
Efficient Synthesis
of Network Updates

Nate Foster
Cornell University

SIGCOMM ’12, PLDI ‘15

Jedidiah McClurgh Hossein Hojjat Pavol Cerny

Todd Warszawski Andrew Noyes

OpenFlow Switch

Controller

OpenFlow Switch
OpenFlow Switch

SDN Switches

Controller

Open API

Your program goes here!

Software-Defined Networking

Network Updates
How to transition from one
network-wide configuration
to another?

It requires stepping through
multiple intermediate
configurations in general…

…hard to guarantee that
important network-wide
properties will be preserved

H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4

Update: upd T1; upd A1; upd C2; upd A3

Example: Data Center

H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4

Naive Update

Problem: naive update creates a blackhole!

Blackhole

Order Update

Customizable specifications? Efficient mechanism?
Yes: order update—updating switches in the right order can
prevent unexpected specification violations
Example specification: “H1-H3 connectivity”, wrong order: A1-C2

C1 C2

A1 A2 A3 A4

T1 T2 T3 T4

H1 H2 H3 H4

0 2 4 6

0

33%

66%

100%

Time (s)

(a)

P
ro

b
e
s

R
e
c
e
iv

e
d

T1 T2 T3 T4 A1 A2 A3 A4 C1 C2

0

1X

2X

(b) Switch ID

R
u

le
O

v
e
rh

e
a
d

McClurg, Hojjat, Černý, Foster Efficient Synthesis of Network Updates June 16th, 2015 4 / 1

Naive Update

Problem: naive update leads to access control violation!

H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4

At 12:47 AM PDT on April 21st, a network change was
performed as part of our normal scaling activities...

During the change, one of the steps is to shift traffic
off of one of the redundant routers...

The traffic shift was executed incorrectly and the
traffic was routed onto the lower capacity redundant
network.

This led to a “re-mirroring storm”...

During this re-mirroring storm, the volume of
connection attempts was extremely high and nodes
began to fail, resulting in more volumes left needing to
re-mirror. This added more requests to the re-
mirroring storm...

The trigger for this event was a network
configuration change.

Is This Really a Problem?

Per-Packet Consistent Updates
Guarantee: every packet (or flow)
in the network “sees” a single
policy version

Two-Phase Update:
• Tag configurations with versions

• Install new configuration in core

• Install new configuration at edge

• Wait for in-flight packets to exit

• Delete old configurations

Limitations:
• Doubles peak memory usage
• Updates are slow to implement

Per-Packet Consistent Updates

Questions:
• Can we implement a per-packet consistent update

by simply updating switches in the right order?
• If not, can we relax the requirements in a

reasonable way to obtain efficient updates?

Theorem [SIGCOMM ’12]: a
network update is per-packet
consistent if and only if it
preserves all safety properties.

H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4

Update: upd T1; upd C2; upd A3; upd A1 ✔

Example: Data Center

Naive Update

• Update: upd A2; upd A4; upd T1; upd C1 ✗
• Update: upd A2; upd A4; upd C1; upd T1 ✗
• There is no update that ensures per-packet consistency

H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4

Relaxing Per-Packet Consistency

Idea: all packets eventually delivered via A1 or A4

H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4

• Update: upd A2; upd A4; upd T1; upd C1 ✗
• Update: upd A2; upd A4; upd C1; upd T1 ✔

This Talk

Efficient Synthesis of
Network Updates

•Programs are large, but simple and
highly structured—e.g., loop free!

•The desired behavior of the network is
often clear (at least at an intuitive level)

•Most difficult aspects of network
programming stem from limited
resources and inherent concurrency

Synthesis for Networks

How to Specify Properties?

Reachability: every packet that starts at si reaches di

Waypointing: all packets traverse w before exiting

Chaining: all packets traverse w1 and w2 before exiting

LTL: ∧i (si →F di)

LTL: ¬g U w2 ∧ F g

LTL: ¬g U w1 ∧ ¬w1 U w2 ∧ F g

LTL
Specification

Network Update Synthesis

Update
Synthesizer

Update
Program

Initial and Final
Configurations

Update at
most once

Synthesis Algorithm

φ
LTL

Specification
Old and New

Configurations

Synthesis Algorithm

Efficient Synthesis of Network Updates

Jedidiah McClurg
CU Boulder, USA

jedidiah.mcclurg@colorado.edu

Hossein Hojjat
Cornell University, USA

hojjat@cornell.edu

Pavol Černý
CU Boulder, USA

pavol.cerny@colorado.edu

Nate Foster
Cornell University, USA

jnfoster@cs.cornell.edu

Abstract
Software-defined networking (SDN) is revolutionizing the net-
working industry, but current SDN programming platforms do not
provide automated mechanisms for updating global configurations
on the fly. Implementing updates by hand is challenging for SDN
programmers because networks are distributed systems with hun-
dreds or thousands of interacting nodes. Even if initial and final
configurations are correct, naı̈vely updating individual nodes can
lead to incorrect transient behaviors, including loops, black holes,
and access control violations. This paper presents an approach for
automatically synthesizing updates that are guaranteed to preserve
specified properties. We formalize network updates as a distributed
programming problem and develop a synthesis algorithm based on
counterexample-guided search and incremental model checking.
We describe a prototype implementation, and present results from
experiments on real-world topologies and properties demonstrating
that our tool scales to updates involving over one-thousand nodes.

Categories and Subject Descriptors D.2.4 [Software En-
gineering]: Software/Program Verification—Formal methods;
D.2.4 [Software Engineering]: Software/Program Verification—
Model checking; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs—
Logics of programs; F.4.1 [Mathematical Logic and For-
mal Languages]: Mathematical Logic—Temporal logic; C.2.3
[Computer-communication Networks]: Network Operations—
Network Management

Keywords synthesis, verification, model checking, LTL, network
updates, software-defined networking, SDN

1. Introduction
Software-defined networking (SDN) is a new paradigm in which
a logically-centralized controller manages a collection of pro-
grammable switches. The controller responds to events such as
topology changes, shifts in traffic load, or new connections from
hosts, by pushing forwarding rules to the switches, which process
packets efficiently using specialized hardware. Because the con-
troller has global visibility and full control over the entire network,
SDN makes it possible to implement a wide variety of network
applications ranging from basic routing to traffic engineering, data-
center virtualization, fine-grained access control, etc. [6]. SDN has

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI’15, June 13–17, 2015, Portland, OR, USA.
Copyright c� 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/2737924.2737980

been used in production enterprise, datacenter, and wide-area net-
works, and new deployments are rapidly emerging.

Much of SDN’s power stems from the controller’s ability to
change the global state of the network. Controllers can set up end-
to-end forwarding paths, provision bandwidth to optimize utiliza-
tion, or distribute access control rules to defend against attacks.
However, implementing these global changes in a running network
is not easy. Networks are complex systems with many distributed
switches, but the controller can only modify the configuration of
one switch at a time. Hence, to implement a global change, an
SDN programmer must explicitly transition the network through
a sequence of intermediate configurations to reach the intended fi-
nal configuration. The code needed to implement this transition is
tedious to write and prone to error—in general, the intermediate
configurations may exhibit new behaviors that would not arise in
the initial and final configurations.

Problems related to network updates are not unique to SDN.
Traditional distributed routing protocols also suffer from anomalies
during periods of reconvergence, including transient forwarding
loops, blackholes, and access control violations. For users, these
anomalies manifest themselves as service outages, degraded per-
formance, and broken connections. The research community has
developed techniques for preserving certain invariants during up-
dates [9, 32, 36], but none of them fully solves the problem, as they
are limited to specific protocols and properties. For example, con-
sensus routing uses distributed snapshots to ensure connectivity, but
only applies to the Border Gateway Protocol (BGP) [16].

It might seem that SDN would exacerbate update-related prob-
lems by making networks even more dynamic—in particular, most
current platforms lack mechanisms for implementing updates in a
graceful way. However, SDN offers opportunities to develop high-
level abstractions for implementing updates automatically while
preserving key invariants. The authors of B4—the controller man-
aging Google’s world-wide inter-datacenter network—describe a
vision where: “multiple, sequenced manual operations [are] not in-
volved [in] virtually any management operation” [14].

Previous work proposed the notion of a consistent update [33],
which ensures that every packet is processed either using the initial
configuration or the final configuration but not a mixture of the two.
Consistency is a powerful guarantee preserving all safety proper-
ties, but it is expensive. The only general consistent update mech-
anism is two-phase update, which tags packets with versions and
maintains rules for the initial/final configurations simultaneously.
This leads to problems on switches with limited memory and can
also make update time slower due to the high degree of rule churn.

We propose an alternative. Instead of forcing SDN operators
to implement updates by hand (as is typically done today), or us-
ing powerful but expensive mechanisms like two-phase update, we
develop an approach for synthesizing correct update programs ef-
ficiently and automatically from formal specifications. Given ini-
tial and final configurations and a Linear Temporal Logic (LTL)
property capturing desired invariants during the update, we either

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the author/owner(s). Publication rights licensed to ACM.

PLDI’15, June 13–17, 2015, Portland, OR, USA

ACM 978-1-4503-3468-6/15/06

http://dx.doi.org/10.1145/2737924.2737980

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 P
LD

I
 *

 A
rtifact * A

E
C

307

Procedure ORDERUPDATE(Ni,Nf ,')
Input: Initial static network Ni, final static configuration Nf , formula '.
Output: update sequence L, or error ✏ if no update sequence exists
1: W false . Formula encoding wrong configurations.
2: V false . Formula encoding visited configurations.
3: (ok, L) DFSFORORDER(Ni,K(Ni),?,',�0)
4: if ok then return L
5: else return ✏ . Failure—no update exists.

Procedure DFSFORORDER(N ,K,s,',�)
Input: Static network N and Kripke structure K, next switch to update s,

formula ', and labeling �.
Output: Boolean ok if a correct update exists; correct update sequence L
6: if N |= V _W then return (false, [])

7: if s = ? then (ok, cex,�) modelCheck(K,')
8: else
9: (N ,K, S) swUpdate(N , s)

10: (ok, cex,�) incrModelCheck(K,', S,�)

11: V V _makeFormula(N)
12: if ¬ok then
13: W W _makeFormula(cex)
14: return (false, [])

15: if N = Nf then return (true, [s])

16: for s0 2 possibleUpdates(N) do
17: (ok, L) DFSFORORDER(N ,K, s0,',�)
18: if ok then return (true, (upd s0) :: wait :: L)

19: return (false, [])

Figure 4: ORDERUPDATE Algorithm.

4. Update Synthesis Algorithm
This section presents a synthesis algorithm that searches through
the space of possible solutions, using counterexamples to detect
wrong configurations and exploiting several optimizations.

4.1 Algorithm Description
ORDERUPDATE (Figure 4) returns a simple sequence of updates
(one in which each switch appears at most once), or fails if no such
sequence exists. Note that we could broaden our simple definition,
e.g. k-simple, where each switch appears at most k times, but we
have found the above restriction to work well in practice. The core
procedure is DFSFORORDER, which manages the search and in-
vokes the model checker (we use DFS because we expect common
properties/configurations to admit many update sequences). It at-
tempts to add a switch s to the current update sequence, yielding a
new network configuration. We maintain two formulas, V and W ,
tracking the set of configurations that have been visited so far, and
the set of configurations excluded by counterexamples.

To check whether all packet traces in this configuration satisfy
the LTL property ', we use our (incremental) model checking
algorithm (discussed in Section 5). First, we call a full check of the
model (line 7). The model checker labels the Kripke structure nodes
with information about what formulas hold for paths starting at that
state. The labeling (stored in �) is then re-used in the subsequent
model checking calls for related Kripke structures (line 10). The
parameters passed in the incremental model checking call are:
updated Kripke structure K, specification ', set of nodes S in
K whose transition function has changed by the update of the
switch s, and correct labeling � of the Kripke structure before the
update. Note that before the initial model checking, we convert
the network configuration N to a Kripke structure K. The update
of K is performed by a function swUpdate that returns a triple
(N 0, S,K0), where N 0 is the new static network, K0 is the updated
Kripke structure obtained as K(N 0), and S is the set of nodes that
have different outgoing transitions in K0.

If the model checker returns true, then N is safe and the search
proceeds recursively, after adding (upd s0) to the current sequence

of commands. If the model checker returns false, the search back-
tracks, using the counterexample-learning approach below.

4.2 Optimizations
We now present optimizations improving synthesis (pruning with
counterexamples, early search termination), and improving effi-
ciency of synthesized updates (wait removal).

Counterexamples. Counterexample-based pruning learns net-
work configurations that do not satisfy the specification to avoid
making future model checking calls that are certain to fail. The
function makeFormula(cex) (Line 13) returns a formula repre-
senting the set of switches that occurred in the counterexample
trace cex, with flags indicating whether each switch was updated.
This allows equivalent future configurations to be eliminated with-
out invoking the model checker. Recall the red-green example in
Section 2 and suppose that we update A1 and then C2. At the inter-
mediate configuration obtained by updating just A1, packets will be
dropped at C2, and the specification (H1-H3 connectivity) will not
be satisfied. The formula for the unsafe set of configurations that
have A1 updated and C2 not updated will be added to W . In prac-
tice, many counterexamples are small compared to network size,
and this greatly prunes the search space.

Early search termination. The early search termination opti-
mization speeds up termination of the search when no (switch-
granularity) update sequence is possible. Recall how we use coun-
terexamples to prune configurations. With similar reasoning, we
can use counterexamples for pruning possible sequences of up-
dates. Consider a counterexample trace which involves three nodes
A,B,C, with A updated, B updated, and C not updated. This can
be seen as requiring that C must be updated before A, or C must
be updated before B. Early search termination involves collecting
such constraints on possible updates, and terminating if these con-
straints taken together form a contradiction. In our tool, this is done
efficiently using an (incremental) SAT solver. If the solver deter-
mines that no update sequence is possible, the search terminates.
For simplicity, early search termination is not shown in Figure 4.

Wait removal. This heuristic eliminates waits that are un-
necessary for correctness. Consider an update sequence L =
cmd0cmd1 · · · cmdn, and consider some switch update cmdk =
(upd s). In the configuration resulting from executing the sequence
cmd0cmd1 · · · cmdk�1, if the switch s cannot possibly receive
a packet which passed through some switch s0 before an update
cmd j=(upd s0) where j < k, then we can update s without wait-
ing. Thus, we can remove some unnecessary waits if we can main-
tain reachability-between-switches information during the update.
Wait removal is not shown in Figure 4, but in our tool, it operates as
a post-processing pass once an update sequence is found. In prac-
tice, this removes a majority of unnecessary waits (see § 6).

4.3 Formal Properties
The following two theorems show that our algorithm is sound for
careful updates, and complete if we limit our search to simple
update sequences (see Appendix B for proofs).

Theorem 1 (Soundness). Given initial network Ni, final configu-
ration Nf , and LTL formula ', if ORDERUPDATE returns a com-
mand sequence cmds , then Ni

cmds�! N
0 s.t. N 0 ' Nf , and cmds

is correct with respect to ' and Ni.

Theorem 2 (Completeness). Given initial network Ni, final con-
figuration Nf , and specification ', if there exists a simple, careful
sequence cmds with Ni

cmds�! N
0 s.t. N 0 ' Nf , then ORDERUP-

DATE returns one such sequence.

312

Depth-First Search:
• Attempt to update the

switches one-by-one
• Backtrack whenever a bad

configuration is reached

Challenges:
• Search space is huge
• Checking a configuration

means solving an LTL
model checking problem
(PSPACE-complete)!

Two main ideas:
• Learn from counter-examples to
aggressively prune the search space

• Use an incremental model checker

Incremental LTL Model Checking

a a b

F a

b a a b

F b

b

Update

KK

•Networks with loop-free configurations can be molded
using DAG-like Kripke structures

•Given a change, can re-label nodes incrementally with
a variant of classic Vardi-Wolper model checking

Limitation of Synthesis
For some scenarios there is no correct ordering we can
use, assuming at most once updates

Example: "double diamond" [DISC '16]

Our implementation reverts to a two-phase update...

Evaluation
Questions:
• Scalability of approach:

‣ Topology
‣ Complexity of specifications
‣ Total space explored

• Impact of optimizations:
‣ Pruning search space
‣ Incremental model checking

Methodology:
• Real-world topologies (Small World, FatTrees, TopoZoo)
• Synthetic configurations (e.g., shortest-path forwarding)
• Standard properties (reachability, waypointing, etc.)

Fattree

Small-world

Topology Zoo

Scalability

• Configurations: "diamond" / "double diamond"

• Specifications: reachability, waypointing, chaining

Fe
as

ib
le

In
fe

as
ib

le
se
co
nd
s

se
co
nd
s

Impact of Optimizations

• Configurations: shortest-path forwarding

• LTL Specification: all-pairs reachability

0 200 400 600 (switches)
0

50

100 (a)
R

un
tim

e
(s

)
Topology Zoo

NuSMV
Batch
Incremental

0 200 400 600 (switches)
0

50

100 (b)
FatTree

0 200 400 600 (switches)
0

50

100 (c)
Small-World

0 5k 10k (rules)
0

20
40
60 (d)

R
un

tim
e

(s
)

NetPlumber
Incremental

0 5k 10k (rules)
0

20
40
60 (e)

0 5k 10k (rules)
0

20
40
60 (f)

Figure 7: Relative performance results: (a-c) Performance of Incremental vs. NuSMV, Batch, NetPlumber solvers on Topology Zoo, FatTree, Small-World
topologies (columns); (d-f) Performance of Incremental vs. NetPlumber (rule-granularity).

0 200 400 600 800 1k (switches)
0

50
100
150
200

(g)

R
un

tim
e

(s
)

Service Chaining
Waypointing
Reachability

0 200 400 600 800 1k (switches)
0

50
100
150
200

(h)

R
un

tim
e

(s
)

0 10k 20k 30k 40k 50k (rules)
0

500

1k
(i)

R
un

tim
e

(s
)

Figure 8: (g) Scalability of Incremental on Small-World topologies of in-
creasing size; (h) Scalability when no correct switch-granularity update ex-
ists (i.e. algorithm reports “impossible”), and (i) Scalability of fine-grained
(rule-granularity) approach for solving switch-impossible examples in (h).

report counterexamples, putting it at a disadvantage in this end-
to-end comparison, so we also measured total Incremental versus
NetPlumber runtime on the same set of model-checking questions
posed by Incremental for the Small-World example. Our tool is still
faster on all instances, with a mean speedup of 2.74x.
Scalability. To quantify our tool’s scalability, we constructed
Small World topologies with up to 1500 switches, and ran experi-
ments with large diamond updates—the largest has 1015 switches
updating. The results appear in Figure 8(g). The maximum synthe-
sis times for the three properties were 129.04s, 30.11s, and 0.85s,
which shows that our tool scales to problems of realistic size.
Infeasible Updates. We also considered examples for which
there is no switch-granular update. Figure 8(h) shows the results
of experiments where we generated a second diamond atop the first
one, requiring it to route traffic in the opposite direction. Using
switch-granularity, the inputs are reported as unsolvable in maxi-
mum time 153.48s, 33.48s, and 0.69s. Using rule-granularity, these
inputs are solved successfully for up to 1000 switches with maxi-
mum times of 776.13s, 512.84s, and 82.00s (see Figure 8(i)).
Waits. We also separately measured the time needed to run the
wait-removal heuristic for the Figure 8 experiments. For (g), the
maximum wait-removal runtime was 0.89s, resulting in 2 needed
waits for each instance. For (i), the maximum wait-removal runtime
was 103.87s, resulting in about 2.6 waits on average (with a maxi-
mum of 4). For the largest problems in (g) and (i), this corresponds
to removal of 1397/1399 and 55823/55826 waits (about 99.9%).

7. Related Work
This paper extends preliminary work reported in a workshop pa-
per [30]. We present a more precise and realistic network model,
and replace expensive calls to an external model checker with calls
to a new built-in incremental network model checker. We extend
the DFS search procedure with optimizations and heuristics that
improve performance dramatically. Finally, we evaluate our tool on
a comprehensive set of benchmarks with real-world topologies.

Synthesis of concurrent programs. There is much previous work
on synthesis for concurrent programs [12, 35, 38]. In particular,
work by Solar-Lezama et al. [35] and Vechev et al. [38] synthesizes
sequences of instructions. However, traditional synthesis and syn-
thesis for networking are quite different. First, traditional synthesis
is a game against the environment which (in the concurrent pro-
gramming case) provides inputs and schedules threads; in contrast,
our synthesis problem involves reachability on the space of config-
urations. Second, our space of configurations is very rich, meaning
that checking configurations is itself a model checking problem.

Network updates. There are many protocol- and property-
specific algorithms for implementing network updates, e.g. avoid-
ing packet/bandwidth loss during planned maintenance to BGP [10,
32]. Other work avoids routing loops and blackholes during IGP
migration [36]. Work on network updates in SDN proposed the
notion of consistent updates and several implementation mech-
anisms, including two-phase updates [33]. Other work explores
propagating updates incrementally, reducing the space overhead on
switches [17]. As mentioned in Section 2, recent work proposes or-
dering updates for specific properties [15], whereas we can handle
combinations and variants of these properties. Furthermore, SWAN
and zUpdate add support for bandwidth guarantees [13, 23]. Zhou
et al. [40] consider customizable trace properties, and propose a dy-
namic algorithm to find order updates. This solution can take into
account unpredictable delays caused by switch updates. However,
it may not always find a solution, even if one exists. In contrast, we
obtain a completeness guarantee for our static algorithm. Ludwig
et al. [24] consider ordering updates for waypointing properties.

Model checking. Model checking has been used for network ver-
ification [2, 18, 20, 26, 27]. The closest to our work is the incre-
mental checker NetPlumber [19]. Surface-level differences include
the specification languages (LTL vs. regular expressions), and Net-
Plumber’s lack of counterexample output. The main difference is
incrementality: Netplumber restricts checking to “probe nodes,”
keeping track of “header-space” reachability information for those
nodes, and then performing property queries based on this. In con-
trast, we look at the property, keeping track of portions of the
property holding at each node, which keeps incremental recheck-

315

0 200 400 600 (switches)
0

50

100 (a)

R
un

tim
e

(s
)

Topology Zoo

NuSMV
Batch
Incremental

0 200 400 600 (switches)
0

50

100 (b)
FatTree

0 200 400 600 (switches)
0

50

100 (c)
Small-World

0 5k 10k (rules)
0

20
40
60 (d)

R
un

tim
e

(s
)

NetPlumber
Incremental

0 5k 10k (rules)
0

20
40
60 (e)

0 5k 10k (rules)
0

20
40
60 (f)

Figure 7: Relative performance results: (a-c) Performance of Incremental vs. NuSMV, Batch, NetPlumber solvers on Topology Zoo, FatTree, Small-World
topologies (columns); (d-f) Performance of Incremental vs. NetPlumber (rule-granularity).

0 200 400 600 800 1k (switches)
0

50
100
150
200

(g)

R
un

tim
e

(s
)

Service Chaining
Waypointing
Reachability

0 200 400 600 800 1k (switches)
0

50
100
150
200

(h)

R
un

tim
e

(s
)

0 10k 20k 30k 40k 50k (rules)
0

500

1k
(i)

R
un

tim
e

(s
)

Figure 8: (g) Scalability of Incremental on Small-World topologies of in-
creasing size; (h) Scalability when no correct switch-granularity update ex-
ists (i.e. algorithm reports “impossible”), and (i) Scalability of fine-grained
(rule-granularity) approach for solving switch-impossible examples in (h).

report counterexamples, putting it at a disadvantage in this end-
to-end comparison, so we also measured total Incremental versus
NetPlumber runtime on the same set of model-checking questions
posed by Incremental for the Small-World example. Our tool is still
faster on all instances, with a mean speedup of 2.74x.
Scalability. To quantify our tool’s scalability, we constructed
Small World topologies with up to 1500 switches, and ran experi-
ments with large diamond updates—the largest has 1015 switches
updating. The results appear in Figure 8(g). The maximum synthe-
sis times for the three properties were 129.04s, 30.11s, and 0.85s,
which shows that our tool scales to problems of realistic size.
Infeasible Updates. We also considered examples for which
there is no switch-granular update. Figure 8(h) shows the results
of experiments where we generated a second diamond atop the first
one, requiring it to route traffic in the opposite direction. Using
switch-granularity, the inputs are reported as unsolvable in maxi-
mum time 153.48s, 33.48s, and 0.69s. Using rule-granularity, these
inputs are solved successfully for up to 1000 switches with maxi-
mum times of 776.13s, 512.84s, and 82.00s (see Figure 8(i)).
Waits. We also separately measured the time needed to run the
wait-removal heuristic for the Figure 8 experiments. For (g), the
maximum wait-removal runtime was 0.89s, resulting in 2 needed
waits for each instance. For (i), the maximum wait-removal runtime
was 103.87s, resulting in about 2.6 waits on average (with a maxi-
mum of 4). For the largest problems in (g) and (i), this corresponds
to removal of 1397/1399 and 55823/55826 waits (about 99.9%).

7. Related Work
This paper extends preliminary work reported in a workshop pa-
per [30]. We present a more precise and realistic network model,
and replace expensive calls to an external model checker with calls
to a new built-in incremental network model checker. We extend
the DFS search procedure with optimizations and heuristics that
improve performance dramatically. Finally, we evaluate our tool on
a comprehensive set of benchmarks with real-world topologies.

Synthesis of concurrent programs. There is much previous work
on synthesis for concurrent programs [12, 35, 38]. In particular,
work by Solar-Lezama et al. [35] and Vechev et al. [38] synthesizes
sequences of instructions. However, traditional synthesis and syn-
thesis for networking are quite different. First, traditional synthesis
is a game against the environment which (in the concurrent pro-
gramming case) provides inputs and schedules threads; in contrast,
our synthesis problem involves reachability on the space of config-
urations. Second, our space of configurations is very rich, meaning
that checking configurations is itself a model checking problem.

Network updates. There are many protocol- and property-
specific algorithms for implementing network updates, e.g. avoid-
ing packet/bandwidth loss during planned maintenance to BGP [10,
32]. Other work avoids routing loops and blackholes during IGP
migration [36]. Work on network updates in SDN proposed the
notion of consistent updates and several implementation mech-
anisms, including two-phase updates [33]. Other work explores
propagating updates incrementally, reducing the space overhead on
switches [17]. As mentioned in Section 2, recent work proposes or-
dering updates for specific properties [15], whereas we can handle
combinations and variants of these properties. Furthermore, SWAN
and zUpdate add support for bandwidth guarantees [13, 23]. Zhou
et al. [40] consider customizable trace properties, and propose a dy-
namic algorithm to find order updates. This solution can take into
account unpredictable delays caused by switch updates. However,
it may not always find a solution, even if one exists. In contrast, we
obtain a completeness guarantee for our static algorithm. Ludwig
et al. [24] consider ordering updates for waypointing properties.

Model checking. Model checking has been used for network ver-
ification [2, 18, 20, 26, 27]. The closest to our work is the incre-
mental checker NetPlumber [19]. Surface-level differences include
the specification languages (LTL vs. regular expressions), and Net-
Plumber’s lack of counterexample output. The main difference is
incrementality: Netplumber restricts checking to “probe nodes,”
keeping track of “header-space” reachability information for those
nodes, and then performing property queries based on this. In con-
trast, we look at the property, keeping track of portions of the
property holding at each node, which keeps incremental recheck-

315

To
po

Zo
o

Fa
tT

re
e

se
co
nd
s

se
co
nd
s

Reading
• Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David

Walker. Abstractions for Network Update. In ACM SIGCOMM Conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), August 2012.

• Jedidiah McClurg, Hossein Hojjat, Pavol Cerny, and Nate Foster. Efficient
Synthesis of Network Updates. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), June 2015.

• Pavol Černý, Nate Foster, Nilesh Jagnik, Jedidiah McClurg. Optimal
Consistent Network Updates in Polynomial Time. In International
Symposium on Distributed Computing (DISC), July 2016.

