Fiat-Shamir via List-Recoverable Codes

Alex Lombardi
MIT

Joint work with Justin Holmgren (NTT Research) and Ron Rothblum (Technion)
Abstract

• We soundly instantiate the Fiat-Shamir heuristic for a broad class of protocols
 ▪ E.g. parallel repetitions of all “commit-and-open” protocols

• Leverage a new connection to list-recoverable codes.
 ▪ New kind of derandomized parallel repetition
Zero Knowledge for NP [GMW86]

\[
P(G) \quad \pi \in_R S_z \quad \alpha = \text{Commit}(\pi \circ \chi) \quad \beta \quad \gamma = \text{Open}(\pi(\chi(v)), \pi(\chi(w)))
\]

- **Soundness Error** \(1 - \frac{1}{|E|}\)
- Improve soundness error (to negligible) via **sequential repetition**, preserving ZK
How about Parallel Repetition?

- **Soundness** is amplified!
- Open problem: is this ZK?

This Work: No (for a natural Com in the CRS model), assuming LWE
The Fiat-Shamir Transform \([FS86]\)

Public-Coin Interactive Protocol

\[P \]

\[\alpha_1 \]

\[\beta_1 \]

\[\ldots \]

\[\alpha_{r-1} \]

\[\beta_{r-1} \]

\[\alpha_r \]

\[\text{(Each } \beta_i \text{ uniformly random)} \]

\[\rightarrow \]

Non-Interactive Argument

\[P_{FS} \]

\[\alpha_1, \ldots, \alpha_r \]

\[\beta_1 = h(x, \alpha_1) \]

\[\beta_2 = h(x, \alpha_1, \alpha_2) \]

\[\ldots \]

\[\beta_i = h(x, \alpha_1, \ldots, \alpha_i) \]

Heuristically (and in practice), soundness is preserved.
Is Fiat-Shamir secure?

[BR93, PS96, Mic00, BCS16]: Yes, in the random oracle model.

[Bar01, GK03, BBHMR19]: Not necessarily.

Some interactive arguments cannot be compiled in the standard model.
Is Fiat-Shamir secure?

Our Goal: Establish a stronger theoretical basis for this transformation

[KRR16, CCRR18, HL18, CCHLRRW19, PS19, LVW19, GJJM19, BFJKS19, LNPT19, LV20a, BKM20, JKKZ20, CLMQ20, LNPY20, LV20b, HLR21, …]
Our Results

1) Under the **LWE** assumption, Fiat-Shamir can be instantiated for (the parallel repetition of) any **commit-and-open** protocol (e.g. GMW 3-coloring)

\[P(x,v) \quad \text{\(\rightarrow \)} \quad V(x) \]

\[\alpha = \text{Commit}(y \in \{0,1\}^N) \]

\[S \quad \left(\gamma = \text{Open}(y[S]) \right) \quad S \subset N \]

- Every such protocol has a **NIZK variant**! (e.g. non-interactive MPC-in-the-head)
- Every such protocol is **not ZK** [DNRS99]

2) (Informal) FS for any protocol with \``efficiently recognizable bad challenges.`` Prior work needed \``efficiently enumerable bad challenges,`` which is much more restrictive.
Main Takeaways

1) Much more widely applicable FS instantiation.

2) Resolve 35 year old intro crypto problem.

3) Cool new connection to coding theory/derandomization!
Correlation Intractability
[CGH04]

A hash family H is correlation intractable for a (sparse) relation R if:

$$\forall \text{PPT } A,$$

$$\Pr_{h \leftarrow H, x \leftarrow A(h)} [(x, h(x)) \in R] = \text{negl}$$

Theorem [CCHLRRW19, PS19]: under standard assumptions, there exists a hash family H that is CI for all functions computable in time T.

- $h \in H$ can be evaluated in time $T \cdot \text{poly}(\lambda)$
The Bad-Challenge Function Paradigm

Suppose that for all $x \notin L$ and all α, \exists at most one β s.t. V accepts $(x, \alpha, \beta, \gamma)$

Let $f(x, \alpha) = \beta^*$ be the bad-challenge function for Π

If \mathcal{H} is CI for f, then Π_{FS} is sound!

If f is efficiently computable, \exists such \mathcal{H}!
What if there are many bad challenges?

Suppose that for all $x \notin L$ and all α, there exist at most B bad choices of β.

Let $f_i(x, \alpha) = \beta_i^*$ be the ith bad-challenge function for Π.

If H is CI for a random f_i, then Π_{FS} is sound! Security loss: $\frac{1}{B}$
The Problem

Can we handle protocols that have many bad challenges?

Can we construct hash functions that are CI for relations that are not functions?
The Solution

Can we handle protocols that have *many bad challenges*?

Can we construct hash functions that are CI for *relations* that are not functions?

Yes!

(when the relations have nice structure)
Product Relations

\[R = \{(x, (y_1, \ldots, y_t)) \in \{0,1\}^n \times (\{0,1\}^m)^t \}\]

Definition: \(R \) is a **product relation** if for all inputs \(x \),

\[R_x = S_1 \times S_2 \times \cdots \times S_t \]

for some sets \(S_1, \ldots, S_t \subseteq \{0,1\}^m \)

Product relations may have **many bad points**, but they have **combinatorial structure**.
Product Relations

Definition: R is a product relation if for all inputs x,

$$R_x = S_1 \times S_2 \times \cdots \times S_t$$

for some sets $S_1, \ldots, S_t \subset \{0,1\}^m$

Main Theorem: Under LWE, there exist CI hash functions for product relations*

*The “repetition parameter” t needs to be large enough, depending on the density of the S_i
*We need membership in S_i to be efficiently decidable

CI for Product Relations

Main Theorem: Under LWE, there exist CI hash functions for product relations*

Idea: Hash, then Encode

\[x \xrightarrow{h_{in}} y \xrightarrow{Encode} z_1, z_i, z_t \in \{0,1\}^m \]

\[R_x: \quad \in S_1? \quad \in S_i? \quad \in S_t? \]
- Reduce the **number of bad points**
 - For every x, there may be **many bad z**, but hopefully **few bad y** (and so few bad z in the image of the hash function).
- Use the [PS19] hash function for h_{in}
Codes to the Rescue

Definition:

- \text{Enc} describes a \textbf{list-recoverable code} if there are only \textit{polynomially} many codewords in each product set $S_1 \times S_2 \times \cdots \times S_t$.
- The code is “\textbf{algorithmic}” if given S_1, S_2, \ldots, S_t, the corresponding messages can be efficiently found.
List-Recoverable Codes

Encode: $\{0,1\}^n \rightarrow [q]^t$

Alternatively: derandomized parallel repetition [BGG90] preserving polynomial number of (efficiently computable) bad challenges

<table>
<thead>
<tr>
<th>block-length</th>
<th>number of repetitions (dimension)</th>
</tr>
</thead>
<tbody>
<tr>
<td>alphabet size</td>
<td>challenge space size for base protocol</td>
</tr>
<tr>
<td></td>
<td># of bad challenges for base protocol</td>
</tr>
<tr>
<td>"output list" size</td>
<td># of bad challenge codewords</td>
</tr>
</tbody>
</table>

(t, ℓ, q, L) list-recoverable code
Theorem: Under the **LWE** assumption, there exist CI hash functions for product relations (→ FS for commit-and-open protocols).

Proof Sketch:

Key Lemma: Concatenation of a carefully chosen Parvaresh-Vardy code [PV05] with a poly-size random code has the desired properties.
Extension to Multi-Round Protocols

Theorem: Under the LWE* assumption, Fiat-Shamir can be instantiated for any (sufficiently parallel repeated) protocol with:

- Round-by-round soundness [CCHLRRW19], and
- “efficiently* recognizable bad challenges”

Corollary: FS for parallel repeated Sumcheck or GKR over small fields (polynomial or polylogarithmic). [JKKZ20] use exponentially large fields (and don’t need parallel repetition).
Open Problems

• FS for protocols **without efficiently verifiable bad challenges**
 - Graph Isomorphism
 - Commit-and-Open protocols that use Naor/Blum commitments
• Better results for **multi-round protocols**
 - Avoid subexponential assumptions (as in [LV20, JKKZ20, HLR21])
 - Adaptive soundness without leveraging

• Fiat-Shamir for **arguments**? [CJJ21a, **CJJ21b**, LVZ21]
 - **Ingredient**: PCPs with **polynomial amount of bad randomness** (follows from our codes)
Thank you!

\[x \xrightarrow{h_{in}} y = sd \]