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Failed attempts to solve lattice problems

▪ Learning with Errors (LWE) arose as a failed attempt to design a 
quantum algorithm for solving lattice problems

▪ The quantum algorithm had a gap
▪ That “gap” is LWE
▪ So instead of an algorithm, we got a hardness reduction 

▪ In this work, we (slightly) modify the reduction to obtain a different 
“gap”, which we call Continuous LWE (CLWE). 



Motivation: Gaussian pancakes

Is this the standard Gaussian distribution? 

Gaussian pancakes Standard Gaussian



Motivation: Gaussian pancakes

But what if you hide this discrete direction in higher dimensions?

Gaussian pancakes! Standard Gaussian



Gaussian pancakes

●  



SQ-hardness of distinguishing Gaussian pancakes [DiakonikolasKaneStewart17]

Thm [DKS17]: Distinguishing Gaussian pancakes from the standard Gaussian 
is hard for statistical query (SQ) algorithms.

Corollary [DKS17]. Improperly learning (=density estimation) mixtures of 
Gaussians is hard for SQ algorithms, even when the components are nearly 
non-overlapping and even when parameter recovery is info-theoretically 
possible with poly(𝑛) samples.

Open question [BubeckLeePriceRazenshteyn19]:

Is detecting the pancake structure computationally hard for any algorithm?

We resolve this here in the affirmative.



Extension to multiple discrete directions: Gaussian baguettes
●  



Corollary: Learning a classifier can be hard, even when robust classifiers exist 
and are learnable info-theoretically (and even when non-robust classifiers can 
be learned efficiently) 
([BLPR19] show SQ hardness; we show computational).

Application: adversarial examples and robust classifiers
[SzegedyZarembaSutskeverBrunaErhanGoodfellowFergus13,…]



Prove that distinguishing the following two distributions (in high dimension) is 
computationally hard.

Our goal

vs

Gaussian pancakes Standard Gaussian



Gaussian pancakes
𝛾 : ~number of pancakes (or inverse 
of pancake spacing)

𝛽 : pancake (relative) thickness

1/𝛾

𝛽/𝛾



Our result: hardness of Gaussian pancakes

●   1/𝛾

𝛽/𝛾



Implications of our hardness result

Assuming some worst-case lattice problems cannot be solved by 
polynomial-time quantum algorithms ...

- Distinguishing Gaussian pancakes/baguettes from the standard Gaussian is hard 
for any polynomial-time algorithm.

- Improperly learning mixtures of Gaussians can be computationally hard even when 
the mixture components are nearly non-overlapping.

Remark: Hardness of improper learning results are generally rare (because there is no 
restriction on what hypothesis the learning algorithm can output). One notable example 
is [KlivansSherstov06], also based on lattice problems. 



Hardness of (h)CLWE: proof overview



Hardness of (h)CLWE: proof overview
We actually prove a stronger hardness result, for a relaxed problem: (inhomogeneous) 
CLWE.



Def: (𝛽,𝛾)-CLWE: Decide whether given samples of the 
form (𝐲,𝑧) with 𝐲 ~ 𝒩(0,𝐼𝑛) have either:

(1) periodic “colors” 𝑧 along some secret direction 𝐰 ∈ 
ℝ𝑛, i.e., 𝑧 = (𝛾⟨𝐲,𝐰⟩ + 𝑒) mod 1 where 𝑒 ~ 𝒩(0,𝛽), or
(2) uniformly random “colors” 𝑧 ∈ [0,1).

hCLWE samples are essentially CLWE samples 
conditioned on 𝑧 ≈ 0. It therefore suffices to prove 
hardness of CLWE.

Continuous LWE (CLWE)

CLWE

hCLWE



Hardness proof 
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Learning with Errors (LWE)

Def: (𝛼,𝑞)-LWE: decide whether given samples of the form (𝐚,𝑏) with 𝐚 ~ (ℤ/𝑞ℤ)𝑛 
have either:

(1) periodic 𝑏 along some secret direction 𝐬 ∈ (ℤ/𝑞ℤ)𝑛, i.e., 𝑏 = (⟨𝐚,𝐬⟩/𝑞 + 𝑒) 
mod 1 where 𝑒 ~ 𝒩(0,𝛼), or
(2) uniformly random 𝑏 ∈ [0,1).

Remark: By discretizing 𝑏’ = ⌊𝑞⋅𝑏⌋ ∈ ℤ/𝑞ℤ, we obtain the more common 
definition of LWE. Specifically, the search version (to find secret 𝐬 given 
periodic 𝑏) can be viewed as solving a system of linear equations with errors 
over ℤ/𝑞ℤ, of the form ⟨𝐚,𝐬⟩ ≈ 𝑏’.



Analogies between CLWE and LWE
(𝛽,𝛾)-CLWE (𝛼,𝑞)-LWE

secret 𝐰 ∈ ℝ𝑛, ǁ𝐰ǁ = 1 secret 𝐬 ∈ (ℤ/𝑞ℤ)𝑛

samples (𝐲,𝑧) samples (𝐚,𝑏)

𝐲 ~ 𝒩(0,𝐼𝑛) 𝐚 ~ (ℤ/𝑞ℤ)𝑛

𝑧 = (𝛾⟨𝐲,𝐰⟩ + 𝑒) mod 1
where 𝑒 ~ 𝒩(0,𝛽)

𝑏 = (⟨𝐚,𝐬⟩/𝑞 + 𝑒) mod 1
where 𝑒 ~ 𝒩(0,𝛼)

reduce from O(𝑛/𝛽)-GapSVP
for 𝛾 ≥ O(𝑛1/2)

reduce from O(𝑛/𝛼)-GapSVP
for 𝛼⋅𝑞 ≥ O(𝑛1/2)

noise rate 𝛽 noise rate 𝛼

inverse period 𝛾 absolute noise 𝛼⋅𝑞



Analogies between CLWE and LWE (cont.)

(𝛽,𝛾)-CLWE (𝛼,𝑞)-LWE

noiseless (𝛽=0) is easy to solve 
by LLL

noiseless (𝛼=0) is easy to solve 
by Gaussian elimination



Open Question 1

● Better algorithms for CLWE?



Open Question 2

●  



Open Question 3

● Cryptographic applications? 



Open Question 4

● Does hardness still hold for other moment-matching 
distributions in the hidden direction?

○ [BLPR19] used a slightly different distribution
● Alternatively, are there better algorithms for their 

distribution?


