TAUT, TFNP and SAT

Pavel Pudlák Mathematical Institute, Czech Academy of Sciences, Prague

Simons SAT Program Seminar, April 14, 2021

Fundamental theories

$\mathit{T}_2 \subset \mathit{I}\Sigma_1 \subset \mathit{P}A \subset \mathit{SOA} \subset \mathit{ZFC} \subset$

ZFC+strongly inaccessible cardinal $\subset ZFC+$ measurable cardinal ...

Fundamental theories

$\mathit{T}_2 \subset \mathit{I}\Sigma_1 \subset \mathit{P}A \subset \mathit{SOA} \subset \mathit{ZFC} \subset$

ZFC+strongly inaccessible cardinal $\subset ZFC+$ measurable cardinal ...

By Gödel's Theorem they prove more true Π_1 sentences, but do they prove more sentences relevant to computational complexity?

Fundamental theories

$\mathit{T}_2 \subset \mathit{I}\Sigma_1 \subset \mathit{P}A \subset \mathit{SOA} \subset \mathit{ZFC} \subset$

ZFC+strongly inaccessible cardinal $\subset ZFC+$ measurable cardinal ...

By Gödel's Theorem they prove more true Π_1 sentences, but do they prove more sentences relevant to computational complexity?

Related question: Is the hierarchy of subtheories $T_2^1 \subseteq T_2^1 \subseteq \ldots$ of Bounded Arithmetic strictly increasing?

Given a problem P and an algorithm A that solves P, we can ask:

What is the weakest theory that proves the soundness of A?

Given a problem P and an algorithm A that solves P, we can ask:

What is the weakest theory that proves the soundness of A?

Given a problem P and a time bound t, we can ask:
What is the weakest theory T such that for some A, T proves that A solves P in time t?

Given a problem P and an algorithm A that solves P, we can ask:

What is the weakest theory that proves the soundness of A?

Given a problem P and a time bound t, we can ask: What is the weakest theory T such that for some A, T proves that A solves P in time t?

Example (KP'94)

If FACTORING is hard, then S_2^1 does not prove the soundness of any polynomial time algorithm for PRIMALITY.

Given a problem P and an algorithm A that solves P, we can ask:

What is the weakest theory that proves the soundness of A?

Given a problem P and a time bound t, we can ask:
What is the weakest theory T such that for some A, T proves that A solves P in time t?

Example (KP'94)

If FACTORING is hard, then S_2^1 does not prove the soundness of any polynomial time algorithm for PRIMALITY.

We are not able to prove the soundness of AKS algorithm in any fragment of T_2 .

The soundness of algorithm A for a problem P means that A solves P.

- The soundness of algorithm A for a problem P means that A solves P.
- We can always formalize A so that ZFC (or any theory) does not prove the soundness.

- The soundness of algorithm A for a problem P means that A solves P.
- We can always formalize A so that ZFC (or any theory) does not prove the soundness.
- Can we formalize every algorithm so that its soundness is provable in PA (or some other fixed theory)?

Syntactic and semantic classes

The rule of thumb:

- syntactic classes have complete problems
- semantic classes do not

Syntactic and semantic classes

The rule of thumb:

- syntactic classes have complete problems
- semantic classes do not

The reason why a semantic class $\ensuremath{\mathcal{C}}$ does not have complete problems is:

- 1. we need a proof of the defining condition to show $P \in C$,
- 2. there is no single theory T that is able to prove it for all $P \in C$.

TAUT

TAUT= $_{df}$ DNF tautologies

Proof systems

- 1. complete (can always be made syntactic)
- 2. sound (semantic)

Polynomial simulations

TAUT

 $TAUT =_{df} DNF$ tautologies

Proof systems

- 1. complete (can always be made syntactic)
- 2. sound (semantic)

Polynomial simulations

Conjecture (TAUT conjecture)

Equivalent formulations

- 1. There is no proof system that simulates all proof systems.
- 2. There is no consistent theory that proves the soundness of all proof systems.

TAUT

 $TAUT =_{df} DNF$ tautologies

Proof systems

- 1. complete (can always be made syntactic)
- 2. sound (semantic)

Polynomial simulations

Conjecture (TAUT conjecture)

Equivalent formulations

- 1. There is no proof system that simulates all proof systems.
- 2. There is no consistent theory that proves the soundness of all proof systems.

Proposition

TAUT conjecture \rightarrow EXP \neq NEXP.

DisjNP

 $\mathsf{DisjNP}_{df} \{ (A, B) | A, B \in \mathsf{NP} \land A \cap B = \emptyset \}$

Polynomial reductions (Turing or many-one)

DisjNP

 $\mathsf{DisjNP}_{df} \{ (A, B) | A, B \in \mathsf{NP} \land A \cap B = \emptyset \}$

Polynomial reductions (Turing or many-one)

Conjecture (DisjNP conjecture)

Equivalent formulations

- 1. There is no complete disjoint NP pair.
- 2. There is no consistent theory that proves the disjointness of all disjoint **NP** pairs.

The canonical pair of a proof system P

Definition (R'94) $A_P = \{(\phi, 0^n) | \phi \in CNF \land \exists P \text{-refutation of } \phi \text{ of length } \leq n\};$ $SAT^* = \{(\phi, 0^n) | \phi \in SAT\}.$ The canonical pair of a proof system P

Definition (R'94)

 $\begin{aligned} A_P &= \{ (\phi, 0^n) | \ \phi \in CNF \land \exists \ P \text{-refutation of } \phi \text{ of length } \leq n \}; \\ SAT^* &= \{ (\phi, 0^n) | \ \phi \in SAT \}. \end{aligned}$

Fact

If P simulates Q, then (A_Q, SAT^*) is reducible to (A_P, SAT^*) .

Corollary (KMT'03)

DisjNP conjecture \Rightarrow TAUT conjecture.

TFNP

 $\mathsf{TFNP} = \mathsf{Total} \mathsf{Function} \mathsf{NP}$

Definition

A TFNP problem is given by a binary relation R in \mathbf{P} and a polynomial bound r such that

 $\forall a \exists b | b | \leq r(|a|) \land R(a, b).$

The task is, for a given a, to find b such that $|b| \le r(|a|) \land R(a, b)$.

TFNP

 $\mathsf{TFNP} = \mathsf{Total} \mathsf{Function} \mathsf{NP}$

Definition

A TFNP problem is given by a binary relation R in \mathbf{P} and a polynomial bound r such that

 $\forall a \exists b | b | \leq r(|a|) \land R(a, b).$

The task is, for a given a, to find b such that $|b| \le r(|a|) \land R(a, b)$.

Reduction R to R'

- ▶ many-one: $R'(f(a), b) \rightarrow R(a, g(a, b))$,
- or Turing: $R(a, g^{\text{oracle}R'}(a))$

FACTORING \in TFNP. We believe it is not solvable in polynomial time.

FACTORING \in TFNP. We believe it is not solvable in polynomial time.

Conjecture (TFNP conjecture)

Equivalent formulations

- 1. There is no complete TFNP problem.
- 2. There is no consistent theory that proves totality of all TFNP problems.

FACTORING \in TFNP. We believe it is not solvable in polynomial time.

Conjecture (TFNP conjecture)

Equivalent formulations

- 1. There is no complete TFNP problem.
- 2. There is no consistent theory that proves totality of all TFNP problems.

Evidence?

- The set of provably total computable functions increases with the strength of the theories.
- The well-known characterizations of provably total TFNP problems in fragments of bounded arithmetic suggest that these sets also increase.

DisjCoNP

 $\mathsf{DisjCoNP}_{=df} \{ (A, B) | A, B \in \mathsf{coNP} \land A \cap B = \emptyset \}$

Polynomial reductions (Turing or many-one)

DisjCoNP

 $\mathsf{DisjCoNP}_{df} \{ (A, B) | A, B \in \mathsf{coNP} \land A \cap B = \emptyset \}$

Polynomial reductions (Turing or many-one)

Conjecture (DisjCoNP conjecture)

Equivalent formulations

- 1. There is no complete disjoint **coNP** pair.
- 2. There is no consistent theory that proves the disjointness of all disjoint **coNP** pairs.

DisjCoNP

 $\mathsf{DisjCoNP}_{df} \{ (A, B) | A, B \in \mathsf{coNP} \land A \cap B = \emptyset \}$

Polynomial reductions (Turing or many-one)

Conjecture (DisjCoNP conjecture)

Equivalent formulations

- 1. There is no complete disjoint **coNP** pair.
- 2. There is no consistent theory that proves the disjointness of all disjoint **coNP** pairs.

Proposition

DisjCoNP conjecture \Rightarrow TFNP conjecture.

"X" means: "X does not have a complete problem"

"X" means: "X does not have a complete problem"

Where is SAT?

As for TAUT, we have

- proof systems for SAT
- polynomial simulations

As for TAUT, we have

- proof systems for SAT
- polynomial simulations

But

- ▶ the standard proof system for SAT = satisfying assignments
- the standard proof system is polynomially bounded
- yet, some proof systems for SAT are not polynomially bounded

Define a proof system ${\cal P}^{\rm FACTORING}$ for SAT by defining a proof of $\phi(\bar{x})$ to be either

- 1. a satisfying assignment \bar{a} , or
- 2. *n* if *n* is a non-prime and $\phi(\bar{x})$ expresses the fact that \bar{x} is a proper divisor of *n*.

Define a proof system ${\cal P}^{\rm FACTORING}$ for SAT by defining a proof of $\phi(\bar{x})$ to be either

- 1. a satisfying assignment \bar{a} , or
- 2. *n* if *n* is a non-prime and $\phi(\bar{x})$ expresses the fact that \bar{x} is a proper divisor of *n*.

Fact

If FACTORING *is hard, then the standard proof system does not polynomially simulate this system.*

Some natural proof systems for SAT

Observation

 $\phi(\bar{x}) \in SAT$ iff $\exists \bar{x} \phi(\bar{x})$ is a quantified propositional tautology.

Some natural proof systems for SAT

Observation

 $\phi(\bar{x}) \in SAT$ iff $\exists \bar{x} \phi(\bar{x})$ is a quantified propositional tautology.

- G is a sequent calculus for quantified propositional tautologies.
- G_i is G restricted to Σ_i^q sequents.
- G_i^* is the tree-like version of G_i .
- G₁^{*} is polynomially equivalent to Frege systems w.r.t. propositional tautologies.

Some natural proof systems for SAT

Observation

 $\phi(\bar{x}) \in \mathsf{SAT}$ iff $\exists \bar{x} \phi(\bar{x})$ is a quantified propositional tautology.

- G is a sequent calculus for quantified propositional tautologies.
- G_i is G restricted to Σ_i^q sequents.
- G_i^* is the tree-like version of G_i .
- G₁^{*} is polynomially equivalent to Frege systems w.r.t. propositional tautologies.

Proposition

The standard proof system polynomially simulates G_1^* w.r.t. existentially quantified propositions.

Proposition

The standard proof system polynomially simulates G_1^* w.r.t. existentially quantified propositions.

Proposition

The standard proof system polynomially simulates G_1^* w.r.t. existentially quantified propositions.

Theorem (witnessing for G_1^* , Cook 2002)

Given a G_1^* -proof of $\exists \bar{y}.\phi(\bar{x},\bar{y})$ and an assignment $\bar{x} := \bar{a}$, one can construct in polynomial time \bar{b} such that $\phi(\bar{a},\bar{b})$ is true.

Proof of Proposition.

Given a proof of $\exists \bar{y}.\phi(\bar{y})$ we get in polynomial time \bar{b} that satisfies $\phi(\bar{y})$.

If there is an optimal proof system for SAT, then there exists a complete problem in TFNP.

Proof.

Given a TFNP problem R, we define a proof system P^R for SAT:

same construction as with NONPRIME, i.e., a is a proof of satisfiability of R(a, y).

If there is an optimal proof system for SAT, then there exists a complete problem in TFNP.

Proof.

Given a TFNP problem R, we define a proof system P^R for SAT:

same construction as with NONPRIME, i.e., a is a proof of satisfiability of R(a, y).

Given a proof system Q for SAT, define a TFNP problem R^P :

•
$$R^Q(x,y)$$
 iff

- 1. $x = (\phi, v)$, v is a Q-proof of ϕ , and y is a satisfying assignment for ϕ ;
- 2. y = 0 if x is not of this form.

Soundness of P implies that R^P is total.

If there is an optimal proof system for SAT, then there exists a complete problem in TFNP.

Proof.

Given a TFNP problem R, we define a proof system P^R for SAT:

same construction as with NONPRIME, i.e., a is a proof of satisfiability of R(a, y).

Given a proof system Q for SAT, define a TFNP problem R^P :

•
$$R^Q(x,y)$$
 iff

1. $x = (\phi, v)$, v is a Q-proof of ϕ , and y is a satisfying assignment for ϕ ;

2. y = 0 if x is not of this form.

Soundness of P implies that R^P is total.

• If P^R is reducible to Q, then R is reducible to R^Q .

If there is an optimal proof system for SAT, then there exists a complete problem in TFNP.

Proof.

Given a TFNP problem R, we define a proof system P^R for SAT:

same construction as with NONPRIME, i.e., a is a proof of satisfiability of R(a, y).

Given a proof system Q for SAT, define a TFNP problem R^P :

•
$$R^Q(x,y)$$
 iff

- 1. $x = (\phi, v)$, v is a Q-proof of ϕ , and y is a satisfying assignment for ϕ ;
- 2. y = 0 if x is not of this form.

Soundness of P implies that R^P is total.

• If P^R is reducible to Q, then R is reducible to R^Q .

Hence if Q is an optimal proof system for SAT, then ${\cal R}^Q$ is complete in TFNP.

Suppose $P^{\text{FACTORING}}$ is reducible Q. Then, given a non-prime n, we get a Q-proof v of ϕ , where $\phi(\bar{x})$ expresses that x is a proper divisor of n.

Suppose $P^{\text{FACTORING}}$ is reducible Q. Then, given a non-prime n, we get a Q-proof v of ϕ , where $\phi(\bar{x})$ expresses that x is a proper divisor of n.

If b satisfies $R^Q((\phi, v), b)$, then b satisfies ϕ , hence it is a proper divisor of n.

Suppose $P^{\text{FACTORING}}$ is reducible Q. Then, given a non-prime n, we get a Q-proof v of ϕ , where $\phi(\bar{x})$ expresses that x is a proper divisor of n.

If b satisfies $R^Q((\phi, v), b)$, then b satisfies ϕ , hence it is a proper divisor of n.

Hence we can compute a proper divisor of n using an oracle for solutions of R^Q .

Conjecture (SAT conjecture)

SAT does not have an optimal proof system.

Corollary

TFNP conjecture \Rightarrow SAT conjecture.

Conjecture (SAT conjecture)

SAT does not have an optimal proof system.

Corollary

TFNP conjecture \Rightarrow SAT conjecture.

"X" means: "X does not have a complete problem"

Relativizations

- ► DisjCoNP ⇒ TAUT [Khaniki'19]
- ▶ DisjNP ⇒ SAT [Dose'20]

Thank You