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Abstract

 We soundly instantiate the Fiat-Shamir heuristic for a broad class

of protocols

[ E.g. parallel repetitions of all “commit-and-open” protocols

* Leverage a new connection to list-recoverable codes.

[ New kind of derandomized parallel repetition



Zero Knowledge for NP [GMW86]
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* Improve soundness error (to negligible) via sequential repetition, preserving ZK



How about Parallel Repetition?
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The Fiat-Shamir Transform
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(Each B; uniformly random)

Heuristically (and in practice), soundness is preserved.



Is Fiat-Shamir secure?
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Public input: z € {0,1}" (statement to be proved is “z € L")
Prover’s auxiliary input: w (a witness that z € L)
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Steps P,V1.z: generation protocol

[Bar01, GKO3, BBHMR19]: Not necessapily. o v s v s | i

hash fun#ion h <—y H, and sends h to prover.

Step P1.2 (Commitment to hash of“junk”): Prover computes z = Com(h(0™))

z <—r Com(h(0™)) and sends z to verifier. (Short message.)

Step V1.3 (Send long random string): The verifier selects a 7 <= {0, 1}n4

Some interactive arguments cannot be compiled in the standard model.
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Is Fiat-Shamir secure?

Our Goal: Establish a stronger theoretical basis for this transformation

[KRR16, CCRR18, HL18, CCHLRRW19, PS19, LVW19, GJIM19, BFJKS19,
LNPT19, LV20a, BKM20, JKKZ20, CLMQ20, LNPY20, LV20b, HLR21, ... ]



Our Results

1) Under the LWE assumption, Fiat-Shamir can be instantiated for (the parallel repetition of)

any commit-and-open protocol (e.g. GMW 3-coloring)

P(x,v Y
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s
e Every such protocol has a NIZK variant! (e.g. non-interactive MPC-in-the-head)

* Every such protocol is not ZK [DNRS99]

2) (Informal) FS for any protocol with “efficiently recognizable bad challenges.” Prior work

needed “efficiently enumerable bad challenges,” which is much more restrictive.



Main Takeaways

1) Much more widely applicable FS instantiation.

2) Resolve 35 year old intro crypto problem.

3) Cool new connection to coding theory/derandomization!



Correlation Intractability
[CGHO4]

A hash family H is correlation intractable for a (sparse) relation R if:

VPPT A,

Pr. [(x,h(x)) € R | = negl

x<—A(h)

Theorem [CCHLRRW19, PS19]: under standard assumptions, there exists a
hash family H that is Cl for all functions computable in time T.

- h € H can be evaluated in time T - poly(A)




The Bad-Challenge Function Paradigm
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Let f(x, @) = B be the bad-challenge function for II
If H is Cl for f, then Ilg¢ is sound! If f is efficiently computable, 3 such H'!



What if there are many bad challenges?
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Suppose that for all x € L and all «, 3 at most B bad choices of

Let f;(x, @) = B; be the ith bad-challenge function for II

If H is Cl for a random f;, then Ilz¢ is sound! Security loss: %



The Problem

Can we handle protocols that have many bad challenges?

Can we construct hash functions that are Cl for relations that are
not functions?



The Solution

Can we handle protocols that have many bad challenges?

Can we construct hash functions that are Cl for relations that are
not functions?

Yes!

(when the relations have nice structure)



Product Relations

R = {(x, (Y1' ’yt)} C {O'l}nx({o’l}m)t

Definition: R is a product relation if for all inputs x,

Rx — S]_X Szx eee X St

for some sets S, ..., Sy < {0,1}™

Product relations may have many bad points, but they have
combinatorial structure.



Product Relations

Definition: R is a product relation if for all inputs x,
Rx — Slx Szx eee X St

for some sets Sy, ..., S; < {0,1}"

Main Theorem: Under LWE, there exist Cl hash functions for product relations™

*The “repetition parameter” t needs to be large enough, depending on the density of the S;
*We need membership in S; to be efficiently decidable



Cl for Product Relations

Main Theorem: Under LWE, there exist Cl hash functions for product relations™

Idea: Hash, then Encode R,:
\ z, € {0,1}™ € 5,?
Encode zi € (0137 €3
z; € {0,1}™" € S;?




\ z, € {0,1)™ € S,?
z; €{0,1}™ € S;?

Encode

Zt (S {0’1}1‘)’1 (S St?

 Reduce the number of bad points

* For every x, there may be many bad z, but hopefully few bad y (and
so few bad z in the image of the hash function.

* Use the [PS19] hash function for h;,



Codes to the Rescue

Zl € [CI] € Sl?
/ 7: € € S;?
Encode i € lal l °
\ ¢ °
m Zs € [q] € St7 °

z = Enc(m)
Definition:

 Enc describes a list-recoverable code if there are only polynomially many
codewords in each product set 5; XS5, X ---XS;.

* The code is “algorithmic” if given S4, S,, ..., S¢, the corresponding messages
can be efficiently found.



List-Recoverable Codes
Encode: {0,1}" - [q]* :

Alternatively: derandomized parallel repetition [BGG90] preserving °
polynomial number of (efficiently computable) bad challenges

alphabet size challenge space size for base
protocol
# of bad challenges for base
protocol
“output list” size # of bad challenge codewords

(t,%,q,L) list-recoverable code



Theorem: Under the LWE assumption, there exist Cl hash functions for product

relations (-> FS for commit-and-open protocols).

Proof Sketch:

Zi € {0,1}m

h;, is a [PS19] hash function

z; € {0,1}™

Encodeisa (1g,q — 1,q)
] ety list-recoverable code (key lemma)
hip, I Encode|
, z
X

Key Lemma: Concatenation of a carefully chosen Parvaresh-Vardy code [PVO05]
with a poly-size random code has the desired properties.



Extension to Multi-Round Protocols

Theorem: Under the LWE* assumption, Fiat-Shamir can be instantiated

for any (sufficiently parallel repeated) protocol with:

 Round-by-round soundness [CCHLRRW19], and

e efficiently® recognizable bad challenges”

Corollary: FS for parallel repeated Sumcheck or GKR over small

fields (polynomial or polylogarithmic). [JKKZ20] use exponentially

large fields (and don’t need parallel repetition).




Open Problems

* FS for protocols without efficiently verifiable bad challenges

* Graph Isomorphism

 Commit-and-Open protocols that use Naor/Blum commitments
e Better results for multi-round protocols

* Avoid subexponential assumptions (as in [LV20, JKKZ20, HLR21])

* Adaptive soundness without leveraging

* Fiat-Shamir for arguments? [ClJJ21a, C}J21b, LVZ21]

* Ingredient: PCPs with polynomial amount of bad randomness (follows from our codes)




Thank youl!

\ z, € {0,1}™

z; € {0,1}™
Encode 1 € 10,13

z; € {0,1}™




