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OUTLINE 

•  Linear system solvers 
•  Regression and Image Denoising. 
•  Simple formulation and connection with solving 

linear systems. 
•  Overview of SDD solvers. 
•  A better L1 formulation of denoising. 
•  Maximum flow using solvers 
•  New for 2013-14 



SPECTRAL GRAPH THEORY 
LAPLACIAN PARADIGM  

Use graph algorithms to solve linear 
algebra problems. 
 
Use linear algebra to  solve graph 
problems. 
 
Use both to solve optimization problems 



OLDEST COMPUTATIONAL PROBLEM  



DIRECT LINEAR SYSTEM SOLVES 

•  [1st century CE] Gaussian 
Elimination: O(n3) 
•  [Strassen `69] O(n2.8) 
•  [Coppersmith-Winograd 

`90] O(n2.3755) 
•  [Stothers `10] O(n2.3737) 
•  [Vassilevska Williams`11]      

O(n2.3727) 
•  [George `73], [Lipton-Rose-

Tarjan `80], [Alon-Yuster `10] 
Faster direct methods for 
special non-zero structures. 



REGRESSION 



OVER CONSTRAINED  SYSTEMS 

Over Constrained System:  A x = b. 
Solve system AT A x = ATb 
• Matrix ATA is Symmetric Positive 

Semi-Definite (SPSD).     
• Open Question:  

  Find sub-quadratic time solvers   
      for  SPD systems?  

  We will need problems with an    
underlying graph. 

 
 

 



APPROXIMATION ALGORITHMS 

•  Whole conferences NP-Approximation 
•  Same ideas and goals can be  applied problems in 

Polytime. 
•  Our goal is find  good approximation but much 

faster than known exact solutions. 
•  Maybe even faster exact solutions! 
 



CLASSIC REGRESSION PROBLEM 

•  Image Denoising 
• Critical step in image 

segmentation and detection 
•  Good denoising makes the 

segmentation almost obvious. 



CAMOUFLAGE DETECTION  

Given image + noise, recover image. 



CAMOUFLAGE DETECTION  

Hui-­‐Han	
  Chin	
  



IMAGE DENOISING: THE MODEL 

•  Assume there exist a 
‘original’ noiseless image. 
•  Noise generated from 

some distribution. 
•  Input:  original + noise. 
•  Goal:  approx the original 

image. 

Denoised Image: 

Noise: 

Input: 

s-x 

s 

x



CONDITIONS ON X 

•  Noise is small: denoised 
image should still be close 
to image + noise. 
•  Real images are ‘smooth’ 

except at boundaries. 

Function of (x-s) 

Function computed 
on differences of 
neighboring pixels of x 

Fidelity(x, s) 

Smoothness(x) 



ENERGY FUNCTION 

Noisy image: s 

Candidate solution: x 

Fidelity(x, s) + Smoothness(x) 

(xi-si)2 summed 
over all pixels i. 

(xi-xj)2 summed over all 
neighbor pixels i, j. 

This is a toy example 
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MATRICES ARISING FROM IMAGE 
PROBLEM HAVE NICE STRUCTURES 

A is Symmetric Diagonally 
Dominant (SDD) 
• Symmetric. 
• Diagonal entry ≥ sum of 
absolute values of all off 
diagonals. 



OPTIMIZATION PROBLEMS IN CS 

Many algorithm problems in CS are optimization 
problems with underlying graph. 
•  Maximum flow in a graph. 
•  Shortest path in a graph. 
•  Maximum Matching. 
•  Scheduling  
•  Minimum cut. 
Some of these do not seem to have an underlying 
graph.  
Longest common subsequence. 

 

 



LINEAR PROGRAMMING 

Many	
  	
  op=miza=on	
  problems	
  can	
  be	
  wriBen	
  as	
  an	
  LP	
  
EG:	
  	
  Single	
  source	
  shortest	
  path.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Is	
  this	
  useful?	
  
	
  



LAPLACIAN PRIMER 

• Matrix view of flows 
•  The Boundary Map B: Flow è Residual Flow 
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THE BOUNDARY MAP B 

Let G = (V,E) be n vertex m oriented edges graph. 
•  Def:  B is a Vertex  by Edge matrix 

    where  Bij = +1  if vi is head of ej 

                          -1  if vi is tail of ej 

                           0  otherwise 
 
•   Note: If f is a flow then  Bf is residual vertex flow. 

 
 
 
 
  



BOUNDARY MATRIX 
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BT AND POTENTIAL DROPS 

• Let v be a n-vector of potentials 
• BTv = vector of potential drops. 
• R-1BTv = vector of potential drops. 
• R a diagonal matrix of resistive values 
• Ohms law:  Rule to go from potentials 

to flows. 
• Today we set resistors all to one. 
• Thus BTv = vector of flows. 

 



GRAPH LAPLACIAN 

• Def:  L := BBT ,  Laplacian of G. 
• Goal:  Solve Lv=b 
• Suppose v satisfies BBTv=b. 

    thus f := BTv  is a flow s.t.  Bf=b 
• What can we say about f? 



CIRCULATIONS AND POTENTIAL 
FLOWS 

• Def:  fc in Rm is a circulation if Bfc= 0 
• Def:  fp in Rm is a potential flow if fp=BTv 
• Claim :  fc is orthogonal to fp   

              then fc
Tfp = 0 

  
     Pf:   fc

Tfp  =  fc
T(BTv) = (Bfc)Tv = 0Tv = 0 

 



CIRCULATIONS AND POTENTIAL 
FLOWS 

• Note:  Dim(potential flows) = n-1 
    (G connected) 
• Claim :  Dim(circulations) = m –n+1 

    (The number of nontree edges.) 
   Pf:  Given a spanning tree each  
nontree edge induces  cyclic flow that is 
independent.   



POTENTIALS AND FLOWS 

•  Suppose BBTv=b then f=BTv is a flow s.t Bf=b 
• Claim: min fTf s.t.  Bf=b is a potential flow. 

  Pf: f = fp+fc  

• Bfp = Bfp + Bfc = B(fp+fc ) = b 
•  fTf = (fp+fc )T(fp+fc )  

     = fp
2 + 2fp

Tfc + fc
2   

        = fp
2 + fc

2    ≥ fp
2 



GRAPH LAPLACIAN SOLVERS 

• Def:  L := BBT,  Laplacian of G. 
• Two dual approaches to 

approximately solving Lv =b 
• 1) Find a potential that minimizes Lv-b 
• 2) find a minimum energy flow f s.t. 

Bf=b 
 



THE SPACE OF FLOWS 

poten=al	
  flows	
  

flows	
  of	
  mee=ng	
  demand	
  d	
  

f	
  circula=on	
  

poten=al	
  flow	
  

fp	
  

fc	
  



SOLVING LAPLACIANS 

poten=al	
  flows	
  

flows	
  of	
  demand	
  d	
  

Given	
  G	
  and	
  d,	
  
find	
  this	
  point	
  	
  



DUAL APPROACH: 
SOLVING A LINEAR SYSTEM 

poten=al	
  flows	
  

flows	
  of	
  demand	
  d	
  

Start	
  with	
  a	
  
poten=al	
  flow	
  Bv,	
  
update	
  v	
  to	
  get	
  
closer	
  to	
  sa=sfying	
  d	
  

vopt	
  =	
  LG-­‐1d	
  



DUAL APPROACH: 
SINGLE STEP (ST’04,KMP ‘10, ‘11) 

poten=al	
  flows	
  

flows	
  of	
  demand	
  d	
  

	
  Faster	
  Gradient	
  Descent	
  



PRIMAL APPROACH: 
SOLVING A FLOW PROBLEM 

poten=al	
  flows	
  

flows	
  of	
  demand	
  d	
  

Start	
  with	
  a	
  flow	
  
mee=ng	
  the	
  
demands,	
  project	
  
off	
  the	
  circula=on	
  



PRIMAL APPROACH: 
SINGLE STEP (KOSZ ‘13) 

poten=al	
  flows	
  

flows	
  of	
  demand	
  d	
  

Pick	
  a	
  single	
  cycle	
  
and	
  remove	
  the	
  
circula=on	
  along	
  it	
  



POTENTIAL BASED SOLVERS  
[SPIELMAN-TENG`04]  

[KOUTIS-M-PENG`10, `11] 
 

Input: n by n SDD matrix A with m non-zeros 
  vector b 

Output: Approximate solution Ax = b 
Runtime: O(m log n ) 

[Blelloch-Gupta-Koutis-M-Peng-Tangwongsan. `11]: 
Parallel solver, O(m1/3) depth and nearly-linear work 



ZENO’S DICHOTOMY PARADOX 

OPT: 0? 

2014: 1/2 

c 

2011: 1 

2010: 2 

2010: 6 

2009: 15 

2006: 32 

2004: 70 

O(mlogcn) 
Fundamental theorem of Laplacian solvers: 
improvements decrease c by factor between [2,3] 



FLOW BASED SOLVERS  
[KELNER-ORECCHIA-SIDFORD-ZHU `13]  

[LEE-SIDFORD `13] 
 

Input: n by n SDD matrix A with m 
non-zeros, demand b 
Output: Approximate minimum 
energy electrical flow 
Runtime: O(m log1.5 n ) 



POTENTIAL BASED SOLVER 
AND ENERGY MINIMIZATION 

•  Suppose that A is SPD:  
    Claim:  minimizing  ½ xT A x – xTb  

  gives solution to Ax = b. 
   Note:  Gradient =  Ax-b 
      
Thus solving these systems are quadratic   
minimization problems!   
 
 
 
 
 



ITERATIVE METHOD 
GRADIENT DESCENT 

• Goal:  approx solution to Ax = b  
•  Start with initial guess u0 = 0  
• Compute new guess 

 u(i+1) = u(i) + (b − Au(i)) 
  

This	
  maybe	
  slow	
  to	
  converge	
  or	
  
not	
  converge	
  at	
  all!	
  



STEEPEST DESCENT 



PRECONDITIONED ITERATIVE METHOD 

• Goal:  approx solution to B−1Ax = B−1b  
•  Start with initial guess u0 = 0  
• Compute new guess 

 u(i+1) = u(i) − B−1(b − Au(i)) 

Recursive	
  solve	
  Bz=y	
  where	
  
y=(b-­‐Au(i)).	
  



PRECONDITIONING WITH A GRAPH 

[Vaidya `91]: Since A is a graph, B 
should be as well. 
Apply graph theoretic techniques! 

And	
  use	
  Chebyshev	
  accelera=on	
  	
  	
  	
  	
  	
  



GRAPH SPARSIFIERS 

Sparse Equivalents of Dense Graphs 
that preserve some property 

• Spanners: distance, diameter. 
• [Benczur-Karger ‘96] Cut sparsifier: 

weight of all cuts. 
• Spectral sparsifiers: eigenstructure 



EXAMPLE: COMPLETE GRAPH 
O(n logn) sampling edges 

uniform suffice! 

Sriv	
  Sriv	
  



SPECTRAL SPARSIFICATION BY 
EFFECTIVE RESISTANCE 

Answer: [Spielman-Srivastava `08]:  
•  Set P(e) = R(u,v) effective resistance from u to v. 
•  For each sample set edge set weight to 1/P(e) 
•  Sample  O(n log n) times. 
 

Fact: ∑e R(e) = n-1 
 
 

spectral sparsifier with O(nlogn) 
edges for any graph 

	
  What	
  probability	
  P(e)	
  	
  should	
  we	
  sample	
  edge?	
  	
  



THE CHICKEN AND EGG PROBLEM 

How To Calculate Sample Probablity? 

[Spielman-Srivastava `08]: Use Solver 

[Spielman-Teng `04]: Need Sparsifier 

Workaround: upper bound using 
Low Stretch Spanning Trees 



CHOICE OF TREES MATTER 

n1/2-by-n1/2 unit weighted mesh 

stretch(e)= O(1) 

total stretch = O(n3/2) 

stretch(e)=O( n1/2) 

‘haircomb’ tree is both shortest path 
tree and max weight spanning tree 



AN O(N LOG N) STRETCH TREE 

Recursive ‘C’ 
Construction 

stretch(e) still O(n1/2) 

But only O(n1/2) 
such edges 

logn levels, 
total = O(nlogn) 

Able to obtain good trees for any graph 
by leveraging this type of tradeoffs 



LOW STRETCH SPANNING TREES 

[Alon-Karp-Peleg-West ‘91]: 
A low stretch spanning tree with 
Total stretch O(m1+ε) can be 
found in O(mlog n) time. 
 

[Elkin-Emek-Spielman-Teng ‘05]: 
A low stretch spanning tree with 
Total stretch O(mlog2n) can be 
found in O(mlog n + n log2 n) time. 
 

[Abraham-Bartal-Neiman ’08, 
Koutis-M-Peng `11,  
Abraham-Neiman `12]:  
A  spanning tree with 
total stretch O(m log n)  in 
O(m log n) time. 



SOLVER IN ACTION 

` 

Find a low stretch spanning tree Scale up the tree 

Sample off tree edges where 
P(e) = stretch of e. 



SOLVER IN ACTION 

` 

Eliminate degree 1 or 2 nodes 



SOLVER IN ACTION 

` 

Eliminate degree 1 or 2 nodes 



SOLVER IN ACTION 

` 

Eliminate degree 1 or 2 nodes 



SOLVER IN ACTION 

` 

Eliminate degree 1 or 2 nodes 



SOLVER IN ACTION 

Eliminate degree 1 or 2 nodes 

Recurse 



THEORETICAL APPLICATIONS OF SDD 
SOLVERS: MULTIPLE ITERATIONS 

[Tutte `62] Planar graph embeddings. 
[Boman-Hendrickson-Vavasis `04] Finite Element PDEs 
[Zhu-Ghahramani-Lafferty, Zhou-Huang-Scholkopf `03,05] 
learning on graphical models. 
[Kelner-Mądry `09] Generating random spanning trees in 
O(mn1/2) time by speeding up random walks. 



THEORETICAL APPLICATIONS OF SDD 
SOLVERS: MULTIPLE ITERATIONS 

[Daitsch-Spielman `08] Directed maximum 
flow, Min-cost-max-flow, lossy flow all can 
be solved via LP interior point where pivots 
are SDD systems in O(m3/2) time. 



BACK TO IMAGE DENOISING 
 

PROBLEM WITH QUADRATIC OBJECTIVE 

• Result too ‘smooth’, 
objects become blurred 
• Quadratic functions favor 

the removal of boundaries  



FUNCTION ACCENTUATING  
BOUNDARIES 

s: sharp boundary 

L1 smoothness term 

If a<b<c, |a-b|+|b-c| 
doesn’t depend on b 

Same smoothness term Better fidelity 



TOTAL VARIATION OBJECTIVE 

•  [Rudin-Osher-Fatemi, 92] Total Variation 
objective: L2

2 fidelity term, L1 smoothness. 

Fidelity(x, s) + Smoothness(x) 

(xi-si)2 summed 
over all pixels i. 

|xi-xj| summed over all 
neighbor pixels i, j. 



TOTAL VARIATION MINIMIZATION 

Effect: sharpen 
boundaries 

Overdoing makes 
image cartoon like 

Higher weight on smoothness term 



WHAT’S HARD ABOUT L1? 

Short answer: corners Absolute value function on n 
variables has 2n points of 
discontinuity, L2

2 has none.  



Minimum cut: remove fewest edges 
to separate s from t. 

MIN CUT PROBLEM AS L1 
MINIMIZATION 

Minimum cut: remove the fewest 
edges to separate vertices s and t 

Minimum s-t cut:  
minimize Σ|xi-xj| 

subject xs=0, xt=1 

s t 

0 1 0 

0 0 

1 

1 1 



MINCUT VIA. L2 MINIMIZATION 

[Christiano-Kelner-Mądry-Spielman-
Teng `11]: undirected max flow and 
mincut can be approximated using 
Õ(m1/3) SDD solves. 

•  Multiplicative weights update method 
•  Gradually update the linear systems 

being solved 

Total: Õ(m4/3)  



ISOTROPIC VERSION 

[Osher]: 2D images can be rotated, 
instead of |dx| + |dy|, smoothness 
term should be √(dx2 + dy2) 

smoothness should be the same. 

Rotate 
New pixel 
system 

dx 

dy 



ALTERNATE VIEW   

|dx| =√(dx2) 

Alternate interpretation of 
absolute value: |t|=√t2 

Each group can be 
viewed as an ‘edge’ in 
minimum cut problem 

This took one year 



TV USING L2 MINIMIZATION 

• [Chin-Madry-M-Peng `12]: Can use 
methods based on electrical flows to 
obtain (1+ ε) approximation in          
O(mk1/3ε-8/3) time. 
•  Interpolates between various 
versions involving L1 and L2 objectives. 



WHAT IS NEW FOR 2013 AND 2014! 

• Faster approximate Flow algorithms! 
• Faster solvers! 
• Faster exact flow algorithms! 
• Faster LSST algorithms 
• Parallel LSSTs and solvers 



GENERALIZED GRADIENT DECENT  

• [Lee-Rao-Srivastava`13]: gradient 
descent view of maxflow using 
electrical flows 
• Generalized  Decent for Classes 

of Lipschitz convex functions. 
• Nesterov optimization 

•  Soft max of L∞ 

•  Smoothed version of L1 



FASTER APPROXIMATE FLOW 
ALGORITHMS! 

 
Sherman 13:  Approximate maxflow and 
Mini-cut in Õ(m1+δpoly(k,ε-1)) time 
 
Uses: 
 
 Madry 10:  Fast Approximate Mini-Cut 
Algorithm 
 



FASTER APPROXIMATE FLOW 
ALGORITHMS! 

 

Kelner-Lee-Orecchi-Sidford’ 13:  
Approximate maxflow and  
multi-commodity flow in 
Õ(m1+δpoly(k,ε-1)) time 
 
Uses:  
 
Racke’ 08:  Approximate Oblivious routing 
ideas. 
 
 



EVEN  FASTER SOLVERS 

• Cohen-Kyng-Pachocki-Peng-Rao `13 
 SDD linear systems Faster solver in  
• O(mlog1/2n) time given a LSST. 

• The log appears in two places in KMP: 
1.  Matrix Chernoff Bounds 
2.  LSST tree construction 

 



LOW DIAMETER DECOMPOSITION 

Awerbuch 85: O(log n) diameter clusters with  
o(m) inter-cluster edges. 

 M,Peng,Xu 13:  O( c log n) diameter clusters with  
 O(m/c) expected inter-cluster edges: 

            O(m) work and  O(c log2  n) depth 
 
  Algorithm:  Do BFS from each noted using an  

              exponential delay start time. 



FASTER TREE GENERATION 

•  Koutis-M-Peng `11, Abraham-Neiman `12]:  
LSST with stretch O(m log n) in O(m log n) time. 
 
We do not know how to beat these bounds! 
 
We find a tree that is good enough! 
 
 



LSST RELAXATION 

Allow Steiner nodes.  
But still embeddable! 
 
Relax the definition of stretch. 

Recall STRT(e=(a,b)) = distT(a,b) 
New Def:  STRT

P(e=(a,b)) = |distT(a,b)|P  

for P < 1 
 
 



FASTER TREE ALGORITHM 
FOR LP- STRETCH 

Runtime Stretch 

AKPW O(m log log n) O(logO(1) n) 

Bartal/AN O(m log n) O(log n) 

Can we get the best of both worlds? 



NEARLY LINEAR TIME,  
POLYLOG DEPTH SOLVERS  

 

Input: SDD matrix M with m non-zeros, 
condition number κ 
Output:  Sparse product Z1…Zk ≈ε M-1 

Cost: O(logcm logcκ log(1/ε)) time 
  O( m logcm logcκ log(1/ε)) work 

Approximation ≈ε  in matrix sense 

[Peng-­‐Spielman	
  `13]	
  



FUTURE WORK 

• Practical/parallel implementations? 
•  The win over sequential is parallel! 

•   Near linear time exact max flow? 
•   log(1/ε) dependency in runtime? 

• Sub-quadratic SPD solver? 
 




