $\operatorname{supp}(s) \leq 4(n-1) / \epsilon^{2}$.

Deterministic Solution [BSS'09]

Spectral Sparsification Theorem:

