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Interactive Arguments

Public-Coin Verification: Necessary for
decentralized verification

(e.g. in blockchains)

* Uniformly random verifier messages
* Acceptance depends deterministically on transcript

Time- and Space-Efficient Prover:

?
e If (x;w) € R is decidable in time T and space S, then prover
runs in time ~ T and space ~ S

e Space can be as much of a bottleneck as time, but is often
overlooked
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Prior Approaches for
Time- and Space-Efficient Proving

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

e |Large concrete overheads due to non-black-box crypto
(or if brave: algebraic hash functions [BGH19, BCMS20, COS20])

e Soundness relies on exotic computational assumptions

Approach 2: Compiling IOPs with space-efficient provers

e Until now: space-preserving compilers produced private-
coin arguments [Bitansky-Chiesa '12, BHRRS '20]

 This work: public-coin arguments, based on a simple &
falsifiable "hidden order" assumption
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Compiling IOPs to Arguments

Important Question:

Which IOP prover cost is most
relevant to argument prover?

A. enumerate all of

B. compute 7; given |
C. other?

Non-answer:

Depends on how "commit" and

Argument: "proof" are instantiated...
commit(r) ]
> Why does this matter?
Bl < | | b v We know |OPs with time- &
bW oo ) space-efficient provers in the

;s ..., T; + proof sense of (B) but not (A).

l
1 >
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A. Merkle commitments

 Prover's work: & enumerating all of 7

B. Function commitments [BC '12]
- Prover's work: &~ computing 7; for a given 1.
- Private coin proofs

C. For a "polynomial IOP" (7 : [F’; — [Fq is truth table of a multilinear
polynomial), can use a polynomial commitment [BFS19]

Polynomial commitments can be public-coin

« This work: Prover's work &~ enumerating description of & (not the
whole truth table);
(time- and space-) efficient for known IOPs (e.g. Clover [BTVW14])
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Our Polynomial Commitment
Efficiency Results

Informal Theorem 1: Assume a group of "unknown order".
Then there is a polynomial commitment scheme with public-
coin commit and prove protocols.

Moreover, the committer/prover on (multi-linear) input p is

efficient given streaming access to (p(x)) (0.1}
X R

Informal Theorem 2: There are polynomial IOPs where the
prover can compute relevant streams above (as well as all
other IOP messages) with time- and space-efficiency.
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Our Polynomial Commitment
Efficiency Results

Informal Theorem 1: Assume a group of "unknown order".
Then there is a polynomial commitment scheme with public-
coin commit and prove protocols.

oy e committer/prover on input p is efficigg
both time & gce) given multi-pass streglr cess to

values of p on {0,

Informal Theoremds
Prover Calds
othg

e are poly OPs where the
e relevant streams abov kel as all
essages) with time- and space-efficicl®
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Commit(p: F, — F )

Output A(p), where h is a "homomorphic CRHF" (more later)

Prove( "l know a degree-d poly p s.t. |abstractly: f(p) = (c, 2),
where fis a homomorphism

1. Split claim into similar sub-claims of smaller size
2. Combine sub-claims to reduce number

3. Recurse
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Commit(p: F, — F )

Output A(p), where h is a "homomorphic CRHF" (more later)

Prove( "l know a degree-d poly p s.t. |abstractly: f(p) = (c, 2),
where fis a homomorphism

y - >
N “ob i AN L

Not today!
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Let f: G — H be an arbitrary homomorphism
Yy=Up.-»0) € H¥ be arbitrary.

Prover claims to know X = (x{, ..., X;) € G* s.t. f(x;)) = y..

P(x) Accept if

v = (%)
foralli € [k]
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foralli € [k]
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mk’<k...

Attempt O: -

Get an accepting transcript (A, X’), hope A has an integer left-inverse.

/

Compute X = Al.x! (correctness follows from homomorphism)
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P(x) A « {0,1}K*

<

Accept if
= f(x;)
foralli € [k]

X =A-X

>

Non-uniform distribution; -
: : so A is not

mm accepting transcripts skewed
‘ Attempt 1: S L8 > too skewed

A BEXk ;
<| Rewind until B accepting transcripts = A € {0, a1l G°~.

Hope A has an integer left inverse. Jrobability

:-) with all But negl(k)

/

Computex = A~ ! -x

Bonus: can prove knowledge of "small" X by bounds-checking X/,
efitractor works because computed A ™! has "small" entries (2IDOIy (k))

actually essential & We want to extract CRHF pre-images, but...

improperly addressed in [BFS19]
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Homomorphic CRHFs

e Let G = (g) be a group where it is hard to find x # 0 s.t.
g’ =1 (any multiple of the order of g).

 Hardness holds in generic group of unknown order
 Concrete candidates:

e RSA group (private-coin setup)

e Class groups of imaginary quadratic order (public-
coin setup)

e Then h(x) = g*is a homomorphic CRHF from Z to G
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Homomorphic CRHFs:
Domains beyond Z

 We wanted an (additively) homomorphic CRHF mapping
Commit : Z[x{,...,x,] = G (& extra property | am
ignoring)

o Almost follows from a Z — ( homomorphic CRHF:

e Homomorphically "embed" Z[x, ..., x,] into Z by setting

—_— l
X, =q'

e Injective only on D := {small-coefficient multilinear
polynomials } (each coefficient is a digit base-q).

e Thus Z[x, ...,x,] = G composition is a CRHF only on
D.
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Main Extraction Lemma

5 is not tight,
but unimportant today
Lemma: Let A « {0,1}>" X", With all but 27
probability, A has an integer left-inverse.

A taste of our proof:

» Consider sequence of lattices { L.}, where L, is generated by
first i rows of A

e Show that L; rapidly approaches (and becomes) Z"
o Equivalently, |det(L)| — 1

» We analyze prime factorization of det(L.), show that each

step kills enough prime powers with enough probability to
deduce the lemma.
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Conclusion

e First publicly verifiable arguments for NP that are time- and
space-efficient and based on a simple complexity assumptions

e Based on groups of unknown order, but very lattice-related
techniques

e Open: from lattice assumptions, or in random oracle model
e Found and fixed bug in DARK polynomial commitment

e Jechniques likely more broadly applicable: we also improve
Pietrzak's proof of exponentiation protocol to achieve

statistical soundness in arbitrary groups



Questions?



