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What is this talk NOT about?

• Disclaimer; I am not going to tell you if SAT can be solved in polytime. 
Nor am I going to provide any clues towards the answer.



What is this talk about?

• When faced with a hard math problem, there is always the 
temptation to think: 

“maybe this problem is inherently irresolvable. Maybe the reason we 
fail to find the answer is not our lack of wisdom, but rather that no 
such answer (=proof) exists?”



The goal of this research 

Why do we fail to resolve basic computational

complexity questions?

Could it be that the P vs NP issue is “un-resolvable”?

More concretely: 

Is it likely that the tools of our mathematical reasoning are

inherently too weak to determine relationships between

complexity classes?

 Should we direct our efforts to answering these logic oriented questions,

rather than struggle with the computational complexity issues themselves?



Insolvability or “Independence” results
Background

 Hilbert’s Program (1920) – develop formal methods that will resolve

all mathematical questions.

 Godel’s Incompleteness results (1931) - Hilbert’s plan is bound to fail;

Every reasonable mathematical framework has irresolvable questions.

Terminology: A statement s is independent of a theory T, if T cannot 

prove s and T cannot prove ¬s.

Godel’s Incompleteness Theorem:

If T is a sound and consistent theory then Con(T) is independent of T.

(In particular, any consistent theory cannot prove its own consistency).

 Is it relevant to “real” mathematical questions?

(or are all independent statements “self-referential” or logic-oriented)?



Towards “Real” independence results
Background –Set Theory and Arithmetic

Set Theory - ZFC (Zermelo, Fraelkel, Skolem 1908-1922) –

a formal theory that defines what is a mathematical proof.

All of standard mathematics can be based on this axiom system. 

Peano Arithmetic - PA  (1908 ?) – A formal theory for reasoning about

natural numbers. 

Equivalent to ZFC minus the axiom stating that there exists an infinite set.

ZFC proves Con(PA), so it is stronger than PA even w.r.t. statements

about natural numbers.



“Real” independence results
Cohen’s Forcing technique

 Paul Cohen (1960) – Introduces the forcing techniques and proves

the first independence of Set Theory result for a “real” question.

Namely, the continuum hypothesis is independent of ZFC.

 More independence-of-Set-Theory results –

in cardinal arithmetic, infinite combinatorics, group theory, topology,

functional analysis and even machine learning.



Independence results for computational 
complexity

• Independence of oracle classes w.r.t. any theory 

Hartmanis-Hopcroft (1976) :

Given any theory T, construct a Turing machine M, s.t.                                                                                                                            
“PL(M) vs NPL(M)” is independent of T.

• Independence w.r.t. weak fragments of PA:
• Artificial fragments (DeMillo- Lipton 1979, Sazanov 1980).

• Bounded Arithmetic and conditional independence results (Razborov
1995).

• Limitations of proof techniques – Relativising proofs (Baker Gill Solovay, 
1975), Natural proofs (Razborov-Rudich 1997), Algebrizing proofs (Aaronson-
Wigderson, 2008) .



Can we prove the independence of 
P vs NP from set theory?

There are inherent limitations to forcing:

in particular, forcing cannot show the independence 
of any statement that involves only natural numbers 
(or finite sets).

P vs NP is such a statement:

“For every code p of a Turing machine, 

and every k, 

there is a propositional formula x

so that the machine that runs p for |x|k steps

fails to determine the satisfiability of x.”



What can we hope to prove?

Non-provability w.r.t. PA

• The weaker a theory, the easier it should be to find 
statements that it fails to prove.

• Independence w.r.t. PA should be quite 

satisfactory, since there is no reason to assume that 
one needs the existence of an infinite set to resolve the 
complexity of SAT.



Independence from PA 
of real mathematical statements

• Paris Harrington (1977) – a version of the finite Ramsey 
theorem is true (i.e. provable from ZFC), but cannot be 
proven from PA.

• Similar results proven later for a variety of statements 
about natural numbers (Hercules and the Hydra, 
Goodstein sequences and more).

• The structure of the PH statement is similar that of P≠NP: 

“for all x there exist y such that φ(x,y)”. 

(where φ(x,y) is quantifier-free)



The conclusions of this work

1. If SAT can be solved by an “almost polynomial” time 
algorithm then T fails to prove P ≠ NP.

(This holds for any theory T, 

where the precise meaning of

“almost polynomial” depends on T).



The conclusions of this work

2. If T is sufficiently strong then the reverse statement 
holds as well. Namely, the only possible reason for the 
failure of T to prove P ≠ NP is that SAT can be solved by 
an almost polytime algorithm.

• Loosely stated –

proving that mathematics cannot prove P≠NP, amounts 
to proving that P≈NP.



What do we mean by “almost polynomial”?

We would consider algorithms that run in time nf(n)  

where, f(n) grows very very slowly. 

In other words, the running time is constant on huge 
stretches on input lengths.

Such functions, f(n), are the inverses of fast growing 
functions.



The basic tool –
Fast growing functions

The Wainer Hierarchy:

•

• Note that the Ackerman function is Fω in this sequence.



Fast growing functions - example

• The Wainer Hierarchy:



Very very fast growing functions

• Let ε0 be the first ordinal α s.t.ωα=α.

This is the limit of the sequence

(this is ordinal exponentiation, so all these ordinal are countable). 

We will be interested in Fε0



• The approximation rate of a language by a complexity class:

For a language L and a complexity class C,

let M1, M2, … be some canonical enumeration of C,
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Furthermore, the faster RL
C grows, the closer is L to the 

class C.

Approximation rate and complexity



Let M1, M2, … enumerate of all P-time machines such that 
• the mapping from i to (a code of) Mi can be computed in linear 

time, and
• for all i, the running time of Mi  is bounded by nlog(i)

Then, for any easily computable function g that bounds R-1

(where R is the approximation rate of SAT by P),

SAT is in ))((DTIME ))(log(1 ngn ng 

Corollary: If the approximation rate of SAT by P is a fast 

growing function, then SAT has “almost-polynomial” algorithms.

SAT and fast growing functions



• At this point, we have two ingredients of our line of reasoning – fast 
growing functions, and their relation to SAT and the class P.

• The next (and final) ingredient we need, is relating it to provability 
(and in particular,

to the provability of P ≠ NP). 

Where are we at this point?



Provably recursive functions

• A function is provably recursive w.r.t. a theory T, if it is recursive, and the 
theory can prove that it is a total function.

I.e., the function is computable by some algorithm A s.t. 

T proves that A halts on every input.

• The provably recursive functions w.r.t. PA and PA1

are the same (hence we’ll just call them “provably recursive”).



Fast growing functions and provability

• Wainer’s theorem : 
1.Fα is provably recursive for every α < ε0

2.If a function is provably recursive, then it is 
dominated by Fα for some α < ε0

• Corollary:

If a function grows very fast (i.e., no Fα dominates it), 
then PA, as well PA1  cannot prove that it is total.



The relation to independence results

• The Paris Harrington independent statement 
“for all x there is y such that φ(x,y)”

can be viewed as stating the totality of some recursive function. 

• The proof of independence from PA amounts to showing that this 
function grows so fast that it is not dominated by the Wainer 
functions.

(This basic structure repeats in most other 
Independence-w.r.t.-PA proofs)



Conclusion - a sufficient condition for the non-
provability of P≠NP

• If the approximation rate of SAT by P is a very fast 
growing function, then

PA cannot prove that P≠NP.

• Corollary: If SAT can be solved by almost polynomial 
algorithms then PA cannot prove that P≠NP.

• In fact, the only effect of PA on this result is for  
quantifying the meaning of  “almost polynomial” 
algorithms. 



Inverses of fast growing functions

• Let g be a monotone increasing function that is not dominated by the Wainer
hierarchy.

For every monotone provably recursive f,

there are infinitely many n’s such that

“for every m between n and A(n), g-1(m) < f--1(m) 

and f(m) > g(m)”

where A(n) is the Ackermann function

(or any of your favorite fast growing p.r. functions)

• It follows that if R is fast growing, there is an 

algorithm for SAT whose run time is a fixed polynomial on infinitely many VERY 
long intervals, [f(m), f(m+1)).



The next step:
Showing that a fast growing R is the 
only potential reason for 
non-provability of P≠NP



Our Approach – Strengthening PA

We argue that proving independence of P vs NP is almost equivalent 
to discovering the actual answer.

The stronger the theory, the stronger the consequences of being 
independent of the theory.

We consider a strong extension of PA, PA1.

In a sense, it is unrealistically strong – it is not a recursive theory.  

Yet, no currently known technique can separate the two. 

All independence-w.r.t.-PA results (of “real mathematical 
statements”) are, in fact, independence-w.r.t.- PA1

(more on PA1 later in the talk).



The Theory PA1

• A first order formula (in the language of arithmetic) is a π1  

formula if it has the form

where φ has only bounded quantifiers.

• PA1 is the proof system that has 

PA{Ψ: Ψ is a π1  formula that is true in the standard 
model of Arithmetic} 

as its set of axioms.

)(xx



Some properties of the theory PA1

• It is not a recursive theory….

• Representation independence:

If two (codes of) Turing machines compute the same language, then 
this equivalence is provable in PA1 (in fact it is the minimal extension 
of PA with this property).

• If P=NP then PA1 proves it



The necessary condition

Theorem: PA1 proves P≠NP if and only if

for some α<ε0  , Fα dominates the approximation rate 
of SAT by P.

Proof Idea (of the left-to-right direction):

If R is dominated by a provably recursive F, then P≠NP
is equivalent to 

“every P machine Mi fails to compute SAT on some 
input of length < F(i)”

which is a true π1   formula.

Corollary: If PA1 fails to prove P≠NP, then SAT has

almost polytime algorithms.



More on the significance of PA1

• The generic way to prove that a theory T does not prove 
some statement Ψ, is to build a model for     T  {¬Ψ}.

• We do that, by starting with a model M for T,      and 
constructing a sub-model M’M

s.t. M’ ╞T  {¬Ψ}.

• In that case, M’ satisfies the π1 theory of M.

• Applying this paradigms to models of PA, yields the 
independence of the statement Ψ from PA1.



The Bottom line

• If it is provable (by any method known

today) that P≠NP is not provable in PA,

then  SAT is in DTIME(ng(n)) where g-1

is a very fast growing function (i.e., not dominated by the Wainer 
hierarchy).



Similar results for circuit complexity 
follow by these arguments



Related Open Questions

• Can SAT be easy for arbitrarily long stretches of inputs and yet by 
worst-case hard?

• Can we find a recursive sub-theory of PA1 that suffices for our result?

(we mean a theory that we can prove is a subset of PA1, not 
PA+”P=NP” …).


