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Fundamental theories

T2 ⊂ IΣ1 ⊂ PA ⊂ SOA ⊂ ZFC ⊂

ZFC+strongly inaccessible cardinal ⊂ ZFC+measurable cardinal ...

By Gödel’s Theorem they prove more true Π1 sentences, but do
they prove more sentences relevant to computational complexity?

Related question:
Is the hierarchy of subtheories T 1

2 ⊆ T 1
2 ⊆ . . . of Bounded

Arithmetic strictly increasing?

[2]



Fundamental theories

T2 ⊂ IΣ1 ⊂ PA ⊂ SOA ⊂ ZFC ⊂

ZFC+strongly inaccessible cardinal ⊂ ZFC+measurable cardinal ...
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Example: proof complexity of algorithms

I Given a problem P and an algorithm A that solves P, we can
ask:

What is the weakest theory that proves the soundness of A?

I Given a problem P and a time bound t, we can ask:

What is the weakest theory T such that for some A, T proves
that A solves P in time t?

Example (KP’94)

If FACTORING is hard, then S1
2 does not prove the soundness of

any polynomial time algorithm for PRIMALITY.

We are not able to prove the soundness of AKS algorithm in any
fragment of T2.

[3]
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I The soundness of algorithm A for a problem P means that A
solves P.

I We can always formalize A so that ZFC (or any theory) does
not prove the soundness.

I Can we formalize every algorithm so that its soundness is
provable in PA (or some other fixed theory)?

[4]
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Syntactic and semantic classes

The rule of thumb:

I syntactic classes have complete problems

I semantic classes do not

The reason why a semantic class C does not have complete
problems is:

1. we need a proof of the defining condition to show P ∈ C,

2. there is no single theory T that is able to prove it for all
P ∈ C.

[5]
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TAUT
TAUT=df DNF tautologies

Proof systems

1. complete (can always be made syntactic)

2. sound (semantic)

Polynomial simulations

Conjecture (TAUT conjecture)

Equivalent formulations

1. There is no proof system that simulates all proof systems.

2. There is no consistent theory that proves the soundness of all
proof systems.

Proposition

TAUT conjecture → EXP6=NEXP.

[6]
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DisjNP

DisjNP=df {(A,B)| A,B ∈ NP ∧ A ∩ B = ∅}

Polynomial reductions (Turing or many-one)

Conjecture (DisjNP conjecture)

Equivalent formulations

1. There is no complete disjoint NP pair.

2. There is no consistent theory that proves the disjointness of
all disjoint NP pairs.
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The canonical pair of a proof system P

Definition (R’94)

AP = {(φ, 0n)| φ ∈ CNF ∧ ∃ P-refutation of φ of length ≤ n};

SAT ∗ = {(φ, 0n)| φ ∈ SAT}.

Fact
If P simulates Q, then (AQ ,SAT

∗) is reducible to (AP ,SAT
∗).

Corollary (KMT’03)

DisjNP conjecture ⇒ TAUT conjecture.

[8]
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TFNP

TFNP = Total Function NP

Definition
A TFNP problem is given by a binary relation R in P and a
polynomial bound r such that

∀a∃b |b| ≤ r(|a|) ∧ R(a, b).

The task is, for a given a, to find b such that |b| ≤ r(|a|)∧R(a, b).

Reduction R to R ′

I many-one: R ′(f (a), b)→ R(a, g(a, b)),

I or Turing: R(a, g oracleR′
(a))

[9]
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Example

FACTORING ∈ TFNP. We believe it is not solvable in polynomial
time.

Conjecture (TFNP conjecture)

Equivalent formulations

1. There is no complete TFNP problem.

2. There is no consistent theory that proves totality of all TFNP
problems.

Evidence?

I The set of provably total computable functions increases with
the strength of the theories.

I The well-known characterizations of provably total TFNP
problems in fragments of bounded arithmetic suggest that
these sets also increase.

[10]
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DisjCoNP

DisjCoNP=df {(A,B)| A,B ∈ coNP ∧ A ∩ B = ∅}

Polynomial reductions (Turing or many-one)

Conjecture (DisjCoNP conjecture)

Equivalent formulations

1. There is no complete disjoint coNP pair.

2. There is no consistent theory that proves the disjointness of
all disjoint coNP pairs.

Proposition

DisjCoNP conjecture ⇒ TFNP conjecture.

[11]



DisjCoNP

DisjCoNP=df {(A,B)| A,B ∈ coNP ∧ A ∩ B = ∅}

Polynomial reductions (Turing or many-one)

Conjecture (DisjCoNP conjecture)

Equivalent formulations

1. There is no complete disjoint coNP pair.

2. There is no consistent theory that proves the disjointness of
all disjoint coNP pairs.

Proposition

DisjCoNP conjecture ⇒ TFNP conjecture.

[11]



DisjCoNP

DisjCoNP=df {(A,B)| A,B ∈ coNP ∧ A ∩ B = ∅}

Polynomial reductions (Turing or many-one)

Conjecture (DisjCoNP conjecture)

Equivalent formulations

1. There is no complete disjoint coNP pair.

2. There is no consistent theory that proves the disjointness of
all disjoint coNP pairs.

Proposition

DisjCoNP conjecture ⇒ TFNP conjecture.

[11]



DisjNP

##

DisjCoNP

zz

TAUT

##

TFNP

{{

P 6= NP

“X” means: “X does not have a complete problem”

Where is SAT?
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SAT

As for TAUT, we have

I proof systems for SAT

I polynomial simulations

But

I the standard proof system for SAT = satisfying assignments

I the standard proof system is polynomially bounded

I yet, some proof systems for SAT are not polynomially bounded

[13]
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Example

Define a proof system PFACTORING for SAT by defining a proof of
φ(x̄) to be either

1. a satisfying assignment ā, or

2. n if n is a non-prime and φ(x̄) expresses the fact that x̄ is a
proper divisor of n.

Fact
If FACTORING is hard, then the standard proof system does not
polynomially simulate this system.

[14]
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Some natural proof systems for SAT

Observation

φ(x̄) ∈SAT iff ∃x̄φ(x̄) is a quantified propositional tautology.

I G is a sequent calculus for quantified propositional
tautologies.

I Gi is G restricted to Σq
i sequents.

I G ∗i is the tree-like version of Gi .

I G ∗1 is polynomially equivalent to Frege systems w.r.t.
propositional tautologies.

Proposition

The standard proof system polynomially simulates G ∗1 w.r.t.
existentially quantified propositions.

[15]
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Proposition

The standard proof system polynomially simulates G ∗1 w.r.t.
existentially quantified propositions.

Theorem (witnessing for G ∗1 , Cook 2002)

Given a G ∗1 -proof of ∃ȳ .φ(x̄ , ȳ) and an assignment x̄ := ā, one can
construct in polynomial time b̄ such that φ(ā, b̄) is true.

Proof of Proposition.

Given a proof of ∃ȳ .φ(ȳ) we get in polynomial time b̄ that satisfies
φ(ȳ).

[16]
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Theorem
If there is an optimal proof system for SAT, then there exists a
complete problem in TFNP.

Proof.
Given a TFNP problem R, we define a proof system PR for SAT:

I same construction as with NONPRIME, i.e., a is a proof of
satisfiability of R(a, y).

Given a proof system Q for SAT, define a TFNP problem RP :

I RQ(x , y) iff

1. x = (φ, v), v is a Q-proof of φ, and y is a satisfying
assignment for φ;

2. y = 0 if x is not of this form.

Soundness of P implies that RP is total.

I If PR is reducible to Q, then R is reducible to RQ .

Hence if Q is an optimal proof system for SAT, then RQ is complete in
TFNP.

[17]
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Example
Suppose PFACTORING is reducible Q. Then, given a non-prime n, we get a
Q-proof v of φ, where φ(x̄) expresses that x is a proper divisor of n.

If b satisfies RQ((φ, v), b), then b satisfies φ, hence it is a proper divisor
of n.

Hence we can compute a proper divisor of n using an oracle for solutions
of RQ .

[18]
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Conjecture (SAT conjecture)

SAT does not have an optimal proof system.

Corollary

TFNP conjecture ⇒ SAT conjecture.

DisjCoNP

zz

DisjNP

##

TFNP

}}

TAUT

##

SAT

||

P 6= NP

“X” means: “X does not have a complete problem”

[19]
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Relativizations

DisjCoNP

?

zz

DisjNP
6=

##

TFNP
?

}}

TAUT
6=

##

SAT
6=

||

P 6= NP

I DisjCoNP 6⇒ TAUT [Khaniki’19]

I DisjNP 6⇒ SAT [Dose’20]
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Thank You
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