Transparent Time- and Space-
Efficient Arguments
From Groups of Unknown Order

Justin Holmgren
NTT Research

Alex Block Alon Rosen Ron Rothblum Pratik Soni
Purdue IDC Herzliya Technion CMU

Pre-Quantum Cryptography
with Lattices

Justin Holmgren
NTT Research

Alex Block Alon Rosen Ron Rothblum Pratik Soni
Purdue IDC Herzliya Technion CMU

Please make me

"Post-".

Pre-Quantum Cryptography
with Lattices

Justin Holmgren
NTT Research

Alex Block Alon Rosen Ron Rothblum Pratik Soni
Purdue IDC Herzliya Technion CMU

Interactlve Arguments

n NP relation R with corresponding language L

Interactive Arguments

for an NP relation R with corresponding language L

Completeness:
For any (x,w) € R,

Interactive Arguments

for an NP relation R with corresponding language L

Completeness:
For any (x,w) € R,

M ... mﬁ

Interactive Arguments

for an NP relation R with corresponding language L

Completeness:
For any (x,w) € R,

polynomial time M m/—

Interactive Arguments

for an NP relation R with corresponding language L

Completeness:
For any (x,w) € R,

o
>

polynomlal time | P(x; w) V(x) / nearly linear time
>

Interactive Arguments

for an NP relation R with corresponding language L

Completeness:

For any (x,w) € R, -

o
>
<
polynomial time | P(x; w) V(x) J nearly linear time
<
>

Soundness:
For any x & L, poly-size adversary </,

>
<
le/4 V(x)
<
>

Interactive Arguments

for an NP relation R with corresponding language L

Completeness:

For any (x,w) € R, -

o
>
<
polynomial time | P(x; w) V(x) J nearly linear time
<
>

Soundness:
For any x & L, poly-size adversary </,

)

Two Desirable Properties for
Interactive Arguments

Two Desirable Properties for
Interactive Arguments

Public-Coin Verification:

Two Desirable Properties for
Interactive Arguments

Public-Coin Verification:

* Uniformly random verifier messages

Two Desirable Properties for
Interactive Arguments

Public-Coin Verification:
* Uniformly random verifier messages

* Acceptance depends deterministically on transcript

Two Desirable Properties for
Interactive Arguments

Public-Coin Verification: Necessary for

decentralized verification
(e.g. in blockchains)

* Uniformly random verifier messages

* Acceptance depends deterministically on transcript

Two Desirable Properties for
Interactive Arguments

Public-Coin Verification: Necessary for

decentralized verification
(e.g. in blockchains)

* Uniformly random verifier messages
* Acceptance depends deterministically on transcript

Time- and Space-Efficient Prover:

Two Desirable Properties for
Interactive Arguments

Public-Coin Verification: Necessary for

decentralized verification
(e.g. in blockchains)

* Uniformly random verifier messages
* Acceptance depends deterministically on transcript

Time- and Space-Efficient Prover:

?
e If (x;w) € R is decidable in time T and space S, then prover
runs in time ~ T and space ~ S

Two Desirable Properties for
Interactive Arguments

Public-Coin Verification: Necessary for
decentralized verification

(e.g. in blockchains)

* Uniformly random verifier messages
* Acceptance depends deterministically on transcript

Time- and Space-Efficient Prover:

?
e If (x;w) € R is decidable in time T and space S, then prover
runs in time ~ T and space ~ S

e Space can be as much of a bottleneck as time, but is often
overlooked

Prior Approaches for
Time- and Space-Efficient Proving

Prior Approaches for
Time- and Space-Efficient Proving

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

Prior Approaches for
Time- and Space-Efficient Proving

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

e |Large concrete overheads due to non-black-box crypto

Prior Approaches for
Time- and Space-Efficient Proving

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

e |Large concrete overheads due to non-black-box crypto
(or if brave: algebraic hash functions [BGH19, BCMS20, COS20])

Prior Approaches for
Time- and Space-Efficient Proving

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

e |Large concrete overheads due to non-black-box crypto
(or if brave: algebraic hash functions [BGH19, BCMS20, COS20])

e Soundness relies on exotic computational assumptions

Prior Approaches for
Time- and Space-Efficient Proving

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

e |Large concrete overheads due to non-black-box crypto
(or if brave: algebraic hash functions [BGH19, BCMS20, COS20])

e Soundness relies on exotic computational assumptions

Approach 2: Compiling IOPs with space-efficient provers

Prior Approaches for
Time- and Space-Efficient Proving

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

e |Large concrete overheads due to non-black-box crypto
(or if brave: algebraic hash functions [BGH19, BCMS20, COS20])

e Soundness relies on exotic computational assumptions

Approach 2: Compiling IOPs with space-efficient provers

e Until now: space-preserving compilers produced private-
coin arguments [Bitansky-Chiesa '12, BHRRS '20]

Prior Approaches for
Time- and Space-Efficient Proving

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

e |Large concrete overheads due to non-black-box crypto
(or if brave: algebraic hash functions [BGH19, BCMS20, COS20])

e Soundness relies on exotic computational assumptions

Approach 2: Compiling IOPs with space-efficient provers

e Until now: space-preserving compilers produced private-
coin arguments [Bitansky-Chiesa '12, BHRRS '20]

 This work: public-coin arguments, based on a simple &
falsifiable "hidden order" assumption

Compiling IOPs to Arguments

Compiling IOPs to Arguments

10P:

i

Compiling IOPs to Arguments

i

Compiling IOPs to Arguments

Compiling IOPs to Arguments

V(x)

Compiling IOPs to Arguments

Compiling IOPs to Arguments

Argument:

Compiling IOPs to Arguments

Argument:

commit(rx

) >

Compiling IOPs to Arguments

Compiling IOPs to Arguments

Compiling IOPs to Arguments

Argument:

commit(rx

P(x; w) V(X)

LR

, T, + proof

Compiling IOPs to Arguments

Argument:

P(x; w)

commit(rx

LR

, T, + proof

>

V(x)

Important Question:

Which IOP prover cost is most
relevant to argument prover?

A. enumerate all of

B. compute 7; given |
C. other?

Compiling IOPs to Arguments

Important Question:

Which IOP prover cost is most
relevant to argument prover?

A. enumerate all of

B. compute 7; given |
C. other?

Non-answer:

Depends on how "commit" and

Argument: "proof" are instantiated...

P(x; w)

V(x)

LR

, T, + proof

>

Compiling IOPs to Arguments

Important Question:

Which IOP prover cost is most
relevant to argument prover?

A. enumerate all of

B. compute 7; given |
C. other?

Non-answer:

Depends on how "commit" and

Argument: "proof" are instantiated...
commit(r)]
> Why does this matter?
Bl < | | b v We know |OPs with time- &
bW oo) space-efficient provers in the

;s ..., T; + proof sense of (B) but not (A).

l
1 >

Instantiations of Commit-and-Prove

Instantiations of Commit-and-Prove

A. Merkle commitments

Instantiations of Commit-and-Prove

A. Merkle commitments

 Prover's work: & enumerating all of 7

Instantiations of Commit-and-Prove

A. Merkle commitments

 Prover's work: & enumerating all of 7

B. Function commitments [BC '12]

Instantiations of Commit-and-Prove

A. Merkle commitments

 Prover's work: & enumerating all of 7

B. Function commitments [BC '12]

- Prover's work: &~ computing 7; for a given 1.

Instantiations of Commit-and-Prove

A. Merkle commitments

 Prover's work: & enumerating all of 7
B. Function commitments [BC '12]
- Prover's work: & computing 7. for a given 1.

- Private coin proofs

Instantiations of Commit-and-Prove

A. Merkle commitments

 Prover's work: & enumerating all of 7

B. Function commitments [BC '12]
- Prover's work: &~ computing 7; for a given 1.
- Private coin proofs

C. For a "polynomial IOP" (7 : [F’; — [Fq is truth table of a multilinear
polynomial), can use a polynomial commitment [BFS19]

Instantiations of Commit-and-Prove

A. Merkle commitments

 Prover's work: & enumerating all of 7

B. Function commitments [BC '12]
- Prover's work: &~ computing 7; for a given 1.
- Private coin proofs

C. For a "polynomial IOP" (7 : [F’; — [Fq is truth table of a multilinear
polynomial), can use a polynomial commitment [BFS19]

Polynomial commitments can be public-coin

Instantiations of Commit-and-Prove

A. Merkle commitments

 Prover's work: & enumerating all of 7

B. Function commitments [BC '12]
- Prover's work: &~ computing 7; for a given 1.
- Private coin proofs

C. For a "polynomial IOP" (7 : [F’; — [Fq is truth table of a multilinear
polynomial), can use a polynomial commitment [BFS19]

Polynomial commitments can be public-coin

« This work: Prover's work &~ enumerating description of & (not the
whole truth table);

Instantiations of Commit-and-Prove

A. Merkle commitments

 Prover's work: & enumerating all of 7

B. Function commitments [BC '12]
- Prover's work: &~ computing 7; for a given 1.
- Private coin proofs

C. For a "polynomial IOP" (7 : [F’; — [Fq is truth table of a multilinear
polynomial), can use a polynomial commitment [BFS19]

Polynomial commitments can be public-coin

« This work: Prover's work &~ enumerating description of & (not the
whole truth table);
(time- and space-) efficient for known IOPs (e.g. Clover [BTVW14])

Our Polynomial Commitment
Efficiency Results

Our Polynomial Commitment
Efficiency Results

Informal Theorem 1: Assume a group of "unknown order".
Then there is a polynomial commitment scheme with public-
coin commit and prove protocols.

Our Polynomial Commitment
Efficiency Results

Informal Theorem 1: Assume a group of "unknown order".
Then there is a polynomial commitment scheme with public-
coin commit and prove protocols.

Moreover, the committer/prover on (multi-linear) input p is

efficient given streaming access to (p(x)) (0.1}
X R

Our Polynomial Commitment
Efficiency Results

Informal Theorem 1: Assume a group of "unknown order".
Then there is a polynomial commitment scheme with public-
coin commit and prove protocols.

Moreover, the committer/prover on (multi-linear) input p is

efficient given streaming access to (p(x)) (0.1}
X R

Informal Theorem 2: There are polynomial IOPs where the
prover can compute relevant streams above (as well as all
other IOP messages) with time- and space-efficiency.

No More Talking About
(Fine-Grained) Efficiency

Our Polynomial Commitment
Efficiency Results

Informal Theorem 1: Assume a group of "unknown order".
Then there is a polynomial commitment scheme with public-
coin commit and prove protocols.

oy e committer/prover on input p is efficigg
both time & gce) given multi-pass streglr cess to

values of p on {0,

Informal Theoremds
Prover Calds
othg

e are poly OPs where the
e relevant streams abov kel as all
essages) with time- and space-efficicl®

Polynomial Commitment
Blueprint / Sketch

Polynomial Commjfiatie
Blueprint / Skejii i

Polynomial Commjfiatie
Blueprint / Skejii i

Commit(p: F, — F)

Output A(p), where h is a "homomorphic CRHF" (more later)

Polynomial Commjfiatie
Blueprint / Skejii i

Commit(p: F, — F)

Output A(p), where h is a "homomorphic CRHF" (more later)

Prove("l know a degree-d poly p s.t. Commit(p) = ¢
and p(x) = 7")

Polynomial Commjfiatie
Blueprint / Skejii i

Commit(p: F, — F)

Output A(p), where h is a "homomorphic CRHF" (more later)

Prove("l know a degree-d poly p s.t.

abstractly: f(p) = (¢, 2),
where fis a homomorphism

Polynomial Commjfiatie
Blueprint / Skejii i

Commit(p: F, — F)

Output A(p), where h is a "homomorphic CRHF" (more later)

Prove("l know a degree-d poly p s.t. |abstractly: f(p) = (c, 2),
where fis a homomorphism

1. Split claim into similar sub-claims of smaller size

Polynomial Commjfiatie
Blueprint / Skejii i

Commit(p: F, — F)

Output A(p), where h is a "homomorphic CRHF" (more later)

Prove("l know a degree-d poly p s.t. |abstractly: f(p) = (c, 2),
where fis a homomorphism

1. Split claim into similar sub-claims of smaller size

2. Combine sub-claims to reduce number

Polynomial Commjfiatie
Blueprint / Skejii i

Commit(p: F, — F)

Output A(p), where h is a "homomorphic CRHF" (more later)

Prove("l know a degree-d poly p s.t. |abstractly: f(p) = (c, 2),
where fis a homomorphism

1. Split claim into similar sub-claims of smaller size
2. Combine sub-claims to reduce number

3. Recurse

Polynomial Commjs it
Blueprint / Skep i

Commit(p: F, — F)

Output A(p), where h is a "homomorphic CRHF" (more later)

Prove("l know a degree-d poly p s.t. |abstractly: f(p) = (c, 2),
where fis a homomorphism

y - >
N “ob i AN L

Not today!

From Many Claims to
Fewer Claims?

From Many Claims to
Fewer Claims?

Initial Claims: Knowledge of f-preimages of y, ..., y,
(think of f as an arbitrary homomorphism)

From Many Claims to
Fewer Claims?

Initial Claims: Knowledge of f-preimages of y, ..., y,
(think of f as an arbitrary homomorphism)

Flawed Protocol:

From Many Claims to
Fewer Claims?

Initial Claims: Knowledge of f-preimages of y, ..., y,
(think of f as an arbitrary homomorphism)

Flawed Protocol:

1. Lety' = Z .y, for r; < [2*] sampled by verifier

l

From Many Claims to
Fewer Claims?

Initial Claims: Knowledge of f-preimages of y, ..., y,
(think of f as an arbitrary homomorphism)

Flawed Protocol:

1. Lety' = Z .y, for r; < [2*] sampled by verifier
i

2. Prover proves knowledge of x’ € f~1(y")

From Many Claims to
Fewer Claims?

Initial Claims: Knowledge of f-preimages of y, ..., y,
(think of f as an arbitrary homomorphism)

Flawed Protocol:
1. Lety' = Z .y, for r; < [2*] sampled by verifier
i
/ —1/,
2. Prover proves knowledge of x’ € f~'(y’)

e Prover might know x Ef_l(Zyl), but not x Ef_l(yl);
could still win with probability 1/2.

From Many Claims to
Fewer Claims?

Initial Claims: Knowledge of f-preimages of y, ..., y,
(think of f as an arbitrary homomorphism)

Flawed Protocol:
1. Lety' = Z .y, for r; < [2*] sampled by verifier
i
/ —1/,
2. Prover proves knowledge of x’ € f~'(y’)

e Prover might know x Ef_l(Zyl), but not x Ef_l(yl);
could still win with probability 1/2.

Prover might only know X, Ef_l((r, y)) when r is in a lattice
L C Z*. Winning probability ~ density of L in Z*.

From Many Claims to
Fewer Claims?

Initial Claims: Knowledge of f-preimages of y, ..., y,
(think of f as an arbitrary homomorphism

Flawed Protocol:
1. Lety' = Z r.y,, for r; < [2*] sampled by verifier
i
2. Prover proves knowledge of x" € f_l(y’)
e Prover might know x € f~1(2y,), but not x € f~1(y,);

could still win with probability 1/2.

Prover might only know X, Ef_l((r, y)) when r is in a lattice
L C Z*. Winning probability ~ density of L in Z*.

From Many Claims to Fewer Claims:
Our Protocol

From Many Claims to Fewer Claims:
Our Protocol

Let f: G — H be an arbitrary homomorphism
Yy=Up.-»0) € H¥ be arbitrary.

From Many Claims to Fewer Claims:
Our Protocol

Let f: G — H be an arbitrary homomorphism
Yy=Up.-»0) € H¥ be arbitrary.

Prover claims to know X = (x{, ..., X;) € G* s.t. f(x;)) = y..

From Many Claims to Fewer Claims:
Our Protocol

Let f: G — H be an arbitrary homomorphism
Yy=Up.-»0) € H¥ be arbitrary.

Prover claims to know X = (x{, ..., X;) € G* s.t. f(x;)) = y..

P(x) V(y)

From Many Claims to Fewer Claims:
Our Protocol

Let f: G — H be an arbitrary homomorphism
Yy=Up.-»0) € H¥ be arbitrary.

Prover claims to know X = (x{, ..., X;) € G* s.t. f(x;)) = y..

P(x) A« {0,1}F K V(y)

<

From Many Claims to Fewer Claims:
Our Protocol

Let f: G — H be an arbitrary homomorphism
Yy=Up.-»0) € H¥ be arbitrary.

Prover claims to know X = (x{, ..., X;) € G* s.t. f(x;)) = y..

P(x) A < {0,1}F >4

<

From Many Claims to Fewer Claims:
Our Protocol

Let f: G — H be an arbitrary homomorphism
Yy=Up.-»0) € H¥ be arbitrary.

Prover claims to know X = (x{, ..., X;) € G* s.t. f(x;)) = y..

P(x)

From Many Claims to Fewer Claims:
Our Protocol

Let f: G — H be an arbitrary homomorphism
Yy=Up.-»0) € H¥ be arbitrary.

Prover claims to know X = (x{, ..., X;) € G* s.t. f(x;)) = y..

P(x) Accept if

v = (%)
foralli € [k]

Soundness: Our Batch Extractor

P(x) A < {0,1} Accept if

yi = J(x;)

foralli € [k]

Soundness: Our Batch Extractor

P(x) A < {0,1} Accept if
- yi = Jx)
X:=A-X » foralli € [k']

Attempt O:

Soundness: Our Batch Extractor

P(X) A <« {0,1 }k,Xk Accept if
/. yi, =f(xl{)
X :=A-X X foralli € [k]
Attempt O:

Get an accepting transcript (A, X’), hope A has an integer left-inverse.

Soundness: Our Batch Extractor

k'xk
P(x) A < {0,1}77 Accept if
. yi = Jx)
X:=A-X » foralli € [k']
. m k' <k...
Attempt O: -

Get an accepting transcript (A, X’), hope A has an integer left-inverse.

Soundness: Our Batch Extractor

P(x) A « {0,1}F>k

<

Accept if
Y = (%)

foralli € [k]

X ' =A-X

mk’<k...

Attempt O: -

Get an accepting transcript (A, X’), hope A has an integer left-inverse.

/

Compute X = Al.x! (correctness follows from homomorphism)

Soundness: Our Batch Extractor

P(x) A < {0,1} Accept if
- yi = Jx)
X:=A-X » foralli € [k']
Py

Attempt 1:

4

(
(

Soundness: Our Batch Extractor

P(x) A < {0,1} Accept if

yi = J(x;)

foralli € [k]

4

Attempt 1:
Rewind until B accepting transcripts = A € {0,1}5¢*¢ x" € GB%

Soundness: Our Batch Extractor

P(x) A « {0,1}F>k

<

Accept if
Y = (%)

foralli € [k]

X ' =A-X

4

Attempt 1:

: Rewind until B accepting transcripts = A € {0,1}5¢*¢ x" € GB%

Hope A has an integer left inverse.

Soundness: Our Batch Extractor

4

k'xk
P(x) A < {0,1}77 Accept if
o yi = Jx)
X .=A-X » foralli € [k']
P
Attempt 1:

: Rewind until B accepting transcripts = A € {0,1}5¢*¢ x" € GB%

Hope A has an integer left inverse.

/

Computex = A~ ! - X',

Soundness: Our Batch Extractor

P(x) A < {0,1} Accept if
o yi = Jx)
X:=A-X » foralli € [k']
Py

4

Attempt 1:

: Rewind until B accepting transcripts = A € {0,1}5¢*¢ x" € GB%

Hope A has an integer left inverse.

/

Computex = A~ ! - X',

Soundness: Our Batch Extractor

Accept if
Y = (%)

foralli € [k]

Non-uniform distribution;

/|

accepting transcripts skewed

Hope A has an integer left inverse.

/

Computex = A~ ! - X/

Soundness: Our Batch Extractor

Accept if
Y = (%)

foralli € [k']

Non-uniform distribution;

accepting transcripts skewed = SO A is not
too skewed

e (E

/|

Hope A has an integer left inverse. :-) with all but negl(k) grobability

if Sk/k' < B < O(1)

/

Computex = A~ ! - X/

Soundness: Our Batch Extractor

P(x) A « {0,1}F>k

<

Accept if
= f(x;)
foralli € [k]

X =A-X

>

Non-uniform distribution; -
: : so A is not

mm accepting transcripts skewed
‘ Attempt 1: S L8 > too skewed

A BEXk ;
<| Rewind until B accepting transcripts = A € {0, a1l G°~.

Hope A has an integer left inverse.

:-) with all But negl(k) grobability

/

Computex = A~ ! - x

Soundness: Our Batch Extractor

k'xck
P(x) A < {0,1}77 Accept if
= f(x;)
X:=A-X » forall i € [k']

Non-uniform distribution;

accepting transcripts skewed so A is not

| Attempt 1: S0 12 > U8 too skewed
\ Bk’Xk 5
<| Rewind until B accepting transcripts = A € {0, a1l G°~.

Hope A has an integer left inverse.

:-) with all But negl(k) grobability

/

Computex = A~ ! - x

Bonus: can prove knowledge of "small" X by bounds-checking X,
extractor works because computed A ~! has "small" entries (2P°YX)

Soundness: Our Batch Extractor

k'xck
P(x) A < {01}~ Accept if
= f(x))
X':=A-X » forall i € [k']

Non-uniform distribution; -
: : so A is not

mm accepting transcripts skewed
‘ Attempt 1: S L8 > too skewed

y BEXk ;
| Rewind until B accepting transcripts = A € {0, Q| G"" .

Hope A has an integer left inverse.

:-) with all But negl(k) grobability

/

Computex = A~ ! -x

Bonus: can prove knowledge of "small" X by bounds-checking X’;
efitractor works because computed A ™! has "small" entries (2IDOIy (k))

actually essential &

improperly addressed in [BFS19]

Soundness: Our Batch Extractor

P(x) A « {0,1}K*

<

Accept if
= f(x;)
foralli € [k]

X =A-X

>

Non-uniform distribution; -
: : so A is not

mm accepting transcripts skewed
‘ Attempt 1: S L8 > too skewed

A BEXk ;
<| Rewind until B accepting transcripts = A € {0, a1l G°~.

Hope A has an integer left inverse. Jrobability

:-) with all But negl(k)

/

Computex = A~ ! -x

Bonus: can prove knowledge of "small" X by bounds-checking X/,
efitractor works because computed A ™! has "small" entries (2IDOIy (k))

actually essential & We want to extract CRHF pre-images, but...

improperly addressed in [BFS19]

Homomorphic CRHFs

Homomorphic CRHFs

e Let G = (g) be a group where it is hard to find x # 0 s.t.
g’ =1 (any multiple of the order of g).

Homomorphic CRHFs

e Let G = (g) be a group where it is hard to find x # 0 s.t.
g’ =1 (any multiple of the order of g).

 Hardness holds in generic group of unknown order

Homomorphic CRHFs

e Let G = (g) be a group where it is hard to find x # 0 s.t.
g’ =1 (any multiple of the order of g).

 Hardness holds in generic group of unknown order
 Concrete candidates:
e RSA group (private-coin setup)

e Class groups of imaginary quadratic order (public-
coin setup)

Homomorphic CRHFs

e Let G = (g) be a group where it is hard to find x # 0 s.t.
g’ =1 (any multiple of the order of g).

 Hardness holds in generic group of unknown order
 Concrete candidates:

e RSA group (private-coin setup)

e Class groups of imaginary quadratic order (public-
coin setup)

e Then h(x) = g*is a homomorphic CRHF from Z to G

Homomorphic CRHFs:
Domains beyond Z

Homomorphic CRHFs:
Domains beyond Z

 We wanted an (additively) homomorphic CRHF mapping

Commit : Z[x{,...,x,] = G (& extra property | am
ignoring)

Homomorphic CRHFs:
Domains beyond Z

 We wanted an (additively) homomorphic CRHF mapping
Commit : Z[x{,...,x,] = G (& extra property | am
ignoring)

o Almost follows from a Z — (homomorphic CRHF:

Homomorphic CRHFs:
Domains beyond Z

 We wanted an (additively) homomorphic CRHF mapping
Commit : Z[x{,...,x,] = G (& extra property | am
ignoring)

o Almost follows from a Z — (homomorphic CRHF:

e Homomorphically "embed" Z[x, ..., x,] into Z by setting

—_— l
X, =q'

Homomorphic CRHFs:
Domains beyond Z

 We wanted an (additively) homomorphic CRHF mapping
Commit : Z[x{,...,x,] = G (& extra property | am
ignoring)

o Almost follows from a Z — (homomorphic CRHF:

e Homomorphically "embed" Z[x, ..., x,] into Z by setting

—_— l
X, =q'

e Injective only on D := {small-coefficient multilinear
polynomials } (each coefficient is a digit base-q).

Homomorphic CRHFs:
Domains beyond Z

 We wanted an (additively) homomorphic CRHF mapping
Commit : Z[x{,...,x,] = G (& extra property | am
ignoring)

o Almost follows from a Z — (homomorphic CRHF:

e Homomorphically "embed" Z[x, ..., x,] into Z by setting

—_— l
X, =q'

e Injective only on D := {small-coefficient multilinear
polynomials } (each coefficient is a digit base-q).

e Thus Z[x, ...,x,] = G composition is a CRHF only on
D.

Main Extraction Lemma

Main Extraction Lemma

Lemma: Let A « {0,1}°" X", With all but 27
probability, A has an integer left-inverse.

Main Extraction Lemma

5 is not tight,
but unimportant today
Lemma: Let A « {0,1}>" X", With all but 27
probability, A has an integer left-inverse.

Main Extraction Lemma

5 is not tight,
but unimportant today
Lemma: Let A « {0,1}>" X", With all but 27
probability, A has an integer left-inverse.

A taste of our proof:

Main Extraction Lemma

5 is not tight,
but unimportant today
Lemma: Let A « {0,1}>" X", With all but 27
probability, A has an integer left-inverse.

A taste of our proof:

» Consider sequence of lattices { L.}, where L, is generated by
first i rows of A

Main Extraction Lemma

5 is not tight,
but unimportant today
Lemma: Let A « {0,1}>" X", With all but 27
probability, A has an integer left-inverse.

A taste of our proof:

» Consider sequence of lattices { L.}, where L, is generated by
first i rows of A

« Show that L, rapidly approaches (and becomes) Z"

Main Extraction Lemma

5 is not tight,
but unimportant today
Lemma: Let A « {0,1}>" X", With all but 27
probability, A has an integer left-inverse.

A taste of our proof:

» Consider sequence of lattices { L.}, where L, is generated by
first i rows of A

« Show that L, rapidly approaches (and becomes) Z"

o Equivalently, |det(L)| — 1

Main Extraction Lemma

5 is not tight,
but unimportant today
Lemma: Let A « {0,1}>" X", With all but 27
probability, A has an integer left-inverse.

A taste of our proof:

» Consider sequence of lattices { L.}, where L, is generated by
first i rows of A

e Show that L; rapidly approaches (and becomes) Z"
o Equivalently, |det(L)| — 1

» We analyze prime factorization of det(L.), show that each

step kills enough prime powers with enough probability to
deduce the lemma.

Conclusion

Conclusion

e First publicly verifiable arguments for NP that are time- and
space-efficient and based on a simple complexity assumptions

Conclusion

e First publicly verifiable arguments for NP that are time- and
space-efficient and based on a simple complexity assumptions

e Based on groups of unknown order, but very lattice-related
techniques

Conclusion

e First publicly verifiable arguments for NP that are time- and
space-efficient and based on a simple complexity assumptions

e Based on groups of unknown order, but very lattice-related
techniques

e Open: from lattice assumptions, or in random oracle model

Conclusion

e First publicly verifiable arguments for NP that are time- and
space-efficient and based on a simple complexity assumptions

e Based on groups of unknown order, but very lattice-related
techniques

e Open: from lattice assumptions, or in random oracle model

e Found and fixed bug in DARK polynomial commitment

Conclusion

e First publicly verifiable arguments for NP that are time- and
space-efficient and based on a simple complexity assumptions

e Based on groups of unknown order, but very lattice-related
techniques

e Open: from lattice assumptions, or in random oracle model
e Found and fixed bug in DARK polynomial commitment

e Jechniques likely more broadly applicable: we also improve
Pietrzak's proof of exponentiation protocol to achieve

statistical soundness in arbitrary groups

Questions?

