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Video released of Uber self-driving crash
that killed woman in Arizona

New footage of the crash that killed Elaine Herzberg raises fresh
questions about why the self-driving car did not stop

The Guardian, Mar 22 2018

A Uber dashcam footage shows lead up to fatal self-driving crash - video
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The End of Starsky Robotics
% Stefan Seltz-Axmacher [ Follow |
‘:ﬁ Mar 19 - 9 min read ’ m n m

In 2015, I got obsessed with the idea of driverless trucks and started Starsky

A Uber dashcam footage shows lead up to fatal

Robotics. In 2016, we became the first street-legal vehicle to be paid to do
real work without a person behind the wheel. In 2018, we became the first
street-legal truck to do a fully unmanned run, albeit on a closed road. In

2019, our truck became the first fully-unmanned truck to drive on a live

highway:.

And in 2020, we're shutting down.
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Starsky Robotics It took me way too long to realize that VCs would rather a $1b business with
6= Lays a 90% margin than a $5b business with a 50% margin, even if capital
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driverless truck requirements and growth were the same.
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deployments isn’t sales, it’s safety.
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Challenge: Can we systematically design
‘provably correct’” deep neural networks!

- Theory

- Algorithms
- Implementation

Starsky Robotics
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Starsky Robotics is a
driverless truck
startup which
aims...
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It took me way too long to realize that VCs would rather a $1b business with
a 90% margin than a $5b business with a 50% margin, even if capital

requirements and growth were the same.

And growth would be the same. The biggest limiter of autonomous
deployments isn’t sales, it’s safety.
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*J. Ferlez, X. Sun, and Y. Shoukry, "Two-Level Lattice Neural Network
Architectures for Control of Nonlinear Systems," CDC 2020.

* J. Ferlez and Y. Shoukry, "AReN: Assured ReLU NN Architecture for
Model Predictive Control of LTI Systems," HSCC, 2020.
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- For each abstract state, select one controller
partition P* from CPWA,,

- Train one "local” neural network NN, for each
abstract state. Either using offline data (imitation
learning) or interaction with the environment
(Reinforcement learning)

- Enumerate all “affine” functions (K, b;) in each
local NN. Can be done efficiently since local NN
are typically small.

- Projection:

min [|W — W|
W

S.t. (Kz,bz) cP* Vv (Kz,bz) ~ NNq

O (convex optimization problem If done layer-by-layer)
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Theorem (informal):

Consider the nonlinear systemz™ = f(z,u) and a safety
specification ¥ . Define a “global” neural network controller
as the composition of “local” neural network controllers:

NN = NN, |[[NN,[|... NN,

Then:

f(CL’,NN(ZE‘)) — ¢

X. Sun and Y. Shoukry, "Provably Correct Training of Neural Network Controllers Using
Reachability Analysis," arXiv 2021.
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The result holds for liveness specifications under an
addrtional assumption.
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Workspace Number of Number of Number of Compute |Construct Compute Assign
Index Abstract | Controller |Safe & Reachable|/Reachable| Posterior | Function| Controller
States Partitions | Abstract States | Sets [s|] |Graph [s]| Psafe [s] |Partitions [s]
1 552 160 400 52.6 82.3 0.06 0.7
1 552 320 400 107.5 160.3 0.1 0.9
1 552 640 400 223.1 329.6 0.2 1.7
1 1104 160 800 108.2 333.0 0.2 2.3
1 1104 320 800 219.6 684.2 0.4 2.7
1 1104 640 800 451.5 1297.4 0.6 4.2
2 904 160 632 88.1 159.1 0.1 1.0
2 904 320 632 203.6 313.2 0.2 1.1
2 904 640 632 393.2 660.8 0.3 1.7
2 1808 160 1264 202.1 634.6 0.3 3.4
2 1808 320 1264 388.6 1298.1 0.6 4.0
2 1808 640 1264 778.2 2564.4 0.9 5.9

System Dimension n|Number of Abstract States Compute Reachable Sets [s]|Construct Posterior Graph [s]
2 69 0.6 0.7
4 276 2.7 2.6
6 1104 11.7 34.2
8 4416 o7.1 521.0
10 17664 258.1 9840.4
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Imprecise Model
T = f(x,u,w)

Assured
Architecture Forrr_la_l NN
Synthesis Training

* *%

NN Architecture

Training Data
(offline or
through interaction)

*J. Ferlez, X. Sun, and Y. Shoukry, "Two-Level Lattice Neural Network
Architectures for Control of Nonlinear Systems," CDC 2020.

* J. Ferlez and Y. Shoukry, "AReN: Assured ReLU NN Architecture for
Model Predictive Control of LTI Systems," HSCC, 2020.

** X. Sun and Y. Shoukry, "Provably Correct Training of Neural Network
Controllers Using Reachability Analysis," arXiv 2021.

** X. Sun, W. Fatnassi, U. Santa Cruz, and Y. Shoukry, "Provably Safe
Model-Based Meta Reinforcement Learning: An Abstraction-Based
Approach," arXiv 2021.

NN Weights

Verification

System-Level ©
Specification

NN

|

*k%k

Concrete
Counterexamples
Formally
Verified NN

Localized Error and Plausible Fixes

*** H. Khedr, J. Ferlez, and Y. Shoukry, "PEREGRINN: Penalized-
Relaxation Greedy Neural Network Verifier,”CAV, 2021.

*** J. Ferlez and Y. Shoukry, "Bounding the Complexity of Formally
Verifying Neural Networks: A Geometric Approach," arXiv 2020.

***U. Santa Cruz, J. Ferlez, and Y. Shoukry, "Safe-by-Repair: A Convex
Optimization Approach for Repairing Unsafe Two-Level Lattice Neural
Network Controllers," arXiv 2021.



Synthesis of NIN-based Safety Fi\ters
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Synthesis of NIN-based Safety Fi\ters
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Synthesis of NN-based Safety Filters
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Synthesis of NN-based Safety Filters
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Synthesis of NN-based Safety Filters
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esilient 2020.



Synthesis of NIN-based Safety Filters

10000

8000 W |
© ‘l ‘ L2
§ 6000 ' A -~' hu |——-—, =i
2 4000 /0 ] | —— Obstacle OFF + Filter OFF

—— Obstacle ON + Filter OFF

5 / |
Job NS —— QObstacle ON + Filter ON

o W 100 |
0 1000 2000 3000 4000 5000 6000

@)
o

—— Obstacle ON + Filter OFF
—— Obstacle ON + Filter ON

(o)
o

N
o

I
R

Obstacle Hitting Rate (%)
=Y
o

0 ! L |
0 1000 2000 3000 4000 5000 6000

CPS Lab
esilient



Imprecise Model
T = f(x,u,w)

Assured
Architecture

Synthesis

*

*J. Ferlez, X. Sun, and Y. Shoukry, "Two-Level Lattice Neural Network

NN Architecture

Formal NN
Training

*%

Training Data
(offline or
through interaction)

Architectures for Control of Nonlinear Systems," CDC 2020.

* J. Ferlez and Y. Shoukry, "AReN: Assured ReLU NN Architecture for

Model Predictive Control of LTI Systems," HSCC, 2020.

** X. Sun and Y. Shoukry, "Provably Correct Training of Neural Network

Controllers Using Reachability Analysis," arXiv 2021.

** X. Sun, W. Fatnassi, U. Santa Cruz, and Y. Shoukry, "Provably Safe

Model-Based Meta Reinforcement Learning: An Abstraction-Based

Approach," arXiv 2021.

System-Level ©
Specification

NN
Verification

*k%k

|

NN Weights
Concrete
Counterexamples
Formally
Verified NN

Localized Error and Plausible Fixes

*** H. Khedr, J. Ferlez, and Y. Shoukry, "PEREGRINN: Penalized-
Relaxation Greedy Neural Network Verifier,”CAV, 2021.

*** J. Ferlez and Y. Shoukry, "Bounding the Complexity of Formally
Verifying Neural Networks: A Geometric Approach," arXiv 2020.

***U. Santa Cruz, J. Ferlez, and Y. Shoukry, "Safe-by-Repair: A Convex
Optimization Approach for Repairing Unsafe Two-Level Lattice Neural
Network Controllers," arXiv 2021.



Thanks |

J % |
5 i
1 3 II 1

]
; w" f \ a oy
] [ 4 ' ;
*
‘IIIIE:L“'IIIII
1

Xiaowu  Haitham Wael  Ulices Santa  Momina
Khedr Fatnassi ~ Cruz Leal Sajid

NORTHROP
GRUMMAN

/

CPS Lab
esilient



