
The Revolution in Graph Theoretic
Optimization Problem

Gary L Miller

Simons	
 Open	
 Lecture	

	
 	
 	
 	
 	
 	
 	
 	
 Oct	
 6,	
 2014	

JOINT WORK

Guy Blelloch,
Hui Han Chin,

Michael Cohen,
Anupam Gupta,
Jonathan Kelner,

Yiannis Koutis,
Alexsander Madry,
 Jakub Pachocki,

Richard Peng,
 Kanat Tangwongsan,

Shen Chen Xu

OUTLINE

•  Linear system solvers
•  Regression and Image Denoising.
•  Simple formulation and connection with solving

linear systems.
•  Overview of SDD solvers.
•  A better L1 formulation of denoising.
•  Maximum flow using solvers
•  New for 2013-14

SPECTRAL GRAPH THEORY
LAPLACIAN PARADIGM

Use graph algorithms to solve linear
algebra problems.

Use linear algebra to solve graph
problems.

Use both to solve optimization problems

OLDEST COMPUTATIONAL PROBLEM

DIRECT LINEAR SYSTEM SOLVES

•  [1st century CE] Gaussian
Elimination: O(n3)
•  [Strassen `69] O(n2.8)
•  [Coppersmith-Winograd

`90] O(n2.3755)
•  [Stothers `10] O(n2.3737)
•  [Vassilevska Williams`11]

O(n2.3727)
•  [George `73], [Lipton-Rose-

Tarjan `80], [Alon-Yuster `10]
Faster direct methods for
special non-zero structures.

REGRESSION

OVER CONSTRAINED SYSTEMS

Over Constrained System: A x = b.
Solve system AT A x = ATb
• Matrix ATA is Symmetric Positive

Semi-Definite (SPSD).
• Open Question:

 Find sub-quadratic time solvers
 for SPD systems?

 We will need problems with an
underlying graph.

APPROXIMATION ALGORITHMS

•  Whole conferences NP-Approximation
•  Same ideas and goals can be applied problems in

Polytime.
•  Our goal is find good approximation but much

faster than known exact solutions.
•  Maybe even faster exact solutions!

CLASSIC REGRESSION PROBLEM

•  Image Denoising
• Critical step in image

segmentation and detection
•  Good denoising makes the

segmentation almost obvious.

CAMOUFLAGE DETECTION

Given image + noise, recover image.

CAMOUFLAGE DETECTION

Hui-­‐Han	
 Chin	

IMAGE DENOISING: THE MODEL

•  Assume there exist a
‘original’ noiseless image.
•  Noise generated from

some distribution.
•  Input: original + noise.
•  Goal: approx the original

image.

Denoised Image:

Noise:

Input:

s-x

s

x

CONDITIONS ON X

•  Noise is small: denoised
image should still be close
to image + noise.
•  Real images are ‘smooth’

except at boundaries.

Function of (x-s)

Function computed
on differences of
neighboring pixels of x

Fidelity(x, s)

Smoothness(x)

ENERGY FUNCTION

Noisy image: s

Candidate solution: x

Fidelity(x, s) + Smoothness(x)

(xi-si)2 summed
over all pixels i.

(xi-xj)2 summed over all
neighbor pixels i, j.

This is a toy example

⎡

⎢⎢⎢⎣

0 x12 x13 x14
−x12 0 x23 0
−x12 −x23 0 x34
−x14 0 −x34 0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

⎤

⎥⎥⎥⎦

E(S, S̄)

min{vol(S), vol(S̄)}

max
x

xTAx

xTBx
·max

y

yTBy

yTAy

1

MATRICES ARISING FROM IMAGE
PROBLEM HAVE NICE STRUCTURES

A is Symmetric Diagonally
Dominant (SDD)
• Symmetric.
• Diagonal entry ≥ sum of
absolute values of all off
diagonals.

OPTIMIZATION PROBLEMS IN CS

Many algorithm problems in CS are optimization
problems with underlying graph.
•  Maximum flow in a graph.
•  Shortest path in a graph.
•  Maximum Matching.
•  Scheduling
•  Minimum cut.
Some of these do not seem to have an underlying
graph.
Longest common subsequence.

LINEAR PROGRAMMING

Many	
 	
 op=miza=on	
 problems	
 can	
 be	
 wriBen	
 as	
 an	
 LP	

EG:	
 	
 Single	
 source	
 shortest	
 path.	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Is	
 this	
 useful?	

	

LAPLACIAN PRIMER

• Matrix view of flows
•  The Boundary Map B: Flow è Residual Flow

e1 e2
v1
v2
v3

0

@
�1 0
+1 �1
0 +1

1

A

✓
2

�3

◆
=

0

@
�2
5

�3

1

A

v1	

v2	
 v3	
 e1	

e2	

THE BOUNDARY MAP B

Let G = (V,E) be n vertex m oriented edges graph.
•  Def: B is a Vertex by Edge matrix

 where Bij = +1 if vi is head of ej

 -1 if vi is tail of ej

 0 otherwise

•  Note: If f is a flow then Bf is residual vertex flow.

BOUNDARY MATRIX

e1 e2
v1
v2
v3

0

@
�1 0
+1 �1
0 +1

1

A

✓
2

�3

◆
=

0

@
�2
5

�3

1

A

5	

-­‐2	

-­‐3	
 2	
 -­‐3	

BT AND POTENTIAL DROPS

• Let v be a n-vector of potentials
• BTv = vector of potential drops.
• R-1BTv = vector of potential drops.
• R a diagonal matrix of resistive values
• Ohms law: Rule to go from potentials

to flows.
• Today we set resistors all to one.
• Thus BTv = vector of flows.

GRAPH LAPLACIAN

• Def: L := BBT , Laplacian of G.
• Goal: Solve Lv=b
• Suppose v satisfies BBTv=b.

 thus f := BTv is a flow s.t. Bf=b
• What can we say about f?

CIRCULATIONS AND POTENTIAL
FLOWS

• Def: fc in Rm is a circulation if Bfc= 0
• Def: fp in Rm is a potential flow if fp=BTv
• Claim : fc is orthogonal to fp

 then fc
Tfp = 0

 Pf: fc

Tfp = fc
T(BTv) = (Bfc)Tv = 0Tv = 0

CIRCULATIONS AND POTENTIAL
FLOWS

• Note: Dim(potential flows) = n-1
 (G connected)
• Claim : Dim(circulations) = m –n+1

 (The number of nontree edges.)
 Pf: Given a spanning tree each
nontree edge induces cyclic flow that is
independent.

POTENTIALS AND FLOWS

•  Suppose BBTv=b then f=BTv is a flow s.t Bf=b
• Claim: min fTf s.t. Bf=b is a potential flow.

 Pf: f = fp+fc

• Bfp = Bfp + Bfc = B(fp+fc) = b
•  fTf = (fp+fc)T(fp+fc)

 = fp
2 + 2fp

Tfc + fc
2

 = fp
2 + fc

2 ≥ fp
2

GRAPH LAPLACIAN SOLVERS

• Def: L := BBT, Laplacian of G.
• Two dual approaches to

approximately solving Lv =b
• 1) Find a potential that minimizes Lv-b
• 2) find a minimum energy flow f s.t.

Bf=b

THE SPACE OF FLOWS

poten=al	
 flows	

flows	
 of	
 mee=ng	
 demand	
 d	

f	
 circula=on	

poten=al	
 flow	

fp	

fc	

SOLVING LAPLACIANS

poten=al	
 flows	

flows	
 of	
 demand	
 d	

Given	
 G	
 and	
 d,	

find	
 this	
 point	
 	

DUAL APPROACH:
SOLVING A LINEAR SYSTEM

poten=al	
 flows	

flows	
 of	
 demand	
 d	

Start	
 with	
 a	

poten=al	
 flow	
 Bv,	

update	
 v	
 to	
 get	

closer	
 to	
 sa=sfying	
 d	

vopt	
 =	
 LG-­‐1d	

DUAL APPROACH:
SINGLE STEP (ST’04,KMP ‘10, ‘11)

poten=al	
 flows	

flows	
 of	
 demand	
 d	

	
 Faster	
 Gradient	
 Descent	

PRIMAL APPROACH:
SOLVING A FLOW PROBLEM

poten=al	
 flows	

flows	
 of	
 demand	
 d	

Start	
 with	
 a	
 flow	

mee=ng	
 the	

demands,	
 project	

off	
 the	
 circula=on	

PRIMAL APPROACH:
SINGLE STEP (KOSZ ‘13)

poten=al	
 flows	

flows	
 of	
 demand	
 d	

Pick	
 a	
 single	
 cycle	

and	
 remove	
 the	

circula=on	
 along	
 it	

POTENTIAL BASED SOLVERS
[SPIELMAN-TENG`04]

[KOUTIS-M-PENG`10, `11]

Input: n by n SDD matrix A with m non-zeros
 vector b

Output: Approximate solution Ax = b
Runtime: O(m log n)

[Blelloch-Gupta-Koutis-M-Peng-Tangwongsan. `11]:
Parallel solver, O(m1/3) depth and nearly-linear work

ZENO’S DICHOTOMY PARADOX

OPT: 0?

2014: 1/2

c

2011: 1

2010: 2

2010: 6

2009: 15

2006: 32

2004: 70

O(mlogcn)
Fundamental theorem of Laplacian solvers:
improvements decrease c by factor between [2,3]

FLOW BASED SOLVERS
[KELNER-ORECCHIA-SIDFORD-ZHU `13]

[LEE-SIDFORD `13]

Input: n by n SDD matrix A with m
non-zeros, demand b
Output: Approximate minimum
energy electrical flow
Runtime: O(m log1.5 n)

POTENTIAL BASED SOLVER
AND ENERGY MINIMIZATION

•  Suppose that A is SPD:
 Claim: minimizing ½ xT A x – xTb

 gives solution to Ax = b.
 Note: Gradient = Ax-b

Thus solving these systems are quadratic
minimization problems!

ITERATIVE METHOD
GRADIENT DESCENT

• Goal: approx solution to Ax = b
•  Start with initial guess u0 = 0
• Compute new guess

 u(i+1) = u(i) + (b − Au(i))

This	
 maybe	
 slow	
 to	
 converge	
 or	

not	
 converge	
 at	
 all!	

STEEPEST DESCENT

PRECONDITIONED ITERATIVE METHOD

• Goal: approx solution to B−1Ax = B−1b
•  Start with initial guess u0 = 0
• Compute new guess

 u(i+1) = u(i) − B−1(b − Au(i))

Recursive	
 solve	
 Bz=y	
 where	

y=(b-­‐Au(i)).	

PRECONDITIONING WITH A GRAPH

[Vaidya `91]: Since A is a graph, B
should be as well.
Apply graph theoretic techniques!

And	
 use	
 Chebyshev	
 accelera=on	
 	
 	
 	
 	
 	

GRAPH SPARSIFIERS

Sparse Equivalents of Dense Graphs
that preserve some property

• Spanners: distance, diameter.
• [Benczur-Karger ‘96] Cut sparsifier:

weight of all cuts.
• Spectral sparsifiers: eigenstructure

EXAMPLE: COMPLETE GRAPH
O(n logn) sampling edges

uniform suffice!

Sriv	
 Sriv	

SPECTRAL SPARSIFICATION BY
EFFECTIVE RESISTANCE

Answer: [Spielman-Srivastava `08]:
•  Set P(e) = R(u,v) effective resistance from u to v.
•  For each sample set edge set weight to 1/P(e)
•  Sample O(n log n) times.

Fact: ∑e R(e) = n-1

spectral sparsifier with O(nlogn)
edges for any graph

	
 What	
 probability	
 P(e)	
 	
 should	
 we	
 sample	
 edge?	
 	

THE CHICKEN AND EGG PROBLEM

How To Calculate Sample Probablity?

[Spielman-Srivastava `08]: Use Solver

[Spielman-Teng `04]: Need Sparsifier

Workaround: upper bound using
Low Stretch Spanning Trees

CHOICE OF TREES MATTER

n1/2-by-n1/2 unit weighted mesh

stretch(e)= O(1)

total stretch = O(n3/2)

stretch(e)=O(n1/2)

‘haircomb’ tree is both shortest path
tree and max weight spanning tree

AN O(N LOG N) STRETCH TREE

Recursive ‘C’
Construction

stretch(e) still O(n1/2)

But only O(n1/2)
such edges

logn levels,
total = O(nlogn)

Able to obtain good trees for any graph
by leveraging this type of tradeoffs

LOW STRETCH SPANNING TREES

[Alon-Karp-Peleg-West ‘91]:
A low stretch spanning tree with
Total stretch O(m1+ε) can be
found in O(mlog n) time.

[Elkin-Emek-Spielman-Teng ‘05]:
A low stretch spanning tree with
Total stretch O(mlog2n) can be
found in O(mlog n + n log2 n) time.

[Abraham-Bartal-Neiman ’08,
Koutis-M-Peng `11,
Abraham-Neiman `12]:
A spanning tree with
total stretch O(m log n) in
O(m log n) time.

SOLVER IN ACTION

`

Find a low stretch spanning tree Scale up the tree

Sample off tree edges where
P(e) = stretch of e.

SOLVER IN ACTION

`

Eliminate degree 1 or 2 nodes

SOLVER IN ACTION

`

Eliminate degree 1 or 2 nodes

SOLVER IN ACTION

`

Eliminate degree 1 or 2 nodes

SOLVER IN ACTION

`

Eliminate degree 1 or 2 nodes

SOLVER IN ACTION

Eliminate degree 1 or 2 nodes

Recurse

THEORETICAL APPLICATIONS OF SDD
SOLVERS: MULTIPLE ITERATIONS

[Tutte `62] Planar graph embeddings.
[Boman-Hendrickson-Vavasis `04] Finite Element PDEs
[Zhu-Ghahramani-Lafferty, Zhou-Huang-Scholkopf `03,05]
learning on graphical models.
[Kelner-Mądry `09] Generating random spanning trees in
O(mn1/2) time by speeding up random walks.

THEORETICAL APPLICATIONS OF SDD
SOLVERS: MULTIPLE ITERATIONS

[Daitsch-Spielman `08] Directed maximum
flow, Min-cost-max-flow, lossy flow all can
be solved via LP interior point where pivots
are SDD systems in O(m3/2) time.

BACK TO IMAGE DENOISING

PROBLEM WITH QUADRATIC OBJECTIVE

• Result too ‘smooth’,
objects become blurred
• Quadratic functions favor

the removal of boundaries

FUNCTION ACCENTUATING
BOUNDARIES

s: sharp boundary

L1 smoothness term

If a<b<c, |a-b|+|b-c|
doesn’t depend on b

Same smoothness term Better fidelity

TOTAL VARIATION OBJECTIVE

•  [Rudin-Osher-Fatemi, 92] Total Variation
objective: L2

2 fidelity term, L1 smoothness.

Fidelity(x, s) + Smoothness(x)

(xi-si)2 summed
over all pixels i.

|xi-xj| summed over all
neighbor pixels i, j.

TOTAL VARIATION MINIMIZATION

Effect: sharpen
boundaries

Overdoing makes
image cartoon like

Higher weight on smoothness term

WHAT’S HARD ABOUT L1?

Short answer: corners Absolute value function on n
variables has 2n points of
discontinuity, L2

2 has none.

Minimum cut: remove fewest edges
to separate s from t.

MIN CUT PROBLEM AS L1
MINIMIZATION

Minimum cut: remove the fewest
edges to separate vertices s and t

Minimum s-t cut:
minimize Σ|xi-xj|

subject xs=0, xt=1

s t

0 1 0

0 0

1

1 1

MINCUT VIA. L2 MINIMIZATION

[Christiano-Kelner-Mądry-Spielman-
Teng `11]: undirected max flow and
mincut can be approximated using
Õ(m1/3) SDD solves.

•  Multiplicative weights update method
•  Gradually update the linear systems

being solved

Total: Õ(m4/3)

ISOTROPIC VERSION

[Osher]: 2D images can be rotated,
instead of |dx| + |dy|, smoothness
term should be √(dx2 + dy2)

smoothness should be the same.

Rotate
New pixel
system

dx

dy

ALTERNATE VIEW

|dx| =√(dx2)

Alternate interpretation of
absolute value: |t|=√t2

Each group can be
viewed as an ‘edge’ in
minimum cut problem

This took one year

TV USING L2 MINIMIZATION

• [Chin-Madry-M-Peng `12]: Can use
methods based on electrical flows to
obtain (1+ ε) approximation in
O(mk1/3ε-8/3) time.
•  Interpolates between various
versions involving L1 and L2 objectives.

WHAT IS NEW FOR 2013 AND 2014!

• Faster approximate Flow algorithms!
• Faster solvers!
• Faster exact flow algorithms!
• Faster LSST algorithms
• Parallel LSSTs and solvers

GENERALIZED GRADIENT DECENT

• [Lee-Rao-Srivastava`13]: gradient
descent view of maxflow using
electrical flows
• Generalized Decent for Classes

of Lipschitz convex functions.
• Nesterov optimization

•  Soft max of L∞

•  Smoothed version of L1

FASTER APPROXIMATE FLOW
ALGORITHMS!

Sherman 13: Approximate maxflow and
Mini-cut in Õ(m1+δpoly(k,ε-1)) time

Uses:

 Madry 10: Fast Approximate Mini-Cut
Algorithm

FASTER APPROXIMATE FLOW
ALGORITHMS!

Kelner-Lee-Orecchi-Sidford’ 13:
Approximate maxflow and
multi-commodity flow in
Õ(m1+δpoly(k,ε-1)) time

Uses:

Racke’ 08: Approximate Oblivious routing
ideas.

EVEN FASTER SOLVERS

• Cohen-Kyng-Pachocki-Peng-Rao `13
 SDD linear systems Faster solver in
• O(mlog1/2n) time given a LSST.

• The log appears in two places in KMP:
1.  Matrix Chernoff Bounds
2.  LSST tree construction

LOW DIAMETER DECOMPOSITION

Awerbuch 85: O(log n) diameter clusters with
o(m) inter-cluster edges.

 M,Peng,Xu 13: O(c log n) diameter clusters with
 O(m/c) expected inter-cluster edges:

 O(m) work and O(c log2 n) depth

 Algorithm: Do BFS from each noted using an

 exponential delay start time.

FASTER TREE GENERATION

•  Koutis-M-Peng `11, Abraham-Neiman `12]:
LSST with stretch O(m log n) in O(m log n) time.

We do not know how to beat these bounds!

We find a tree that is good enough!

LSST RELAXATION

Allow Steiner nodes.
But still embeddable!

Relax the definition of stretch.

Recall STRT(e=(a,b)) = distT(a,b)
New Def: STRT

P(e=(a,b)) = |distT(a,b)|P

for P < 1

FASTER TREE ALGORITHM
FOR LP- STRETCH

Runtime Stretch

AKPW O(m log log n) O(logO(1) n)

Bartal/AN O(m log n) O(log n)

Can we get the best of both worlds?

NEARLY LINEAR TIME,
POLYLOG DEPTH SOLVERS

Input: SDD matrix M with m non-zeros,
condition number κ
Output: Sparse product Z1…Zk ≈ε M-1

Cost: O(logcm logcκ log(1/ε)) time
 O(m logcm logcκ log(1/ε)) work

Approximation ≈ε in matrix sense

[Peng-­‐Spielman	
 `13]	

FUTURE WORK

• Practical/parallel implementations?
•  The win over sequential is parallel!

•  Near linear time exact max flow?
•  log(1/ε) dependency in runtime?

• Sub-quadratic SPD solver?

