The Revolution in Graph Theoretic Optimization Problem

Gary L Miller

Simons Open Lecture Oct 6, 2014

JOINT WORK

Guy Blelloch, Hui Han Chin, Michael Cohen, Anupam Gupta, Jonathan Kelner, Yiannis Koutis, Alexsander Madry, Jakub Pachocki, Richard Peng, Kanat Tangwongsan, Shen Chen Xu

OUTLINE

- Linear system solvers
- Regression and Image Denoising.
- Simple formulation and connection with solving linear systems.
- Overview of SDD solvers.
- A better L_1 formulation of denoising.
- Maximum flow using solvers
- New for 2013-14

SPECTRAL GRAPH THEORY LAPLACIAN PARADIGM

Use graph algorithms to solve linear algebra problems.

Use linear algebra to solve graph problems.

Use both to solve optimization problems

OLDEST COMPUTATIONAL PROBLEM

DIRECT LINEAR SYSTEM SOLVES

- [1st century CE] Gaussian
 Elimination: O(n³)
- [Strassen `69] O(n^{2.8})
- [Coppersmith-Winograd `90] O(n^{2.3755})
- [Stothers `10] O(n^{2.3737})
- [Vassilevska Williams`11]
 O(n^{2.3727})
- [George `73], [Lipton-Rose-Tarjan `80], [Alon-Yuster `10]
 Faster direct methods for special non-zero structures.

REGRESSION

OVER CONSTRAINED SYSTEMS

Over Constrained System: A x = b. Solve system $A^T A x = A^T b$

- Matrix A^TA is Symmetric Positive Semi-Definite (SPSD).
- Open Question: Find sub-quadratic time solvers for SPD systems?

We will need problems with an underlying graph.

APPROXIMATION ALGORITHMS

- Whole conferences NP-Approximation
- Same ideas and goals can be applied problems in Polytime.
- Our goal is find good approximation but much faster than known exact solutions.
- Maybe even faster exact solutions!

CLASSIC REGRESSION PROBLEM

- Image Denoising
- Critical step in image segmentation and detection
- Good denoising makes the segmentation almost obvious.

CAMOUFLAGE DETECTION

Given image + noise, recover image.

CAMOUFLAGE DETECTION

Hui-Han Chin

IMAGE DENOISING: THE MODEL

- Assume there exist a 'original' noiseless image.
- Noise generated from some distribution.
- Input: original + noise.
- Goal: approx the original image.

CONDITIONS ON X

ENERGY FUNCTION

MATRICES ARISING FROM IMAGE PROBLEM HAVE NICE STRUCTURES

A is Symmetric Diagonally Dominant (SDD) •Symmetric. •Diagonal entry ≥ sum of absolute values of all off diagonals.

OPTIMIZATION PROBLEMS IN CS

Many algorithm problems in CS are optimization problems with underlying graph.

- Maximum flow in a graph.
- Shortest path in a graph.
- Maximum Matching.
- Scheduling
- Minimum cut.

Some of these do not seem to have an underlying graph.

Longest common subsequence.

LINEAR PROGRAMMING

Many optimization problems can be written as an LP EG: Single source shortest path. Is this useful?

LAPLACIAN PRIMER

- Matrix view of flows
- The Boundary Map B: Flow → Residual Flow

THE BOUNDARY MAP B

```
Let G = (V,E) be n vertex m oriented edges graph.

• Def: B is a Vertex by Edge matrix

where B_{ij} = +1 if v_i is head of e_j

-1 if v_i is tail of e_j

0 otherwise
```

• Note: If f is a flow then Bf is residual vertex flow.

BOUNDARY MATRIX

BT AND POTENTIAL DROPS

- Let v be a n-vector of potentials
- $B^{T}v = vector of potential drops.$
- $R^{-1}BTv = vector of potential drops.$
 - R a diagonal matrix of resistive values
 - Ohms law: Rule to go from potentials to flows.
- Today we set resistors all to one.
- Thus $B^{T}v = vector of flows$.

GRAPH LAPLACIAN

- Def: $L := BB^T$, Laplacian of G.
- Goal: Solve Lv=b
- Suppose v satisfies BB^Tv=b.
 thus f := B^Tv is a flow s.t. Bf=b
- What can we say about f?

CIRCULATIONS AND POTENTIAL FLOWS

- Def: f_c in R^m is a circulation if $Bf_c = 0$
- Def: f_p in R^m is a potential flow if $f_p = B^T v$
- Claim : f_c is orthogonal to f_p then $f_c^T f_p = 0$

Pf: $f_c^T f_p = f_c^T (B^T v) = (Bf_c)^T v = 0^T v = 0$

CIRCULATIONS AND POTENTIAL FLOWS

- Note: Dim(potential flows) = n-1 (G connected)
- Claim : Dim(circulations) = m –n+1 (The number of nontree edges.)

Pf: Given a spanning tree each nontree edge induces cyclic flow that is independent.

POTENTIALS AND FLOWS

- Suppose $BB^Tv=b$ then $f=B^Tv$ is a flow s.t Bf=b
- Claim: min $f^{T}f$ s.t. Bf=b is a potential flow.
- Pf: $f = f_p + f_c$ • $Bf_p = Bf_p + Bf_c = B(f_p + f_c) = b$ • $f^T f = (f_p + f_c)^T (f_p + f_c)$ $= f_p^2 + 2f_p^T f_c + f_c^2$ $= f_p^2 + f_c^2 \ge f_p^2$

GRAPH LAPLACIAN SOLVERS

- Def: $L := BB^T$, Laplacian of G.
- Two dual approaches to approximately solving Lv =b
- 1) Find a potential that minimizes Lv-b
- 2) find a minimum energy flow f s.t.
 Bf=b

THE SPACE OF FLOWS

PRIMAL APPROACH: SOLVING A FLOW PROBLEM

POTENTIAL BASED SOLVERS [SPIELMAN-TENG`04] [KOUTIS-M-PENG`10, `11]

Input: n by n SDD matrix A with m non-zeros
 vector b
Output: Approximate solution Ax = b
Runtime: O(m log n)

[Blelloch-Gupta-Koutis-M-Peng-Tangwongsan. `11]: Parallel solver, $O(m^{1/3})$ depth and nearly-linear work

ZENO'S DICHOTOMY PARADOX

O(mlog^ch)

Fundamental theorem of Laplacian solvers: improvements decrease c by factor between [2,3]

FLOW BASED SOLVERS [KELNER-ORECCHIA-SIDFORD-ZHU `13] [LEE-SIDFORD `13]

Input: n by n SDD matrix A with m non-zeros, demand b **Output**: Approximate minimum energy electrical flow **Runtime**: O(m log^{1.5} n)
POTENTIAL BASED SOLVER AND ENERGY MINIMIZATION

 Suppose that A is SPD: Claim: minimizing ¹/₂ x^T A x - x^Tb gives solution to Ax = b.
 Note: Gradient = Ax-b

Thus solving these systems are quadratic minimization problems!

ITERATIVE METHOD GRADIENT DESCENT

- Goal: approx solution to Ax = b
- Start with initial guess $u^0 = 0$
- Compute new guess

$$u^{(i+1)} = u^{(i)} + (b - Au^{(i)})$$

This maybe slow to converge or not converge at all!

STEEPEST DESCENT

PRECONDITIONED ITERATIVE METHOD

- Goal: approx solution to $B^{-1}Ax = B^{-1}b$
- Start with initial guess $u^0 = 0$
- Compute new guess

$$u^{(i+1)} = u^{(i)} - \mathbf{B}^{-1}(b - Au^{(i)})$$

Recursive solve Bz=y where y=(b-Au⁽ⁱ⁾).

PRECONDITIONING WITH A GRAPH

[Vaidya `91]: Since A is a graph, B should be as well. Apply graph theoretic techniques!

And use Chebyshev acceleration

GRAPH SPARSIFIERS

Sparse Equivalents of Dense Graphs that preserve some property

- Spanners: distance, diameter.
- [Benczur-Karger '96] Cut sparsifier: weight of all cuts.

• Spectral sparsifiers: eigenstructure

SPECTRAL SPARSIFICATION BY EFFECTIVE RESISTANCE

What probability P(e) should we sample edge?

Answer: [Spielman-Srivastava `08]:

- Set P(e) = R(u,v) effective resistance from u to v.
- For each sample set edge set weight to 1/P(e)

• Sample O(n log n) times.

spectral sparsifier with O(nlogn) edges for any graph

Fact:
$$\sum_{e} R(e) = n-1$$

THE CHICKEN AND EGG PROBLEM

CHOICE OF TREES MATTER

n^{1/2}-by-n^{1/2} unit weighted mesh

'haircomb' tree is both shortest path tree and max weight spanning tree

AN O(N LOG N) STRETCH TREE

Able to obtain good trees for any graph by leveraging this type of tradeoffs

LOW STRETCH SPANNING TREES

[Alon-Karp-Peleg-West '91]:

[Elkin-Emek-Spielman-Teng '05]: A low stretch spanning tree with

[Abraham-Bartal-Neiman '08, Koutis-M-Peng `11, Abraham-Neiman `12]: A spanning tree with total stretch O(m log n) in O(m log n) time.

Sample off tree edges where P(e) =stretch of e.

THEORETICAL APPLICATIONS OF SDD SOLVERS: MULTIPLE ITERATIONS

[Tutte `62] Planar graph embeddings. [Boman-Hendrickson-Vavasis `04] Finite Element PDEs [Zhu-Ghahramani-Lafferty, Zhou-Huang-Scholkopf `03,05] learning on graphical models. [Kelner-Mądry `09] Generating random spanning trees in O(mn^{1/2}) time by speeding up random walks.

THEORETICAL APPLICATIONS OF SDD SOLVERS: MULTIPLE ITERATIONS

[Daitsch-Spielman `08] Directed maximum flow, Min-cost-max-flow, lossy flow all can be solved via LP interior point where pivots are SDD systems in $O(m^{3/2})$ time.

BACK TO IMAGE DENOISING

PROBLEM WITH QUADRATIC OBJECTIVE

- Result too 'smooth', objects become blurred
- Quadratic functions favor the removal of boundaries

FUNCTION ACCENTUATING BOUNDARIES

L₁ smoothness term

lf a<b<c, |a-b|+|b-c| doesn't depend on b

TOTAL VARIATION OBJECTIVE

• [Rudin-Osher-Fatemi, 92] Total Variation objective: L_2^2 fidelity term, L_1 smoothness.

TOTAL VARIATION MINIMIZATION

Higher weight on smoothness term

Effect: sharpen boundaries

Overdoing makes image cartoon like

WHAT'S HARD ABOUT L₁?

Absolute value function on n variables has 2^n points of discontinuity, L_2^2 has none.

MIN CUT PROBLEM AS L₁ MINIMIZATION

Minimum s-t cut:
minimize
$$\Sigma |x_i-x_j|$$

subject $x_s=0, x_t=1$

MINCUT VIA. L₂ MINIMIZATION

[Christiano-Kelner-Mądry-Spielman-Teng `11]: undirected max flow and mincut can be approximated using $\tilde{O}(m^{1/3})$ SDD solves.

- Multiplicative weights update method
- Gradually update the linear systems being solved

ISOTROPIC VERSION

[Osher]: 2D images can be rotated, instead of |dx| + |dy|, smoothness term should be $\sqrt{(dx^2 + dy^2)}$

ALTERNATE VIEW

Alternate interpretation of absolute value: $|t| = \sqrt{t^2}$

$$|dx| = \sqrt{dx^2}$$

Each group can be viewed as an 'edge' in minimum cut problem

This took one year

TV USING L₂ MINIMIZATION

• [Chin-Madry-M-Peng `12]: Can use methods based on electrical flows to obtain (1+ ε) approximation in O(mk^{1/3} ε ^{-8/3}) time.

• Interpolates between various versions involving L_1 and L_2 objectives.

WHAT IS NEW FOR 2013 AND 2014!

- Faster approximate Flow algorithms!
- Faster solvers!
- Faster exact flow algorithms!
- Faster LSST algorithms
- Parallel LSSTs and solvers

GENERALIZED GRADIENT DECENT

- [Lee-Rao-Srivastava`13]: gradient descent view of maxflow using electrical flows
- Generalized Decent for Classes of Lipschitz convex functions.
 - Nesterov optimization
 - Soft max of $L_{\scriptscriptstyle \!\infty}$
 - Smoothed version of L₁

FASTER APPROXIMATE FLOW ALGORITHMS!

Sherman 13: Approximate maxflow and Mini-cut in $\tilde{O}(m^{1+\delta} poly(k, \varepsilon^{-1}))$ time

Uses:

Madry 10: Fast Approximate Mini-Cut Algorithm

FASTER APPROXIMATE FLOW ALGORITHMS!

Kelner-Lee-Orecchi-Sidford' 13: Approximate maxflow and multi-commodity flow in $\tilde{O}(m^{1+\delta} poly(k, \varepsilon^{-1}))$ time

Uses:

Racke' 08: Approximate Oblivious routing ideas.

EVEN FASTER SOLVERS

Cohen-Kyng-Pachocki-Peng-Rao `13
SDD linear systems Faster solver in
O(mlog^{1/2}n) time given a LSST.

- The log appears in two places in KMP:
 1. Matrix Chernoff Bounds
- 2. LSST tree construction

LOW DIAMETER DECOMPOSITION

Awerbuch 85: O(log n) diameter clusters with o(m) inter-cluster edges.

M,Peng,Xu 13: O(c log n) diameter clusters with O(m/c) expected inter-cluster edges: O(m) work and O(c log² n) depth

Algorithm: Do BFS from each noted using an exponential delay start time.
FASTER TREE GENERATION

• Koutis-M-Peng `11, Abraham-Neiman `12]: LSST with stretch O(m log n) in O(m log n) time.

We do not know how to beat these bounds!

We find a tree that is good enough!

LSST RELAXATION

Allow Steiner nodes. But still embeddable!

Relax the definition of stretch.

Recall STR_T(e=(a,b)) = dist_T(a,b) New Def: STR_T^P(e=(a,b)) = $| dist_T(a,b) |^P$ for P < 1

FASTER TREE ALGORITHM FOR L^P- STRETCH

	Runtime	Stretch
AKPW	O(m log log n)	O(log ⁰⁽¹⁾ n)
Bartal/AN	O(m log n)	O(log n)

Can we get the **best** of both worlds?

NEARLY LINEAR TIME, POLYLOG DEPTH SOLVERS

[Peng-Spielman `13]

Input: SDD matrix **M** with m non-zeros, condition number κ **Output**: Sparse product $\mathbf{Z}_1 \dots \mathbf{Z}_k \approx_{\varepsilon} \mathbf{M}^{-1}$ **Cost**: O(log^cm log^c κ log(1/ ε)) time O(m log^cm log^c κ log(1/ ε)) work

Approximation \approx_{ε} in matrix sense

FUTURE WORK

- Practical/parallel implementations?
 - The win over sequential is parallel!
- Near linear time exact max flow?
 - $\log(1/\epsilon)$ dependency in runtime?
- Sub-quadratic SPD solver?

