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Public-Coin Verification:

• Uniformly random verifier messages

• Acceptance depends deterministically on transcript

Time- and Space-Efficient Prover:

• If  is decidable in time  and space , then prover 
runs in time  and space

(x; w) ∈ R T S
≈ T ≈ S

• Space can be as much of a bottleneck as time, but is often 
overlooked

?

Necessary for 
decentralized verification 

(e.g. in blockchains)
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Approach 1: Recursive Composition [Valiant '08, BCCT '12]

• Large concrete overheads due to non-black-box crypto
(or if brave: algebraic hash functions [BGH19, BCMS20, COS20])

• Soundness relies on exotic computational assumptions

Approach 2: Compiling IOPs with space-efficient provers

• Until now: space-preserving compilers produced private-
coin arguments [Bitansky-Chiesa '12, BHRRS '20]

• This work: public-coin arguments, based on a simple & 
falsifiable "hidden order" assumption
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P(x; w) V(x)...

IOP: π

Argument:

P(x; w) V(x)

commit( )π

i1, …, ik

 + proofπi1, …, πik

Why does this matter? 

We know IOPs with time- & 
space-efficient provers in the 
sense of (B) but not (A).

Important Question: 
Which IOP prover cost is most 
relevant to argument prover?


A. enumerate all of  
B. compute  given  
C. other?

π
πi i

Non-answer: 
Depends on how "commit" and 
"proof" are instantiated...
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A. Merkle commitments

• Prover's work:  enumerating all of ≈ π

B. Function commitments [BC '12]

• Prover's work:  computing  for a given .≈ πi i
• Private coin proofs

C. For a "polynomial IOP" (  is truth table of a multilinear 
polynomial), can use a polynomial commitment [BFS19]

π : 𝔽n
q → 𝔽q

• Polynomial commitments can be public-coin

• This work: Prover's work  enumerating description of  (not the 
whole truth table);

≈ π

(time- and space-) efficient for known IOPs (e.g. Clover [BTVW14])
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Our Polynomial Commitment 
Efficiency Results

Informal Theorem 1: Assume a group of "unknown order".  
Then there is a polynomial commitment scheme with public-
coin commit and prove protocols.


Moreover, the committer/prover on input  is efficient (in 
both time and space) given multi-pass streaming access to 
values of  on 


Informal Theorem 2: There are polynomial IOPs where the 
prover can compute relevant streams above (as well as all 
other IOP messages) with time- and space-efficiency.

p

p {0,1}n
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Polynomial Commitment 
Blueprint / Sketch

Commit(  ): 
Output , where  is a "homomorphic CRHF" (more later) 

p : 𝔽n
q → 𝔽q

h(p) h

Prove( "I know a degree-  poly  s.t.   
                                                             and "                 ) 

d p Commit(p) = c
p(x) = z

1. Split claim into similar sub-claims of smaller size
2. Combine sub-claims to reduce number
3. Recurse

abstractly: , 
where  is a homomorphism

f(p) = (c, z)
f

Not today!

Not today!

[BFS19]: Basic framework, 
buggy instantiation.


They independently 
discovered bug
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Prover might only know  when  is in a lattice 
.  Winning probability  density of  in .

xr ∈ f −1(⟨r, y⟩) r
L ⊆ ℤk ≈ L ℤk

[BFS19] show computational  
soundness for a specific .f
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We want to extract CRHF pre-images, but...
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 (any multiple of the order of ).
𝔾 = ⟨g⟩ x ≠ 0

gx = 1 g

• Hardness holds in generic group of unknown order

• Concrete candidates:

• RSA group (private-coin setup)

• Class groups of imaginary quadratic order (public-
coin setup)

• Then  is a homomorphic CRHF from  to h(x) = gx ℤ 𝔾
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Homomorphic CRHFs: 
Domains beyond ℤ

• We wanted an (additively) homomorphic CRHF mapping  
    (& extra property I am 

ignoring)
Commit : ℤ[x1, …, xn] → 𝔾

• Almost follows from a  homomorphic CRHF:ℤ → 𝔾

• Homomorphically "embed"  into  by setting 
.

ℤ[x1, …, xn] ℤ
xi = qi

• Injective only on small-coefficient multilinear 
polynomials  (each coefficient is a digit base- ).

D := {
} q

• Thus  composition is a CRHF only on 
. 

ℤ[x1, …, xn] → 𝔾
D
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probability,  has an integer left-inverse.

A ← {0,1}5n × n 2−Ω(n)

A

A taste of our proof:

• Consider sequence of lattices , where  is generated by 
first  rows of 

{Li} Li
i A

• Show that  rapidly approaches (and becomes) Li ℤn

• Equivalently, | det(Li) | → 1

• We analyze prime factorization of , show that each 
step kills enough prime powers with enough probability to 
deduce the lemma.

det(Li)

5 is not tight, 
but unimportant today



Conclusion



Conclusion
• First publicly verifiable arguments for NP that are time- and 

space-efficient and based on a simple complexity assumptions



Conclusion
• First publicly verifiable arguments for NP that are time- and 

space-efficient and based on a simple complexity assumptions

• Based on groups of unknown order, but very lattice-related 
techniques



Conclusion
• First publicly verifiable arguments for NP that are time- and 

space-efficient and based on a simple complexity assumptions

• Based on groups of unknown order, but very lattice-related 
techniques

• Open: from lattice assumptions, or in random oracle model



Conclusion
• First publicly verifiable arguments for NP that are time- and 

space-efficient and based on a simple complexity assumptions

• Based on groups of unknown order, but very lattice-related 
techniques

• Open: from lattice assumptions, or in random oracle model

• Found and fixed bug in DARK polynomial commitment



Conclusion
• First publicly verifiable arguments for NP that are time- and 

space-efficient and based on a simple complexity assumptions

• Based on groups of unknown order, but very lattice-related 
techniques

• Open: from lattice assumptions, or in random oracle model

• Found and fixed bug in DARK polynomial commitment

• Techniques likely more broadly applicable: we also improve 
Pietrzak's proof of exponentiation protocol to achieve 
statistical soundness in arbitrary groups



Questions?


