
Transparent Time- and Space-
Efficient Arguments 

From Groups of Unknown Order

Justin Holmgren 
NTT Research

Alex Block
Purdue

Alon Rosen
IDC Herzliya

Ron Rothblum
Technion

Pratik Soni
CMU

Pre-Quantum Cryptography 
with Lattices

Justin Holmgren 
NTT Research

Alex Block
Purdue

Alon Rosen
IDC Herzliya

Ron Rothblum
Technion

Pratik Soni
CMU

Pre-Quantum Cryptography 
with Lattices

Justin Holmgren 
NTT Research

Alex Block
Purdue

Alon Rosen
IDC Herzliya

Ron Rothblum
Technion

Pratik Soni
CMU

Please make me
"Post-".

Interactive Arguments
for an NP relation with corresponding language R L

Interactive Arguments
for an NP relation with corresponding language R L

P(x; w)

Completeness:
For any ,(x, w) ∈ R

V(x)...

Interactive Arguments
for an NP relation with corresponding language R L

P(x; w)

Completeness:
For any ,(x, w) ∈ R

V(x)...

Interactive Arguments
for an NP relation with corresponding language R L

P(x; w)

Completeness:
For any ,(x, w) ∈ R

V(x)...polynomial time

Interactive Arguments
for an NP relation with corresponding language R L

P(x; w)

Completeness:
For any ,(x, w) ∈ R

V(x)... nearly linear timepolynomial time

Interactive Arguments
for an NP relation with corresponding language R L

P(x; w)

Completeness:
For any ,(x, w) ∈ R

V(x)...

Soundness:
For any , poly-size adversary ,x ∉ L 𝒜

𝒜 V(x)...

nearly linear timepolynomial time

Interactive Arguments
for an NP relation with corresponding language R L

P(x; w)

Completeness:
For any ,(x, w) ∈ R

V(x)...

Soundness:
For any , poly-size adversary ,x ∉ L 𝒜

𝒜 V(x)...

nearly linear timepolynomial time

Two Desirable Properties for

Interactive Arguments

Two Desirable Properties for

Interactive Arguments

Public-Coin Verification:

Two Desirable Properties for

Interactive Arguments

Public-Coin Verification:

• Uniformly random verifier messages

Two Desirable Properties for

Interactive Arguments

Public-Coin Verification:

• Uniformly random verifier messages

• Acceptance depends deterministically on transcript

Two Desirable Properties for

Interactive Arguments

Public-Coin Verification:

• Uniformly random verifier messages

• Acceptance depends deterministically on transcript

Necessary for
decentralized verification

(e.g. in blockchains)

Two Desirable Properties for

Interactive Arguments

Public-Coin Verification:

• Uniformly random verifier messages

• Acceptance depends deterministically on transcript

Time- and Space-Efficient Prover:

Necessary for
decentralized verification

(e.g. in blockchains)

Two Desirable Properties for

Interactive Arguments

Public-Coin Verification:

• Uniformly random verifier messages

• Acceptance depends deterministically on transcript

Time- and Space-Efficient Prover:

• If is decidable in time and space , then prover
runs in time and space

(x; w) ∈ R T S
≈ T ≈ S

?

Necessary for
decentralized verification

(e.g. in blockchains)

Two Desirable Properties for

Interactive Arguments

Public-Coin Verification:

• Uniformly random verifier messages

• Acceptance depends deterministically on transcript

Time- and Space-Efficient Prover:

• If is decidable in time and space , then prover
runs in time and space

(x; w) ∈ R T S
≈ T ≈ S

• Space can be as much of a bottleneck as time, but is often
overlooked

?

Necessary for
decentralized verification

(e.g. in blockchains)

Prior Approaches for 
Time- and Space-Efficient Proving

Prior Approaches for 
Time- and Space-Efficient Proving

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

Prior Approaches for 
Time- and Space-Efficient Proving

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

• Large concrete overheads due to non-black-box crypto

Prior Approaches for 
Time- and Space-Efficient Proving

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

• Large concrete overheads due to non-black-box crypto
(or if brave: algebraic hash functions [BGH19, BCMS20, COS20])

Prior Approaches for 
Time- and Space-Efficient Proving

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

• Large concrete overheads due to non-black-box crypto
(or if brave: algebraic hash functions [BGH19, BCMS20, COS20])

• Soundness relies on exotic computational assumptions

Prior Approaches for 
Time- and Space-Efficient Proving

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

• Large concrete overheads due to non-black-box crypto
(or if brave: algebraic hash functions [BGH19, BCMS20, COS20])

• Soundness relies on exotic computational assumptions

Approach 2: Compiling IOPs with space-efficient provers

Prior Approaches for 
Time- and Space-Efficient Proving

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

• Large concrete overheads due to non-black-box crypto
(or if brave: algebraic hash functions [BGH19, BCMS20, COS20])

• Soundness relies on exotic computational assumptions

Approach 2: Compiling IOPs with space-efficient provers

• Until now: space-preserving compilers produced private-
coin arguments [Bitansky-Chiesa '12, BHRRS '20]

Prior Approaches for 
Time- and Space-Efficient Proving

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

• Large concrete overheads due to non-black-box crypto
(or if brave: algebraic hash functions [BGH19, BCMS20, COS20])

• Soundness relies on exotic computational assumptions

Approach 2: Compiling IOPs with space-efficient provers

• Until now: space-preserving compilers produced private-
coin arguments [Bitansky-Chiesa '12, BHRRS '20]

• This work: public-coin arguments, based on a simple &
falsifiable "hidden order" assumption

Compiling IOPs to Arguments

Compiling IOPs to Arguments

P(x; w) V(x)...

IOP:

Compiling IOPs to Arguments

P(x; w) V(x)...

IOP:

Compiling IOPs to Arguments

P(x; w) V(x)...

IOP:

Compiling IOPs to Arguments

P(x; w) V(x)...

IOP: π

Compiling IOPs to Arguments

P(x; w) V(x)...

IOP: π

Compiling IOPs to Arguments

P(x; w) V(x)...

IOP: π

Argument:

P(x; w) V(x)

Compiling IOPs to Arguments

P(x; w) V(x)...

IOP: π

Argument:

P(x; w) V(x)

commit()π

Compiling IOPs to Arguments

P(x; w) V(x)...

IOP: π

Argument:

P(x; w) V(x)

commit()π

Compiling IOPs to Arguments

P(x; w) V(x)...

IOP: π

Argument:

P(x; w) V(x)

commit()π

i1, …, ik

Compiling IOPs to Arguments

P(x; w) V(x)...

IOP: π

Argument:

P(x; w) V(x)

commit()π

i1, …, ik

 + proofπi1, …, πik

Compiling IOPs to Arguments

P(x; w) V(x)...

IOP: π

Argument:

P(x; w) V(x)

commit()π

i1, …, ik

 + proofπi1, …, πik

Important Question:
Which IOP prover cost is most
relevant to argument prover?

A. enumerate all of
B. compute given
C. other?

π
πi i

Compiling IOPs to Arguments

P(x; w) V(x)...

IOP: π

Argument:

P(x; w) V(x)

commit()π

i1, …, ik

 + proofπi1, …, πik

Important Question:
Which IOP prover cost is most
relevant to argument prover?

A. enumerate all of
B. compute given
C. other?

π
πi i

Non-answer:
Depends on how "commit" and
"proof" are instantiated...

Compiling IOPs to Arguments

P(x; w) V(x)...

IOP: π

Argument:

P(x; w) V(x)

commit()π

i1, …, ik

 + proofπi1, …, πik

Why does this matter?

We know IOPs with time- &
space-efficient provers in the
sense of (B) but not (A).

Important Question:
Which IOP prover cost is most
relevant to argument prover?

A. enumerate all of
B. compute given
C. other?

π
πi i

Non-answer:
Depends on how "commit" and
"proof" are instantiated...

Instantiations of Commit-and-Prove

Instantiations of Commit-and-Prove
A. Merkle commitments

Instantiations of Commit-and-Prove
A. Merkle commitments

• Prover's work: enumerating all of ≈ π

Instantiations of Commit-and-Prove
A. Merkle commitments

• Prover's work: enumerating all of ≈ π

B. Function commitments [BC '12]

Instantiations of Commit-and-Prove
A. Merkle commitments

• Prover's work: enumerating all of ≈ π

B. Function commitments [BC '12]

• Prover's work: computing for a given .≈ πi i

Instantiations of Commit-and-Prove
A. Merkle commitments

• Prover's work: enumerating all of ≈ π

B. Function commitments [BC '12]

• Prover's work: computing for a given .≈ πi i
• Private coin proofs

Instantiations of Commit-and-Prove
A. Merkle commitments

• Prover's work: enumerating all of ≈ π

B. Function commitments [BC '12]

• Prover's work: computing for a given .≈ πi i
• Private coin proofs

C. For a "polynomial IOP" (is truth table of a multilinear
polynomial), can use a polynomial commitment [BFS19]

π : 𝔽n
q → 𝔽q

Instantiations of Commit-and-Prove
A. Merkle commitments

• Prover's work: enumerating all of ≈ π

B. Function commitments [BC '12]

• Prover's work: computing for a given .≈ πi i
• Private coin proofs

C. For a "polynomial IOP" (is truth table of a multilinear
polynomial), can use a polynomial commitment [BFS19]

π : 𝔽n
q → 𝔽q

• Polynomial commitments can be public-coin

Instantiations of Commit-and-Prove
A. Merkle commitments

• Prover's work: enumerating all of ≈ π

B. Function commitments [BC '12]

• Prover's work: computing for a given .≈ πi i
• Private coin proofs

C. For a "polynomial IOP" (is truth table of a multilinear
polynomial), can use a polynomial commitment [BFS19]

π : 𝔽n
q → 𝔽q

• Polynomial commitments can be public-coin

• This work: Prover's work enumerating description of (not the
whole truth table);

≈ π

Instantiations of Commit-and-Prove
A. Merkle commitments

• Prover's work: enumerating all of ≈ π

B. Function commitments [BC '12]

• Prover's work: computing for a given .≈ πi i
• Private coin proofs

C. For a "polynomial IOP" (is truth table of a multilinear
polynomial), can use a polynomial commitment [BFS19]

π : 𝔽n
q → 𝔽q

• Polynomial commitments can be public-coin

• This work: Prover's work enumerating description of (not the
whole truth table);

≈ π

(time- and space-) efficient for known IOPs (e.g. Clover [BTVW14])

Our Polynomial Commitment
Efficiency Results

Our Polynomial Commitment
Efficiency Results

Informal Theorem 1: Assume a group of "unknown order".
Then there is a polynomial commitment scheme with public-
coin commit and prove protocols.

Our Polynomial Commitment
Efficiency Results

Informal Theorem 1: Assume a group of "unknown order".
Then there is a polynomial commitment scheme with public-
coin commit and prove protocols.

Moreover, the committer/prover on (multi-linear) input is
efficient given streaming access to .

p
(p(x))x∈{0,1}n

Our Polynomial Commitment
Efficiency Results

Informal Theorem 1: Assume a group of "unknown order".
Then there is a polynomial commitment scheme with public-
coin commit and prove protocols.

Moreover, the committer/prover on (multi-linear) input is
efficient given streaming access to .

p
(p(x))x∈{0,1}n

Informal Theorem 2: There are polynomial IOPs where the
prover can compute relevant streams above (as well as all
other IOP messages) with time- and space-efficiency.

No More Talking About
(Fine-Grained) Efficiency

Our Polynomial Commitment
Efficiency Results

Informal Theorem 1: Assume a group of "unknown order".
Then there is a polynomial commitment scheme with public-
coin commit and prove protocols.

Moreover, the committer/prover on input is efficient (in
both time and space) given multi-pass streaming access to
values of on

Informal Theorem 2: There are polynomial IOPs where the
prover can compute relevant streams above (as well as all
other IOP messages) with time- and space-efficiency.

p

p {0,1}n

Polynomial Commitment
Blueprint / Sketch

Polynomial Commitment
Blueprint / Sketch

[BFS19]: Basic framework,
buggy instantiation.

They independently
discovered bug

Polynomial Commitment
Blueprint / Sketch

Commit(): 
Output , where is a "homomorphic CRHF" (more later) 

p : 𝔽n
q → 𝔽q

h(p) h

[BFS19]: Basic framework,
buggy instantiation.

They independently
discovered bug

Polynomial Commitment
Blueprint / Sketch

Commit(): 
Output , where is a "homomorphic CRHF" (more later) 

p : 𝔽n
q → 𝔽q

h(p) h

Prove("I know a degree- poly s.t.  
 and ") 

d p Commit(p) = c
p(x) = z

[BFS19]: Basic framework,
buggy instantiation.

They independently
discovered bug

Polynomial Commitment
Blueprint / Sketch

Commit(): 
Output , where is a "homomorphic CRHF" (more later) 

p : 𝔽n
q → 𝔽q

h(p) h

Prove("I know a degree- poly s.t.  
 and ") 

d p Commit(p) = c
p(x) = z

abstractly: , 
where is a homomorphism

f(p) = (c, z)
f

[BFS19]: Basic framework,
buggy instantiation.

They independently
discovered bug

Polynomial Commitment
Blueprint / Sketch

Commit(): 
Output , where is a "homomorphic CRHF" (more later) 

p : 𝔽n
q → 𝔽q

h(p) h

Prove("I know a degree- poly s.t.  
 and ") 

d p Commit(p) = c
p(x) = z

1. Split claim into similar sub-claims of smaller size

abstractly: , 
where is a homomorphism

f(p) = (c, z)
f

[BFS19]: Basic framework,
buggy instantiation.

They independently
discovered bug

Polynomial Commitment
Blueprint / Sketch

Commit(): 
Output , where is a "homomorphic CRHF" (more later) 

p : 𝔽n
q → 𝔽q

h(p) h

Prove("I know a degree- poly s.t.  
 and ") 

d p Commit(p) = c
p(x) = z

1. Split claim into similar sub-claims of smaller size
2. Combine sub-claims to reduce number

abstractly: , 
where is a homomorphism

f(p) = (c, z)
f

[BFS19]: Basic framework,
buggy instantiation.

They independently
discovered bug

Polynomial Commitment
Blueprint / Sketch

Commit(): 
Output , where is a "homomorphic CRHF" (more later) 

p : 𝔽n
q → 𝔽q

h(p) h

Prove("I know a degree- poly s.t.  
 and ") 

d p Commit(p) = c
p(x) = z

1. Split claim into similar sub-claims of smaller size
2. Combine sub-claims to reduce number
3. Recurse

abstractly: , 
where is a homomorphism

f(p) = (c, z)
f

[BFS19]: Basic framework,
buggy instantiation.

They independently
discovered bug

Polynomial Commitment
Blueprint / Sketch

Commit(): 
Output , where is a "homomorphic CRHF" (more later) 

p : 𝔽n
q → 𝔽q

h(p) h

Prove("I know a degree- poly s.t.  
 and ") 

d p Commit(p) = c
p(x) = z

1. Split claim into similar sub-claims of smaller size
2. Combine sub-claims to reduce number
3. Recurse

abstractly: , 
where is a homomorphism

f(p) = (c, z)
f

Not today!

Not today!

[BFS19]: Basic framework,
buggy instantiation.

They independently
discovered bug

From Many Claims to 
Fewer Claims?

From Many Claims to 
Fewer Claims?

Initial Claims: Knowledge of -preimages of  
(think of as an arbitrary homomorphism)

f y1, …, yk
f

From Many Claims to 
Fewer Claims?

Initial Claims: Knowledge of -preimages of  
(think of as an arbitrary homomorphism)

f y1, …, yk
f

Flawed Protocol:

From Many Claims to 
Fewer Claims?

Initial Claims: Knowledge of -preimages of  
(think of as an arbitrary homomorphism)

f y1, …, yk
f

Flawed Protocol:

1. Let , for sampled by verifiery′￼ = ∑
i

riyi ri ← [2λ]

From Many Claims to 
Fewer Claims?

Initial Claims: Knowledge of -preimages of  
(think of as an arbitrary homomorphism)

f y1, …, yk
f

Flawed Protocol:

1. Let , for sampled by verifiery′￼ = ∑
i

riyi ri ← [2λ]

2. Prover proves knowledge of x′￼∈ f −1(y′￼)

From Many Claims to 
Fewer Claims?

Initial Claims: Knowledge of -preimages of  
(think of as an arbitrary homomorphism)

f y1, …, yk
f

Flawed Protocol:

1. Let , for sampled by verifiery′￼ = ∑
i

riyi ri ← [2λ]

2. Prover proves knowledge of x′￼∈ f −1(y′￼)
Prover might know , but not ; 
could still win with probability .

x ∈ f −1(2y1) x ∈ f −1(y1)
1/2

From Many Claims to 
Fewer Claims?

Initial Claims: Knowledge of -preimages of  
(think of as an arbitrary homomorphism)

f y1, …, yk
f

Flawed Protocol:

1. Let , for sampled by verifiery′￼ = ∑
i

riyi ri ← [2λ]

2. Prover proves knowledge of x′￼∈ f −1(y′￼)
Prover might know , but not ; 
could still win with probability .

x ∈ f −1(2y1) x ∈ f −1(y1)
1/2

Prover might only know when is in a lattice
. Winning probability density of in .

xr ∈ f −1(⟨r, y⟩) r
L ⊆ ℤk ≈ L ℤk

From Many Claims to 
Fewer Claims?

Initial Claims: Knowledge of -preimages of  
(think of as an arbitrary homomorphism)

f y1, …, yk
f

Flawed Protocol:

1. Let , for sampled by verifiery′￼ = ∑
i

riyi ri ← [2λ]

2. Prover proves knowledge of x′￼∈ f −1(y′￼)
Prover might know , but not ; 
could still win with probability .

x ∈ f −1(2y1) x ∈ f −1(y1)
1/2

Prover might only know when is in a lattice
. Winning probability density of in .

xr ∈ f −1(⟨r, y⟩) r
L ⊆ ℤk ≈ L ℤk

[BFS19] show computational  
soundness for a specific .f

From Many Claims to Fewer Claims: 
Our Protocol

From Many Claims to Fewer Claims: 
Our Protocol

Let be an arbitrary homomorphism 
 be arbitrary.

f : 𝔾 → ℍ
y = (y1, …, yk) ∈ ℍk

From Many Claims to Fewer Claims: 
Our Protocol

Let be an arbitrary homomorphism 
 be arbitrary.

f : 𝔾 → ℍ
y = (y1, …, yk) ∈ ℍk

Prover claims to know s.t. .x = (x1, …, xk) ∈ 𝔾k f(xi) = yi

From Many Claims to Fewer Claims: 
Our Protocol

Let be an arbitrary homomorphism 
 be arbitrary.

f : 𝔾 → ℍ
y = (y1, …, yk) ∈ ℍk

Prover claims to know s.t. .x = (x1, …, xk) ∈ 𝔾k f(xi) = yi

P(x) V(y)

From Many Claims to Fewer Claims: 
Our Protocol

Let be an arbitrary homomorphism 
 be arbitrary.

f : 𝔾 → ℍ
y = (y1, …, yk) ∈ ℍk

Prover claims to know s.t. .x = (x1, …, xk) ∈ 𝔾k f(xi) = yi

P(x) V(y)A ← {0,1}k′￼ × k

From Many Claims to Fewer Claims: 
Our Protocol

Let be an arbitrary homomorphism 
 be arbitrary.

f : 𝔾 → ℍ
y = (y1, …, yk) ∈ ℍk

Prover claims to know s.t. .x = (x1, …, xk) ∈ 𝔾k f(xi) = yi

P(x) V(y)A ← {0,1}k′￼ × k

y′￼:= A ⋅ y

From Many Claims to Fewer Claims: 
Our Protocol

Let be an arbitrary homomorphism 
 be arbitrary.

f : 𝔾 → ℍ
y = (y1, …, yk) ∈ ℍk

Prover claims to know s.t. .x = (x1, …, xk) ∈ 𝔾k f(xi) = yi

P(x) V(y)A ← {0,1}k′￼ × k

y′￼:= A ⋅ yx′￼:= A ⋅ x

From Many Claims to Fewer Claims: 
Our Protocol

Let be an arbitrary homomorphism 
 be arbitrary.

f : 𝔾 → ℍ
y = (y1, …, yk) ∈ ℍk

Prover claims to know s.t. .x = (x1, …, xk) ∈ 𝔾k f(xi) = yi

P(x) V(y)A ← {0,1}k′￼ × k

y′￼:= A ⋅ yx′￼:= A ⋅ x

Accept if

 

for all
y′￼i = f(x′￼i)

i ∈ [k′￼]

Soundness: Our Batch Extractor

P(x) V(y)A ← {0,1}k′￼×k

y′￼:= A ⋅ yx′￼:= A ⋅ x

Accept if

 

for all
y′￼i = f(x′￼i)

i ∈ [k′￼]

Attempt 0:

Soundness: Our Batch Extractor

P(x) V(y)A ← {0,1}k′￼×k

y′￼:= A ⋅ yx′￼:= A ⋅ x

Accept if

 

for all
y′￼i = f(x′￼i)

i ∈ [k′￼]

Attempt 0:
Get an accepting transcript , hope has an integer left-inverse.(A, x′￼) A

Soundness: Our Batch Extractor

P(x) V(y)A ← {0,1}k′￼×k

y′￼:= A ⋅ yx′￼:= A ⋅ x

Accept if

 

for all
y′￼i = f(x′￼i)

i ∈ [k′￼]

Attempt 0:
Get an accepting transcript , hope has an integer left-inverse.(A, x′￼) A

 ...k′￼< k

Soundness: Our Batch Extractor

P(x) V(y)A ← {0,1}k′￼×k

y′￼:= A ⋅ yx′￼:= A ⋅ x

Accept if

 

for all
y′￼i = f(x′￼i)

i ∈ [k′￼]

Attempt 0:
Get an accepting transcript , hope has an integer left-inverse.(A, x′￼) A
Compute . (correctness follows from homomorphism)x = A−1 ⋅ x′￼

 ...k′￼< k

Soundness: Our Batch Extractor

P(x) V(y)A ← {0,1}k′￼×k

y′￼:= A ⋅ yx′￼:= A ⋅ x

Accept if

 

for all
y′￼i = f(x′￼i)

i ∈ [k′￼]

Attempt 0:
Get an accepting transcript , hope has an integer left-inverse.(A, x′￼) A
Compute . (correctness follows from homomorphism)x = A−1 ⋅ x′￼

 ...k′￼< k

Soundness: Our Batch Extractor

P(x) V(y)A ← {0,1}k′￼×k

y′￼:= A ⋅ yx′￼:= A ⋅ x

Accept if

 

for all
y′￼i = f(x′￼i)

i ∈ [k′￼]

Attempt 1:

Attempt 0:
Get an accepting transcript , hope has an integer left-inverse.(A, x′￼) A
Compute . (correctness follows from homomorphism)x = A−1 ⋅ x′￼

 ...k′￼< k

Soundness: Our Batch Extractor

P(x) V(y)A ← {0,1}k′￼×k

y′￼:= A ⋅ yx′￼:= A ⋅ x

Accept if

 

for all
y′￼i = f(x′￼i)

i ∈ [k′￼]

Attempt 1:
Rewind until accepting transcripts , .B → A ∈ {0,1}Bk′￼×k x′￼∈ 𝔾Bk′￼

Attempt 0:
Get an accepting transcript , hope has an integer left-inverse.(A, x′￼) A
Compute . (correctness follows from homomorphism)x = A−1 ⋅ x′￼

 ...k′￼< k

Soundness: Our Batch Extractor

P(x) V(y)A ← {0,1}k′￼×k

y′￼:= A ⋅ yx′￼:= A ⋅ x

Accept if

 

for all
y′￼i = f(x′￼i)

i ∈ [k′￼]

Attempt 1:
Rewind until accepting transcripts , .B → A ∈ {0,1}Bk′￼×k x′￼∈ 𝔾Bk′￼

Hope has an integer left inverse.A

Attempt 0:
Get an accepting transcript , hope has an integer left-inverse.(A, x′￼) A
Compute . (correctness follows from homomorphism)x = A−1 ⋅ x′￼

 ...k′￼< k

Soundness: Our Batch Extractor

P(x) V(y)A ← {0,1}k′￼×k

y′￼:= A ⋅ yx′￼:= A ⋅ x

Accept if

 

for all
y′￼i = f(x′￼i)

i ∈ [k′￼]

Attempt 1:
Rewind until accepting transcripts , .B → A ∈ {0,1}Bk′￼×k x′￼∈ 𝔾Bk′￼

Hope has an integer left inverse.A
Compute .x = A−1 ⋅ x′￼

Attempt 0:
Get an accepting transcript , hope has an integer left-inverse.(A, x′￼) A
Compute . (correctness follows from homomorphism)x = A−1 ⋅ x′￼

 ...k′￼< k

Soundness: Our Batch Extractor

P(x) V(y)A ← {0,1}k′￼×k

y′￼:= A ⋅ yx′￼:= A ⋅ x

Accept if

 

for all
y′￼i = f(x′￼i)

i ∈ [k′￼]

Attempt 1:
Rewind until accepting transcripts , .B → A ∈ {0,1}Bk′￼×k x′￼∈ 𝔾Bk′￼

Hope has an integer left inverse.A
Compute .x = A−1 ⋅ x′￼

:-) with all but probability 
if

𝗇𝖾𝗀𝗅(k)
5k /k′￼≤ B ≤ O(1)

Attempt 0:
Get an accepting transcript , hope has an integer left-inverse.(A, x′￼) A
Compute . (correctness follows from homomorphism)x = A−1 ⋅ x′￼

 ...k′￼< k

Soundness: Our Batch Extractor

P(x) V(y)A ← {0,1}k′￼×k

y′￼:= A ⋅ yx′￼:= A ⋅ x

Accept if

 

for all
y′￼i = f(x′￼i)

i ∈ [k′￼]

Attempt 1:
Rewind until accepting transcripts , .B → A ∈ {0,1}Bk′￼×k x′￼∈ 𝔾Bk′￼

Hope has an integer left inverse.A
Compute .x = A−1 ⋅ x′￼

:-) with all but probability 
if

𝗇𝖾𝗀𝗅(k)
5k /k′￼≤ B ≤ O(1)

Non-uniform distribution;

accepting transcripts skewed

Attempt 0:
Get an accepting transcript , hope has an integer left-inverse.(A, x′￼) A
Compute . (correctness follows from homomorphism)x = A−1 ⋅ x′￼

 ...k′￼< k

Soundness: Our Batch Extractor

P(x) V(y)A ← {0,1}k′￼×k

y′￼:= A ⋅ yx′￼:= A ⋅ x

Accept if

 

for all
y′￼i = f(x′￼i)

i ∈ [k′￼]

Attempt 1:
Rewind until accepting transcripts , .B → A ∈ {0,1}Bk′￼×k x′￼∈ 𝔾Bk′￼

Hope has an integer left inverse.A
Compute .x = A−1 ⋅ x′￼

:-) with all but probability 
if

𝗇𝖾𝗀𝗅(k)
5k /k′￼≤ B ≤ O(1)

Non-uniform distribution;

accepting transcripts skewed so is not

too skewed
A

Attempt 0:
Get an accepting transcript , hope has an integer left-inverse.(A, x′￼) A
Compute . (correctness follows from homomorphism)x = A−1 ⋅ x′￼

 ...k′￼< k

Soundness: Our Batch Extractor

P(x) V(y)A ← {0,1}k′￼×k

y′￼:= A ⋅ yx′￼:= A ⋅ x

Accept if

 

for all
y′￼i = f(x′￼i)

i ∈ [k′￼]

Attempt 1:
Rewind until accepting transcripts , .B → A ∈ {0,1}Bk′￼×k x′￼∈ 𝔾Bk′￼

Hope has an integer left inverse.A
Compute .x = A−1 ⋅ x′￼

:-) with all but probability 
if

𝗇𝖾𝗀𝗅(k)
5k /k′￼≤ B ≤ O(1)

Non-uniform distribution;

accepting transcripts skewed so is not

too skewed
Aso Bλ > k

Attempt 0:
Get an accepting transcript , hope has an integer left-inverse.(A, x′￼) A
Compute . (correctness follows from homomorphism)x = A−1 ⋅ x′￼

 ...k′￼< k

Soundness: Our Batch Extractor

P(x) V(y)A ← {0,1}k′￼×k

y′￼:= A ⋅ yx′￼:= A ⋅ x

Accept if

 

for all
y′￼i = f(x′￼i)

i ∈ [k′￼]

Attempt 1:
Rewind until accepting transcripts , .B → A ∈ {0,1}Bk′￼×k x′￼∈ 𝔾Bk′￼

Hope has an integer left inverse.A
Compute .x = A−1 ⋅ x′￼

:-) with all but probability 
if

𝗇𝖾𝗀𝗅(k)
5k /k′￼≤ B ≤ O(1)

Non-uniform distribution;

accepting transcripts skewed so is not

too skewed
Aso Bλ > k

Bonus: can prove knowledge of "small" by bounds-checking ; 
extractor works because computed has "small" entries ()

x x′￼

A−1 2𝗉𝗈𝗅𝗒(k)

Attempt 0:
Get an accepting transcript , hope has an integer left-inverse.(A, x′￼) A
Compute . (correctness follows from homomorphism)x = A−1 ⋅ x′￼

 ...k′￼< k

Soundness: Our Batch Extractor

P(x) V(y)A ← {0,1}k′￼×k

y′￼:= A ⋅ yx′￼:= A ⋅ x

Accept if

 

for all
y′￼i = f(x′￼i)

i ∈ [k′￼]

Attempt 1:
Rewind until accepting transcripts , .B → A ∈ {0,1}Bk′￼×k x′￼∈ 𝔾Bk′￼

Hope has an integer left inverse.A
Compute .x = A−1 ⋅ x′￼

:-) with all but probability 
if

𝗇𝖾𝗀𝗅(k)
5k /k′￼≤ B ≤ O(1)

Non-uniform distribution;

accepting transcripts skewed so is not

too skewed
Aso Bλ > k

Bonus: can prove knowledge of "small" by bounds-checking ; 
extractor works because computed has "small" entries ()

x x′￼

A−1 2𝗉𝗈𝗅𝗒(k)

actually essential & 
improperly addressed in [BFS19]

Attempt 0:
Get an accepting transcript , hope has an integer left-inverse.(A, x′￼) A
Compute . (correctness follows from homomorphism)x = A−1 ⋅ x′￼

 ...k′￼< k

Soundness: Our Batch Extractor

P(x) V(y)A ← {0,1}k′￼×k

y′￼:= A ⋅ yx′￼:= A ⋅ x

Accept if

 

for all
y′￼i = f(x′￼i)

i ∈ [k′￼]

Attempt 1:
Rewind until accepting transcripts , .B → A ∈ {0,1}Bk′￼×k x′￼∈ 𝔾Bk′￼

Hope has an integer left inverse.A
Compute .x = A−1 ⋅ x′￼

:-) with all but probability 
if

𝗇𝖾𝗀𝗅(k)
5k /k′￼≤ B ≤ O(1)

Non-uniform distribution;

accepting transcripts skewed so is not

too skewed
Aso Bλ > k

Bonus: can prove knowledge of "small" by bounds-checking ; 
extractor works because computed has "small" entries ()

x x′￼

A−1 2𝗉𝗈𝗅𝗒(k)

actually essential & 
improperly addressed in [BFS19]

We want to extract CRHF pre-images, but...

Homomorphic CRHFs

Homomorphic CRHFs
• Let be a group where it is hard to find s.t.

 (any multiple of the order of).
𝔾 = ⟨g⟩ x ≠ 0

gx = 1 g

Homomorphic CRHFs
• Let be a group where it is hard to find s.t.

 (any multiple of the order of).
𝔾 = ⟨g⟩ x ≠ 0

gx = 1 g

• Hardness holds in generic group of unknown order

Homomorphic CRHFs
• Let be a group where it is hard to find s.t.

 (any multiple of the order of).
𝔾 = ⟨g⟩ x ≠ 0

gx = 1 g

• Hardness holds in generic group of unknown order

• Concrete candidates:

• RSA group (private-coin setup)

• Class groups of imaginary quadratic order (public-
coin setup)

Homomorphic CRHFs
• Let be a group where it is hard to find s.t.

 (any multiple of the order of).
𝔾 = ⟨g⟩ x ≠ 0

gx = 1 g

• Hardness holds in generic group of unknown order

• Concrete candidates:

• RSA group (private-coin setup)

• Class groups of imaginary quadratic order (public-
coin setup)

• Then is a homomorphic CRHF from to h(x) = gx ℤ 𝔾

Homomorphic CRHFs: 
Domains beyond ℤ

Homomorphic CRHFs: 
Domains beyond ℤ

• We wanted an (additively) homomorphic CRHF mapping  
 (& extra property I am

ignoring)
Commit : ℤ[x1, …, xn] → 𝔾

Homomorphic CRHFs: 
Domains beyond ℤ

• We wanted an (additively) homomorphic CRHF mapping  
 (& extra property I am

ignoring)
Commit : ℤ[x1, …, xn] → 𝔾

• Almost follows from a homomorphic CRHF:ℤ → 𝔾

Homomorphic CRHFs: 
Domains beyond ℤ

• We wanted an (additively) homomorphic CRHF mapping  
 (& extra property I am

ignoring)
Commit : ℤ[x1, …, xn] → 𝔾

• Almost follows from a homomorphic CRHF:ℤ → 𝔾

• Homomorphically "embed" into by setting
.

ℤ[x1, …, xn] ℤ
xi = qi

Homomorphic CRHFs: 
Domains beyond ℤ

• We wanted an (additively) homomorphic CRHF mapping  
 (& extra property I am

ignoring)
Commit : ℤ[x1, …, xn] → 𝔾

• Almost follows from a homomorphic CRHF:ℤ → 𝔾

• Homomorphically "embed" into by setting
.

ℤ[x1, …, xn] ℤ
xi = qi

• Injective only on small-coefficient multilinear
polynomials (each coefficient is a digit base-).

D := {
} q

Homomorphic CRHFs: 
Domains beyond ℤ

• We wanted an (additively) homomorphic CRHF mapping  
 (& extra property I am

ignoring)
Commit : ℤ[x1, …, xn] → 𝔾

• Almost follows from a homomorphic CRHF:ℤ → 𝔾

• Homomorphically "embed" into by setting
.

ℤ[x1, …, xn] ℤ
xi = qi

• Injective only on small-coefficient multilinear
polynomials (each coefficient is a digit base-).

D := {
} q

• Thus composition is a CRHF only on
.

ℤ[x1, …, xn] → 𝔾
D

Main Extraction Lemma

Main Extraction Lemma
Lemma: Let . With all but
probability, has an integer left-inverse.

A ← {0,1}5n × n 2−Ω(n)

A

Main Extraction Lemma
Lemma: Let . With all but
probability, has an integer left-inverse.

A ← {0,1}5n × n 2−Ω(n)

A

5 is not tight, 
but unimportant today

Main Extraction Lemma
Lemma: Let . With all but
probability, has an integer left-inverse.

A ← {0,1}5n × n 2−Ω(n)

A

A taste of our proof:

5 is not tight, 
but unimportant today

Main Extraction Lemma
Lemma: Let . With all but
probability, has an integer left-inverse.

A ← {0,1}5n × n 2−Ω(n)

A

A taste of our proof:

• Consider sequence of lattices , where is generated by
first rows of

{Li} Li
i A

5 is not tight, 
but unimportant today

Main Extraction Lemma
Lemma: Let . With all but
probability, has an integer left-inverse.

A ← {0,1}5n × n 2−Ω(n)

A

A taste of our proof:

• Consider sequence of lattices , where is generated by
first rows of

{Li} Li
i A

• Show that rapidly approaches (and becomes) Li ℤn

5 is not tight, 
but unimportant today

Main Extraction Lemma
Lemma: Let . With all but
probability, has an integer left-inverse.

A ← {0,1}5n × n 2−Ω(n)

A

A taste of our proof:

• Consider sequence of lattices , where is generated by
first rows of

{Li} Li
i A

• Show that rapidly approaches (and becomes) Li ℤn

• Equivalently, | det(Li) | → 1

5 is not tight, 
but unimportant today

Main Extraction Lemma
Lemma: Let . With all but
probability, has an integer left-inverse.

A ← {0,1}5n × n 2−Ω(n)

A

A taste of our proof:

• Consider sequence of lattices , where is generated by
first rows of

{Li} Li
i A

• Show that rapidly approaches (and becomes) Li ℤn

• Equivalently, | det(Li) | → 1

• We analyze prime factorization of , show that each
step kills enough prime powers with enough probability to
deduce the lemma.

det(Li)

5 is not tight, 
but unimportant today

Conclusion

Conclusion
• First publicly verifiable arguments for NP that are time- and

space-efficient and based on a simple complexity assumptions

Conclusion
• First publicly verifiable arguments for NP that are time- and

space-efficient and based on a simple complexity assumptions

• Based on groups of unknown order, but very lattice-related
techniques

Conclusion
• First publicly verifiable arguments for NP that are time- and

space-efficient and based on a simple complexity assumptions

• Based on groups of unknown order, but very lattice-related
techniques

• Open: from lattice assumptions, or in random oracle model

Conclusion
• First publicly verifiable arguments for NP that are time- and

space-efficient and based on a simple complexity assumptions

• Based on groups of unknown order, but very lattice-related
techniques

• Open: from lattice assumptions, or in random oracle model

• Found and fixed bug in DARK polynomial commitment

Conclusion
• First publicly verifiable arguments for NP that are time- and

space-efficient and based on a simple complexity assumptions

• Based on groups of unknown order, but very lattice-related
techniques

• Open: from lattice assumptions, or in random oracle model

• Found and fixed bug in DARK polynomial commitment

• Techniques likely more broadly applicable: we also improve
Pietrzak's proof of exponentiation protocol to achieve
statistical soundness in arbitrary groups

Questions?

