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Proof of Knowledge

Any classical prover who convinces a verifier to accept x
must know a valid witness for x .



Preparing for Post-Quantum Era



Post-Quantum Proof of Knowledge (PQPoK) for NP
[Unruh’12]

Any quantum prover who convinces a verifier to accept x
must know a valid witness for x .



Difference between Classical Prover and Quantum Prover

Classical Prover: intermediate states are binary strings.

Quantum Prover: intermediate states are quantum states.

Rewinding a quantum prover is difficult!
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Informal Definition of PQPoK for L

∀ quantum prover P∗,∃ black-box extractor E ,

Correctness of Extraction:

Pr [P∗ convinces verifier to accept x ] = ε

⇒ Pr
[
(ρE ,w)← EP∗

(x)
∧

(x ,w) ∈ R(L)
]

= ε′

P∗ can be computationally unbounded.
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Pr [P∗ convinces verifier to accept x ] = ε

⇒ Pr
[
(ρE ,w)← EP∗

(x)
∧
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]
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Ideally: |ε′ − ε| = negl



Informal Definition of PQPoK for L

Another useful property:

Indistinguishability of Extraction:

TD(ρV , ρE) = δ

(TD = Trace distance)

ρV : output state of P∗ after interacting with V .
ρE : output of EP

∗
.

Ideally: δ = negl
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Application: Proof of Quantum Knowledge for QMA
[Coladangelo-Vidick-Zhang’20]

Prover(x , |Ψ〉) Verifier(x)

X aZ b|Ψ〉

Post-Quantum PoK of (a, b)

Extractor can extract (a, b) and then recover |Ψ〉.

We use the fact here that (a, b) is classical.
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First work on Post-Quantum PoK: [Unruh Eurocrypt’12]

Followups rely upon Unruh’s technique.



Drawback with Unruh

Unruh’s PQPoK does not satisfy
indistinguishability of extraction property.

Prover’s state after extraction
6≈

Prover’s state after verifier’s interaction.
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Q: is it necessary for the extractor to disturb the prover’s state in
order to learn the witness?

At first glance, could seem inherent:

Example: Prover could start with superposition of all the witnesses.
If extractor learns w then prover’s state should have collapsed to w .
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Our Work

Theorem
Assuming LWE is hard against quantum polynomial-time
algorithms,

There exists PQPoK for NP.



Techniques



Main Idea: Extraction via Oblivious Transfer

Warmup: extraction of first bit of witness.
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Extraction of first bit of witness

Prover and Verifier run OT.
Prover: role of sender
Verifier: role of receiver.

Prover embeds w1 (1st bit of witness) in one of the two
locations at random.

Verifier randomly guesses the location.

If the guessed location is correct, verifier gets w1, o/w gets ⊥.
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First Attempt

Prover(x ,w) Verifier(x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OT phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b
$←− {0, 1}

if b = 0, (m0,m1) = (w1,⊥)

if b = 1, (m0,m1) = (⊥,w1) b′
$←− {0, 1}

Sender’s input: (m0,m1) OT Receiver’s input : b′
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Prove (x ,w) ∈ L ZK

and behaved honestly in OT



Requirement:
Post-Quantum ZK with soundness against

unbounded quantum provers.



Extraction Process

Rewinding strategy:

Run the prover P in superposition.

If recovered message is a bit, store 0 in register X. Otherwise
store 1.

Measure X.

If the outcome is 0 then declare SUCCESS, otherwise TBD.
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TBD step: Can we perform Watrous rewinding?

Watrous rewinding only works
IF the measurement outcome doesn’t disturb the prover’s state.



TBD step: Can we perform Watrous rewinding?

Watrous rewinding only works
IF the measurement outcome doesn’t disturb the prover’s state.



Input auxiliary state of P∗ is |Ψ〉 = 1√
2
|Ψ0〉|0〉A + 1√

2
|Ψ1〉|1〉A.

If the value in register A is 0 then use (⊥,⊥) in OT.
If the value in register A is 1 then use (w1,w1) in OT.

- After rewinding, prover’s state is ≈ |Ψ1〉〈Ψ1|.
- In the real world, prover’s state is ≈ 1

2 |Ψ0〉〈Ψ0|+ 1
2 |Ψ1〉〈Ψ1|.

TD
(
|Ψ1〉〈Ψ1|, 1

2 |Ψ0〉〈Ψ0|+ 1
2 |Ψ1〉〈Ψ1|

)
is not small.
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Extraction Process

Rewinding strategy:

Run the prover P in superposition.

If recovered message is a bit, store 0 in register X. Otherwise
store 1.

Measure X.

If the outcome is 0 then declare SUCCESS, otherwise TBD.

FIX: modify the scheme to ensure that the measurement outcome
does not affect the state.
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Extraction Process

Rewinding strategy:

Run the prover P in superposition.

If b = b′, store 0 in the register X. Otherwise store 1.

Measure X.

If the outcome is 0 then declare SUCCESS, otherwise TBD.

Pr[b = b′] ≈ 1
2 from OT security.

Since distribution of measurement outcomes is independent of aux
state
=⇒

Measurement does not disturb the state.
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Extractor rewinds ONLY IF the guessed location is different from b.



Extraction Process

Rewinding strategy:

Run the prover P in superposition.

If b = b′, store 0 in the register X. Otherwise store 1.

Measure X.

If the outcome is 0 then declare SUCCESS, otherwise perform
Watrous Rewinding.



Why does checking b = b′ suffice?

Case 1. Prover does not cheat:
Extractor extracts the first bit of the witness.

Case 2. Prover cheats:
Extractor might have extracted garbage...
...but the prover will get caught in the ZK phase.
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Protocol for extraction of 1st bit of witness

Prover(x ,w) Verifier(x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OT phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b
$←− {0, 1}

if b = 0, (m0,m1) = (w1, 0)

if b = 1, (m0,m1) = (0,w1) b′
$←− {0, 1}

Sender’s input: (m0,m1) OT Receiver’s input : b′

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reveal Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reveal b

. . . . . . . . . . . . . . . . . . . . . . . . . . Zero-Knowledge Phase . . . . . . . . . . . . . . . . . . . . . . . . . .

· · ·
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ISSUE: Verifier can also recover the first bit of the witness
with probability 1
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Prover invokes ` instantiations of OT.

It embeds shi into the i th instantiation of OT.
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Prover(x ,w = w1 · · ·w`) Verifier(x)

. . . . . . . . . Amplified OT for w1 . . . . . . . . .

∀i , shi
$←− {0, 1} : ⊕`

i=1shi = w1
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∀i < `, shi
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b1
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Sender:((1− b1) · sh1, b1 · sh1) OT Receiver : b′1

Reveal b1
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Repeat this process for all the bits of the witness!
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Security against unbounded senders
⇒

security against unbounded P

Current known instantiations don’t satisfy security against
quantum poly-time receivers.
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Construction of Post-Quantum OT

Goal: OT satisfying the following:
Security against unbounded senders.
Post-quantum security against receivers.

Start with OT satisfying:
Security against unbounded receivers.
Post-quantum security against senders.

Construction from quantum hardness of LWE: [Brakerski-Döttling’18]
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Start with OT satisfying:
Security against unbounded receivers.
Post-quantum security against senders.

Steps:
OT reversal [WW’06,KKS’18,GJJM’20]

Use a post-quantum statistical ZK: to prove correctness of OT.

This protocol can be extended (painfully)
to the setting of bounded concurrent quantum ZK.



Start with OT satisfying:
Security against unbounded receivers.
Post-quantum security against senders.

Steps:
OT reversal [WW’06,KKS’18,GJJM’20]

Use a post-quantum statistical ZK: to prove correctness of OT.

This protocol can be extended (painfully)
to the setting of bounded concurrent quantum ZK.



Start with OT satisfying:
Security against unbounded receivers.
Post-quantum security against senders.

Steps:
OT reversal [WW’06,KKS’18,GJJM’20]

Use a post-quantum statistical ZK: to prove correctness of OT.

This protocol can be extended (painfully)
to the setting of bounded concurrent quantum ZK.



Summary

New construction of PQ PoK

Improves upon [Unruh’12]’s PQ PoK.

Thanks!



Summary

New construction of PQ PoK

Improves upon [Unruh’12]’s PQ PoK.

Thanks!


