Efficient Synthesis
of Network Updates

Nate Foster
Cornell University

N McClurgh Hossein Hojjat

B R-I-T

Todd Warszawski

Pavol Cerny

Andrevaoyes

”
J

Software-Defined Networking

Your program goes here! \
Controller y
Y 4 \
\

,I
’
e
R4

Open AP

4
,/
’
,/
’

\

SDN Switches

Network Updates

How to transition from one
network-wide configuration
to another?

(—
t requires stepping through
multiple intermediate

configurations in general. ..

...hard to guarantee that

important network-wide >
properties will be preserved

N)t} (¥

N

N

N

N

Example: Data Center

Update: upd T1; upd Al; upd C2; upd A3

Naive Update

Problem: naive update creates a blackhole!

Probes Received

Blackhole

Naive Update

Problem: naive update leads to access control violation!

Is This Really a Problem?

amazon

webservices™

At 12:47 AM PDT on April 21st, a network change was
performed as part of our normal scaling activities...

During the change, one of the steps is to shift traffic
off of one of the redundant routers...

The traffic shift was executed incorrectly and the
traffic was routed onto the lower capacity redundant
network.

This led to a “re-mirroring storm”...

During this re-mirroring storm, the volume of
connection attempts was extremely high and nodes
began to fail, resulting in more volumes left needing to
re-mirror. This added more requests to the re-
mirroring storm...

The trigger for this event was a network
configuration change.

Limitations:

.« DoL

bles peak memory L

- Updates are slow to imp

sage
ement

Per-Packet Consistent Updates

Theorem [SIGCOMM "12]:
network update is per-packet
consistent it and only if it

preserves all safety properties.

Questions:

oy simply updating switches in

— Z
<« —>
<«
— \ 4 —>
D w —_ h
<«

i .
—> <
9

<«

.- Can we implement a per-packe

L consistent update

the right order?
- If not, can we relax the requirements in a

reasonable way to obtain efficient updates?

Example: Data Center

Update: upd T1; upd C2; upd A3; upd Al v

Naive Update

- Update: upd A2; upd A4; upd T1l; upd C1 X
- Update: upd A2; upd A4; upd Cl; upd T1 X
- There is no update that ensures per-packet consistency

Relaxing Per-Packet Consistency

Idea: all packets eventually delivered via Ay or A4
- Update: upd A2; upd A4; upd T1l; upd C1 X
- Update: upd A2; upd A4; upd Cl; upd T1 v

This Talk

Efhcient Synthesis of
Network Updates

sEMLLR R e T e e [T,

Synthesis for Networks

-Programs are large; but simple ana
highly structured—e.q., loop freel!

. The desired behavior of the network is
often clear (at least at an intuitive level)

-Most difficult aspects of network
programming stem from limited
resources.and inherent concurrency

How to Specify Properties?

Reachability: every packet that starts at si reaches d

‘ () >() () >() >() () >() >‘ >() >()

Si di

LTL: A (si @F d)

Waypointing: all packets traverse w before exiting

O—0O—0—0—0—@—0—0O—0—0—@
W
LTL: -gU w> A F g 7

Chaining: all packets traverse wi and w; before exiting

O—0O—@—OUO—0O—@—O—0O—0O—0O—@
Wi Wy g

LTL: U w; A= wiUwy AFQ

Network Update Synthesis

Initial and Final LTL Update at
Configurations Specification mMost once

N v

Update
Synthesizer

v

Update
Program

Synthesis Algorithm

LTL Old'and’New
Specification Configurations
TRR

Two main ideas:

- Learn from counter-examples to
aggressively prune the search space

. Use an incremental model checker

Incremental LTL Model Checking

\ FaVv Fb

f% d o g8 60

\/

« Networks with loop-free configurations can be molded
using DAG-like Kripke structures

«Given a change, can re-label nodes incrementally with
a variant of classic Vardi-Wolper model checking

Limitation of Synthesis

For some scenarios there is no correct ordering we can
use, assuming at most once updates

Example: "double diamond"

"' N\ /" N\
/ \ / \
/ \ y

Our implementation reverts to a two-phase update...

Evaluation

Questions:
- Scalability of approach:
opology
- Complexity of specifications
- Total space explored
- Impact of optimizations:
- Pruning search space
ncremental model checking

Topology Zoo

Methodology:

- Real-world topologies (Small World, FatTrees, TopoZ00)
- Synthetic configurations (e.q., shortest-path forwarding)
- Standard properties (reachability, waypointing, etc.)

Feasible

Infeasible

Scalability

200 , | | '
A - Service Chaining
g 190 ' Vo™ a &
S 100 -~ T A -
2 50 - AA -
1) ERY Y W SR WP W W W 69 SRR Q% x]
0 200 400 600 800 Ik (switches)
200 |
%150 a (h)
=100 - -
@)
%é 50 - A AWMMM
0 1@ @@ @@ @i Q@ ? .

0 200 400 600 800 Ik (switches)

- Configurations: "diamond" / "double diamond"

- Specifications: reachability, waypointing, chaining

Impact of Optimizations

100 o i
o NuSMV
o Batch

50 B g -+ Incremental

TopoZoo
seconds

0 ,‘...| F—

(a)

200 400 600 (switches)

100 -

o0
o8
0| wtm g R

FatTree
seconds

(b)

*.

0 200 400 600 (switches)

- Configurations: shortest-path forwarding

- LTL Specification: all-pairs reachability

Reading

- Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David
Walker. Abstractions for Network Update. In ACM SIGCOMM Conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), August 2012,

- Jedidiah McClurg, Hossein Hojjat, Pavol Cerny, and Nate Foster. Efficient
Synthesis of Network Updates. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), June 2015.

. Pavol Cerny, Nate Foster, Nilesh Jagnik, Jedidiah McClurg. Optimal
Consistent Network Updates in Polynomial Time. In International
Symposium on Distributed Computing (DISC), July 2016.

