Post-Quantum Proof of Knowledge from QLWE

Prabhanjan Ananth UC Santa Barbara

Joint work with: Kai-Min Chung (Academia Sinica, Taiwan), Rolando L. La Placa (MIT → \$\$\$)

(to appear in CRYPTO'21)

Any classical prover who convinces a verifier to accept x must know a valid witness for x.

Preparing for Post-Quantum Era

Home World U.S. Politics Economy Business Tech Markets Opinion Life & Arts Real Estate WSJ. Magazine Sports

PHOTO: ALPHABET

Closing Their Gates

Subseri

Post-Quantum Proof of Knowledge (PQPoK) for NP [Unruh'12]

Any quantum prover who convinces a verifier to accept x must know a valid witness for x.

- Classical Prover: intermediate states are binary strings.
- Quantum Prover: intermediate states are quantum states.

- Classical Prover: intermediate states are binary strings.
- Quantum Prover: intermediate states are quantum states.

Rewinding a quantum prover is difficult!

Informal Definition of PQPoK for L

 \forall quantum prover P^*, \exists black-box extractor \mathcal{E} ,

 \forall quantum prover P^*, \exists black-box extractor \mathcal{E} ,

• Correctness of Extraction:

 $\Pr[P^* \text{ convinces verifier to accept } x] = \varepsilon$ $\Rightarrow \Pr\left[(\rho_{\mathcal{E}}, w) \leftarrow \mathcal{E}^{P^*}(x) \bigwedge (x, w) \in \mathcal{R}(L)\right] = \varepsilon'$

 \forall quantum prover P^*, \exists black-box extractor \mathcal{E} ,

• Correctness of Extraction:

$$\Pr \left[P^* \text{ convinces verifier to accept } x \right] = \varepsilon$$
$$\Rightarrow \Pr \left[(\rho_{\mathcal{E}}, w) \leftarrow \mathcal{E}^{P^*}(x) \bigwedge (x, w) \in \mathcal{R}(L) \right] = \varepsilon'$$

 P^* can be computationally unbounded.

 \forall quantum prover P^*, \exists black-box extractor \mathcal{E} ,

• Correctness of Extraction:

$$\Pr \left[P^* \text{ convinces verifier to accept } x \right] = \varepsilon$$
$$\Rightarrow \Pr \left[(\rho_{\mathcal{E}}, w) \leftarrow \mathcal{E}^{P^*}(x) \bigwedge (x, w) \in \mathcal{R}(L) \right] = \varepsilon'$$

Ideally: $|\varepsilon' - \varepsilon| = \operatorname{negl}$

Informal Definition of PQPoK for L

Another useful property:

• Indistinguishability of Extraction:

 $TD(\rho_V, \rho_{\mathcal{E}}) = \delta$

(TD = Trace distance)

- ρ_V : output state of P^* after interacting with V.
- $\rho_{\mathcal{E}}$: output of \mathcal{E}^{P^*} .

Another useful property:

• Indistinguishability of Extraction:

 $TD(\rho_V, \rho_{\mathcal{E}}) = \delta$

(TD = Trace distance)

ρ_V: output state of *P*^{*} after interacting with *V*.
ρ_E: output of *E^{P^{*}}*.

Ideally:
$$\delta = \mathsf{negl}$$

Application: Secure Computation

Simulator uses the extractor to extract adversary's inputs

Application: Proof of Quantum Knowledge for QMA [Coladangelo-Vidick-Zhang'20]

Application: Proof of Quantum Knowledge for QMA [Coladangelo-Vidick-Zhang'20]

Application: Proof of Quantum Knowledge for QMA [Coladangelo-Vidick-Zhang'20]

Extractor can extract (a, b) and then recover $|\Psi\rangle$.

We use the fact here that (a, b) is classical.

First work on Post-Quantum PoK: [Unruh Eurocrypt'12]

Followups rely upon Unruh's technique.

Unruh's PQPoK does not satisfy indistinguishability of extraction property.

Unruh's PQPoK does not satisfy indistinguishability of extraction property.

Prover's state after extraction $\not\approx$ Prover's state after verifier's interaction.

Q: is it necessary for the extractor to disturb the prover's state in order to learn the witness?

Q: is it necessary for the extractor to disturb the prover's state in order to learn the witness?

At first glance, could seem inherent:

Q: is it necessary for the extractor to disturb the prover's state in order to learn the witness?

At first glance, could seem inherent:

Example: Prover could start with superposition of all the witnesses. If extractor learns w then prover's state should have collapsed to w.

Theorem

Assuming LWE is hard against quantum polynomial-time algorithms,

There exists PQPoK for NP.

Techniques

Main Idea: Extraction via Oblivious Transfer

Main Idea: Extraction via Oblivious Transfer

Warmup: extraction of first bit of witness.

• Prover and Verifier run OT.

Prover: role of sender Verifier: role of receiver.

• Prover and Verifier run OT.

Prover: role of sender Verifier: role of receiver.

• Prover embeds w_1 (1st bit of witness) in one of the two locations at random.

Prover and Verifier run OT.
Prover: role of sender
Verifier: role of receiver.

- Prover embeds w_1 (1st bit of witness) in one of the two locations at random.
- Verifier randomly guesses the location.

Prover and Verifier run OT.
Prover: role of sender
Verifier: role of receiver.

- Prover embeds w_1 (1st bit of witness) in one of the two locations at random.
- Verifier randomly guesses the location.
- If the guessed location is correct, verifier gets w_1 , o/w gets \perp .

and behaved honestly in OT

Requirement: Post-Quantum ZK with soundness against unbounded quantum provers.

Extraction Process

Rewinding strategy:

• Run the prover *P* in superposition.
- Run the prover *P* in superposition.
- If recovered message is a bit, store 0 in register X. Otherwise store 1.

- Run the prover P in superposition.
- If recovered message is a bit, store 0 in register X. Otherwise store 1.
- Measure X.

- Run the prover P in superposition.
- If recovered message is a bit, store 0 in register X. Otherwise store 1.
- Measure X.
- If the outcome is 0 then declare SUCCESS,

- Run the prover P in superposition.
- If recovered message is a bit, store 0 in register X. Otherwise store 1.
- Measure X.
- If the outcome is 0 then declare SUCCESS, otherwise $\ensuremath{\mathsf{TBD}}.$

TBD step: Can we perform Watrous rewinding?

TBD step: Can we perform Watrous rewinding?

Watrous rewinding only works IF the measurement outcome doesn't disturb the prover's state.

- If the value in register A is 0 then use (\bot, \bot) in OT.
- If the value in register A is 1 then use (w_1, w_1) in OT.

- If the value in register A is 0 then use (\bot, \bot) in OT.
- If the value in register A is 1 then use (w_1, w_1) in OT.

- If the value in register A is 0 then use (\bot, \bot) in OT.
- If the value in register A is 1 then use (w_1, w_1) in OT.

- After rewinding, prover's state is $\approx |\Psi_1\rangle \langle \Psi_1|.$
- In the real world, prover's state is $\approx \frac{1}{2} |\Psi_0\rangle \langle \Psi_0| + \frac{1}{2} |\Psi_1\rangle \langle \Psi_1|$.

- If the value in register A is 0 then use (\bot, \bot) in OT.
- If the value in register A is 1 then use (w_1, w_1) in OT.

- After rewinding, prover's state is $\approx |\Psi_1\rangle \langle \Psi_1|.$
- In the real world, prover's state is $\approx \frac{1}{2} |\Psi_0\rangle \langle \Psi_0| + \frac{1}{2} |\Psi_1\rangle \langle \Psi_1|$.

 $TD\left(|\Psi_1\rangle\langle\Psi_1|, \frac{1}{2}|\Psi_0\rangle\langle\Psi_0|+\frac{1}{2}|\Psi_1\rangle\langle\Psi_1|\right)$ is not small.

Extraction Process

- Run the prover P in superposition.
- If recovered message is a bit, store 0 in register X. Otherwise store 1.
- Measure X.
- If the outcome is 0 then declare SUCCESS, otherwise TBD.

FIX: modify the scheme to ensure that the measurement outcome does not affect the state.

Extraction Process

- Run the prover *P* in superposition.
- If b = b', store 0 in the register X. Otherwise store 1.
- Measure X.
- If the outcome is 0 then declare SUCCESS, otherwise TBD.

- Run the prover *P* in superposition.
- If b = b', store 0 in the register X. Otherwise store 1.
- Measure X.
- If the outcome is 0 then declare SUCCESS, otherwise TBD.

 $\Pr[b = b'] \approx \frac{1}{2}$ from OT security.

- Run the prover *P* in superposition.
- If b = b', store 0 in the register X. Otherwise store 1.
- Measure X.
- If the outcome is 0 then declare SUCCESS, otherwise TBD.

 $\Pr[b = b'] \approx \frac{1}{2}$ from OT security.

Since distribution of measurement outcomes is independent of aux state

- Run the prover *P* in superposition.
- If b = b', store 0 in the register X. Otherwise store 1.
- Measure X.
- If the outcome is 0 then declare SUCCESS, otherwise TBD.

 $\Pr[b = b'] \approx \frac{1}{2}$ from OT security.

Since distribution of measurement outcomes is independent of aux state

Measurement does not disturb the state.

Extractor rewinds ONLY IF the guessed location is different from *b*.

- Run the prover *P* in superposition.
- If b = b', store 0 in the register X. Otherwise store 1.
- Measure X.
- If the outcome is 0 then declare SUCCESS, otherwise **perform** Watrous Rewinding.

• Case 1. Prover does not cheat: Extractor extracts the first bit of the witness.

- Case 1. Prover does not cheat: Extractor extracts the first bit of the witness.
- Case 2. Prover cheats: Extractor might have extracted garbage...

- Case 1. Prover does not cheat: Extractor extracts the first bit of the witness.
- Case 2. Prover cheats:

Extractor might have extracted garbage... ...but the prover will get caught in the ZK phase.

Protocol for extraction of 1st bit of witness

• Extractor extracts the first bit of witness

- Extractor extracts the first bit of witness
- \bullet ISSUE: Verifier can also recover the first bit of the witness with probability $\frac{1}{2}$

Error reduction

Error reduction

• Prover additively secret shares w_1 into sh_1, \ldots, sh_ℓ .

- Prover additively secret shares w_1 into sh_1, \ldots, sh_ℓ .
- Prover invokes ℓ instantiations of OT.

- Prover additively secret shares w_1 into sh_1, \ldots, sh_ℓ .
- Prover invokes ℓ instantiations of OT.
- It embeds sh_i into the i^{th} instantiation of OT.

Prover $(x, w = w_1 \cdots w_\ell)$ Verifier(x)......Amplified OT for w_1

$$\forall i, sh_i \stackrel{\$}{\leftarrow} \{0,1\} : \oplus_{i=1}^{\ell} sh_i = w_1$$

$$\begin{array}{cccc} \operatorname{Prover}(x,w=w_{1}\cdots w_{\ell}) & \operatorname{Verifier}(x) \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &$$

So far: extraction of 1 bit of witness.
So far: extraction of 1 bit of witness.

Repeat this process for all the bits of the witness!

. . .

Instantiation of OT

OT needs to have security against unbounded senders

 $\mathsf{OT}\xspace$ needs to have security against unbounded senders

Security against unbounded senders \Rightarrow security against unbounded *P* $\mathsf{OT}\xspace$ needs to have security against unbounded senders

Security against unbounded senders \Rightarrow security against unbounded *P*

Current known instantiations don't satisfy security against quantum poly-time receivers.

Goal: OT satisfying the following:

- Security against unbounded senders.
- Post-quantum security against receivers.

Goal: OT satisfying the following:

- Security against unbounded senders.
- Post-quantum security against receivers.

Start with OT satisfying:

- Security against unbounded receivers.
- Post-quantum security against senders.

Goal: OT satisfying the following:

- Security against unbounded senders.
- Post-quantum security against receivers.

Start with OT satisfying:

- Security against unbounded receivers.
- Post-quantum security against senders.

Construction from quantum hardness of LWE: [Brakerski-Döttling'18]

Start with OT satisfying:

- Security against unbounded receivers.
- Post-quantum security against senders.

Steps:

• OT reversal [WW'06,KKS'18,GJJM'20]

Start with OT satisfying:

- Security against unbounded receivers.
- Post-quantum security against senders.

Steps:

- OT reversal [WW'06,KKS'18,GJJM'20]
- Use a post-quantum statistical ZK: to prove correctness of OT.

Start with OT satisfying:

- Security against unbounded receivers.
- Post-quantum security against senders.

Steps:

- OT reversal [WW'06,KKS'18,GJJM'20]
- Use a post-quantum statistical ZK: to prove correctness of OT.

This protocol can be extended (painfully) to the setting of bounded concurrent quantum ZK.

New construction of PQ PoK

Improves upon [Unruh'12]'s PQ PoK.

New construction of PQ PoK

Improves upon [Unruh'12]'s PQ PoK.

Thanks!