Conflict-driven first-order decision procedures¹

Maria Paola Bonacina

Dipartimento di Informatica, Università degli Studi di Verona, Verona, Italy, EU

Theoretical Foundations of SAT/SMT Workshop Satisfiability: Theory, Practice, and Beyond Program Simons Institute for the Theory of Computing

Berkeley, California, USA, 24 March 2021

¹ Based on joint work with Sarah Winkler and joint work with David A. Plaisted 4 🗇 🕨 4 🗄 🕨 4 🖹 🕨 🗎 🔗 🔍

Outline

The big picture SGGS via examples SGGS decision procedures Discussion

The big picture

SGGS via examples

SGGS decision procedures

Discussion

イロト イヨト イヨト イヨト

臣

Logic-based automated reasoning

Traditional view from the decidable towards the undecidable, and from the least towards the most expressive:

- Solvers for satisfiability in propositional logic (SAT)
- Solvers for satisfiability modulo theories (SMT)
- Theorem provers for first-order reasoning (ATP)
- Proof assistants for higher-order reasoning (ITP)

Current research trends challenge the borders

Current trends in automated reasoning

Integration and hybridization, e.g.:

At the border between higher-order and first-order logic, e.g.:

- Solvers and provers inside or as backend to proof assistants
- Higher-order automated theorem provers

At the border between first-order logic and SMT/SAT, e.g.:

- Quantifiers in SMT
- Conflict-driven reasoning in first-order logic
- In tools for applications

This talk: conflict-driven reasoning in first-order logic

What is conflict-driven reasoning

- Procedure to determine satisfiability of a formula
- Search for a model by building candidate models
- Assignments + propagation through formulas
- Conflict btw model and formula: explain by inferences
- Learn generated lemma to avoid repetition
- Solve conflict by fixing model to satisfy learned lemma
- Nontrivial inferences on demand to respond to conflicts

Conflict-driven reasoning

For SAT: Conflict-Driven Clause Learning (CDCL)

[Marques Silva, Sakallah: ICCAD 1996, IEEE TOC 1999]

 For several fragments T of arithmetic: conflict-driven T-satisfiability procedures

[Korovin et al.: CP 2009] [McMillan et al.: CAV 2009] [Cotton: FORMATS 2010] [Jovanović, de Moura:

JAR 2013] [Jovanović, de Moura: IJCAR 2012] [Brauße et al.: FroCoS 2019]

For SMT: Model Constructing Satisfiability (MCSAT)

[Jovanović, de Moura: VMCAI 2013]

 For SMT with combination of theories and SMA: Conflict-Driven Satisfiability (CDSAT)

[MPB, Graham-Lengrand, Shankar: CADE 2017, CPP 2018, JAR 2020]

Conflict-driven reasoning

- Question: And first-order logic?
- Semantically-Guided Goal-Sensitive (SGGS) reasoning [MPB, David A. Plaisted: PAAR 2014, JAR 2016, JAR 2017]
- This talk: can we get decision procedures from SGGS?
 - SGGS decision procedures for decidable fragments of first-order logic

[MPB, Sarah Winkler: IJCAR 2020]

Conflict-driven and model-constructing

SGGS basics

- S: set of clauses
- Semantic guidance: a fixed Herbrand interpretation I Sign-based: I = I⁻ all-negative or I = I⁺ all-positive
- $\mathcal{I} \not\models S$: search for a model
- SGGS works with a trail Γ: a sequence of (possibly constrained) clauses with selected literals
- represents an interpretation I[[] that modifies I by satisfying the selected literals
- Get either a Γ such that I[Γ] ⊨ S or a contradiction ⊥ (the empty clause)

Example I: SGGS finds a refutation

- ► S_1 contains {P(a), $\neg P(x) \lor Q(f(y))$, $\neg P(x) \lor \neg Q(z)$ }
- $\mathcal{I} = \mathcal{I}^-$ (all-negative)
- $\blacktriangleright \ \ \Gamma_0 \text{ is empty: } \mathcal{I}[\Gamma_0] = \mathcal{I} \not\models P(a)$
- Γ₁ = [P(a)] by SGGS-extension with empty mgu where [P(a)] is selected
- $\blacktriangleright \mathcal{I}[\Gamma_1] \not\models \neg P(x) \lor Q(f(y))$
- Γ₂ = [P(a)], ¬P(a) ∨ [Q(f(y))] by SGGS-extension with mgu α = {x ← a} where [Q(f(y))] is selected and ¬P(a) is assigned to [P(a)]

Example I: SGGS finds a refutation

whose literals are all assigned

Example I: SGGS finds a refutation

- ► S_1 contains {P(a), $\neg P(x) \lor Q(f(y))$, $\neg P(x) \lor \neg Q(z)$ }
- ► $\Gamma_4 = [P(a)], \neg P(a) \lor [\neg Q(f(y))], \neg P(a) \lor [Q(f(y))]$ by SGGS-move: $\mathcal{I}[\Gamma_4] \models \neg Q(f(y))$
- ► $\Gamma_5 = [P(a)], \neg P(a) \lor [\neg Q(f(y))], [\neg P(a)]$ by SGGS-resolution (with empty matching): the resolvent replaces the non- \mathcal{I}^- -all-true parent
- ► $\Gamma_6 = [\neg P(a)], [P(a)], \neg P(a) \lor [\neg Q(f(y))]$ by SGGS-move
- ► $\Gamma_7 = [\neg P(a)], \perp, \neg P(a) \lor [\neg Q(f(y))]$ by SGGS-resolution

Conflict-driven reasoning in SGGS

 $C = L_1 \vee \ldots [\underline{L_j}] \vee \ldots \vee L_k$

- Decision: SGGS-extension and literal selection adds all ground instances of L_i needed for *I*[Γ] ⊨ C
- Propagation:
 - Conflict clause: for all $i, 1 \le i \le k, \mathcal{I}[\Gamma] \models \neg L_i$
 - Implied literal and justification: for all i, 1 ≤ i ≠ j ≤ k, I[Γ] ⊨ ¬L_i
- Conflict solving:
 - Conflict explanation: SGGS-resolution
 - Learning: SGGS-move

Example II: SGGS finds a model

S₂ contains

 P(x, x, a), P(x, y, w) ∨ P(y, z, w) ∨ ¬P(x, z, w)
 ¬P(x, x, b), P(x, z, w) ∨ ¬P(x, y, w) ∨ ¬P(y, z, w)

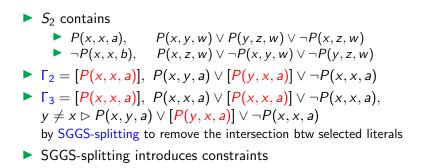
 I = *I*⁻ all-negative

 Γ₁ = [P(x, x, a)]

 Γ₂ = [P(x, x, a)], P(x, y, a) ∨ [P(y, x, a)] ∨ ¬P(x, x, a)
 by SGGS-extension with mgu α = {z ← x, w ← a}

(selecting P(x, y, a) makes no difference)

Example II: SGGS finds a model



Example II: SGGS finds a model

- $\mathcal{I}[\Gamma_4] \models S$: SGGS halts
- Is termination on this set expected? Yes and no

Why not? Because hyperresolution does not halt

- Semantic resolution: generate only resolvents false in *I* [Slagle: JACM 1967]
- Hyperresolution: semantic resolution with *I*⁻ or *I*⁺: sign-based semantic guidance

[Robinson: IJCM 1965]

- Positive hyperresolution: resolve a non-positive clause C with as many positive clauses as needed to resolve away with a simultaneous mgu all negative literals in C and get a positive resolvent (false in I⁻)
- Negative hyperresolution: dual with *I*⁺

Why not? Because hyperresolution does not halt

- S₂ contains
 - $\begin{array}{ll} \blacktriangleright & P(x,x,a), \qquad P(x,y,w) \lor P(y,z,w) \lor \neg P(x,z,w) \\ \blacktriangleright & \neg P(x,x,b), \qquad P(x,z,w) \lor \neg P(x,y,w) \lor \neg P(y,z,w) \end{array}$
- Positive hyperresolution generates infinitely many clauses from P(x, x, a) and P(x, y, w) ∨ P(y, z, w) ∨ ¬P(x, z, w)
- Negative hyperresolution generates infinitely many clauses from ¬P(x, x, b) and P(x, z, w) ∨ ¬P(x, y, w) ∨ ¬P(y, z, w)

[Fermüller, Leitsch, Hustadt, Tammet: AR Handbook 2001]

[Caferra, Leitsch, Peltier: Automated Model Building book 2004]

イロン イボン イヨン イヨン

Why yes? Because S_2 is in the Bernays-Schönfinkel class

- Also known as EPR for Effectively PRopositional
- Sentences of the form ∃*∀*φ
 φ: formula with neither quantifiers nor functions (constants allowed)
- Clausal form: replace ∃-quantified variables by Skolem constants; no function symbols; finite Herbrand base; decidable
- Decision procedures, e.g.: DPLL(SX) [Piskac, de Moura, Bjørner: JAR 2010], NRCL [Alagi, Weidenbach: FroCos 2015], SCL [Fiori, Weidenbach: CADE 2019]

イロト イボト イラト イラト

Towards SGGS decision procedures

- Does SGGS decide EPR? Yes
- Does SGGS decide other known decidable fragments of first-order logic? Some but not all (with sign-based semantic guidance)
- Does SGGS allows us to discover new decidable fragments of first-order logic? Yes

・ 同 ト ・ ヨ ト ・ ヨ ト

How SGGS makes progress

- Disjoint prefix dp(Γ): longest prefix of Γ with no intersection of selected literals
- Suppose $\perp \notin \Gamma$ and $\mathcal{I}[\Gamma] \not\models S$
- If Γ ≠ dp(Γ): remove intersection (SGGS-splitting) or solve conflict (SGGS-resolution, SGGS-move)
- If Γ = dp(Γ): as I[Γ] ⊭ C for some clause C ∈ S, extend Γ hence I[Γ] (SGGS-extension)
- Non-termination may come only from infinitely many SGGS-extensions

Fairness of a derivation

- Makes progress whenever possible
- Every SGGS-extension that adds a conflict clause is bundled with conflict solving
- Applies SGGS-deletion eagerly
- Does not neglect inferences on shorter prefixes to work on longer ones
- Fair search plan: all derivations are fair
- Limit Γ_{∞} of a fair derivation

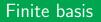
Fundamental theorems about SGGS

- ► S: input set of clauses
- A descending chain of length-bounded trails is finite
- A fair derivation is a descending chain
- SGGS is refutationally complete:
 if S is unsatisfiable, SGGS halts with a refutation
- SGGS is model-complete in the limit: if S is satisfiable, I[Γ_∞] ⊨ S

(4月) トイヨト イヨト

SGGS decision procedures

- Refutational completeness ensures termination on unsatisfiable inputs
- In order to get a decision procedure, we need termination on satisfiable inputs:
 - 1. Show that the length of SGGS-trails is bounded
 - 2. Show that only finitely many SGGS-extensions can apply



- S: input set of clauses
- A its Herbrand base
- Finite basis: finite subset $\mathcal{B} \subseteq \mathcal{A}$
- An SGGS-derivation is in the finite basis B if all ground instances of all clauses ever appearing on the trail are made of atoms in B

Termination of SGGS in a finite basis

► Finite basis B

Lemma: if a fair derivation is in B, at all stages the length of the trail is upper bounded by |B| (|Γ_j| ≤ |B|+1 and |Γ_j| ≤ |B| if dp(Γ_j) = Γ_j)

Theorem: a fair SGGS-derivation in a finite basis is finite

Decidability by the finite basis approach

- ▶ Fragment F
- Show that for all clause sets S of F there is a finite basis B for SGGS
- $\blacktriangleright \mathcal{B} \text{ may depend on } S$
- Then any fair SGGS-strategy is a model-constructing decision procedure for *F*

Small model property by the finite basis approach

Every satisfiable clause set ${\boldsymbol{S}}$ has a model whose cardinality is upper-bounded

- Finite basis \mathcal{B} for SGGS
- Fair SGGS-derivation: halts with a Γ such that $\mathcal{I}[\Gamma] \models S$
- ▶ Domain of I[Γ]: the Herbrand universe H for S infinite in general
- $\mathcal{H}(\mathcal{B}) \subseteq \mathcal{H}$: only the subterms of atoms in \mathcal{B}
- $\mathcal{H}(\mathcal{B})$ is finite as \mathcal{B} is finite
- ► Theorem: S has a model of cardinality |H(B)| + 1 that can be extracted from Γ

SGGS decides the stratified fragment

Stratified fragment [Abadi, Rabinovitch, Sagiv: JSC 2010]

- ▶ Well-founded ordering < on sorts: if $f: s_1 \times \ldots \times s_n \rightarrow s$ then $s < s_i$
- Sort-dependency graph: arc from s_i to s
- No cycles: no series such as a, f(a), f²(a), f³(a),... or a, f(a), g(f(a)), f(g(f(a))),...
- ▶ The finite basis B is the Herbrand base itself
- ▶ EPR is the special case with one sort: no function symbols
- Check stratification after Skolemization (∃*∀* is ok)

Ground-preserving clauses

Clause C: C^+ positive literals; C^- negative literals

- ► Negatively ground-preserving: Var(C) ⊆ Var(C⁺) [Kounalis, Rusinowitch: JSC 1991]
- ▶ Positively ground-preserving: $Var(C) \subseteq Var(C^-)$

[Fermüller, Leitsch: CSL 1993] [MPB, Lynch, de Moura: JAR 2011] Also known as range-restricted

S positively ground-preserving: positive clauses are ground, positive hyperresolution only generates ground clauses, and **Lemma:** so does SGGS with \mathcal{I}^- (suitable \mathcal{I})

Restrained clauses: intuition

 $S_3 = \{P(s^{10}(0), s^9(0)), \neg P(s(s(x)), y) \lor P(x, s(y)), \neg P(s(0), 0)\}$ $\mathcal{I} = \mathcal{I}^- \text{ all-negative}$

►
$$\Gamma_1 = [P(10,9)]$$

. . . .

►
$$\Gamma_2 = [P(10,9)], \neg P(10,9) \lor [P(8,10)]$$

$$\Gamma_3 = [P(10,9)], \ \neg P(10,9) \lor [P(8,10)], \ \neg P(8,10) \lor [P(6,11)]$$

► $\Gamma_6 = [P(10,9)], ..., \neg P(2,13) \lor [P(0,14)] \text{ and } \mathcal{I}[\Gamma_6] \models S_3$

 $P(s(s(x)), y) \succ P(x, s(y))$ \succ : KBO where s has positive weight

Restrained clauses

Restraining quasi-ordering \succeq :

- Stable (under substitutions)
- > > well-founded

▶ $\approx = \succeq \cap \preceq$ has finite equivalence classes

Clause C is (strictly) positively restrained:

- ▶ Positively ground-preserving $(Var(C) \subseteq Var(C^{-}))$
- For all non-ground L ∈ C⁺ there exists M ∈ C⁻ such that M ≥ L (M ≻ L)

Why a quasi-ordering? differ(x,y) $\lor \neg$ differ(y,x): differ(x,y) \succeq_{acrpo} differ(y,x)

SGGS decides the restrained fragment

S restrained set of clauses, \mathcal{A} its Herbrand base

- \mathcal{A}_S : set of ground atoms in S
- ▶ Finite basis: $\mathcal{A}_{\overline{S}}^{\prec} = \{L : L \in \mathcal{A}, \exists M \in \mathcal{A}_{S} \text{ with } M \succeq L\}$: the ground atoms upper-bounded by those in *S*
- **Lemma:** any fair SGGS-derivation with suitable \mathcal{I} is in \mathcal{A}_{S}^{\leq}
- Theorem: any fair SGGS-derivation halts, is a refutation if S is unsatisfiable, and constructs a model of S if S is satisfiable
- **Corollary:** S satisfiable, model of size $|\mathcal{H}(\mathcal{A}_{S}^{\leq})| + 1$

In the example, S_3 has a model of cardinality 21

More positive results

- SGGS decides the positive variable dominated (PVD) fragment, also by the finite basis approach
- Positive hyperresolution and positive ordered resolution decide the positively restrained fragment
- Negative hyperresolution and negative resolution decide the negatively restrained fragment

How to determine that a set of clauses is restrained

- ► Reduce restrainedness of C ∈ S to termination of a rewrite system (R_S, E_S) such that
- ▶ For all non-ground $L \in C^+$ there exists in $\mathcal{R}_S \cup \mathcal{E}_S$ a rewrite rule $M \rightarrow L$ for some literal $M \in C^-$
- ▶ \mathcal{E}_S for permutative rules: e.g. $differ(x, y) \rightarrow differ(y, x)$
- Lemma:
 - $\rightarrow_{\mathcal{R}_S}$ terminating and $\mathcal{E}_S = \emptyset$: *S* strictly positively restrained
 - ► $\leftrightarrow_{\mathcal{E}}^* \circ \to_{\mathcal{R}} \circ \leftrightarrow_{\mathcal{E}}^*$ terminating, $\mathcal{V}ar(t) = \mathcal{V}ar(u)$ for all $t \to u$ in \mathcal{E}_S , and $\leftrightarrow_{\mathcal{E}}^*$ has finite equivalence classes, S is positively restrained
- Apply a termination tool such as T_TT₂ or AProVE

Experimental results

- Source of clause sets: Geoff Sutcliffe's TPTP 7.2.0
- Problems in the FOF category without ~, reduced to CNF: 5,001 benchmarks
- Script StoR to generate \mathcal{R}_S and \mathcal{E}_S from clause set S
- Termination tool: T_TT₂
- Either StoR or T_TT₂ timed out on 1,539 inputs
- Out of the remaining 3,462 problems T_TT₂ found 349 restrained, 43 of which are in no other decidable class

The Koala SGGS-based prototype theorem prover

- Written by Sarah Winkler
- Imports code for basic data structures, term indexing, and type inference from Konstantin Korovin's iProver
- Stores selected literals in a discrimination tree for unification
- Implements a fair search plan
- Recognizes stratified problems by checking acyclicity
- Picks I⁻ or I⁺ based on whether the input is positively or negatively ground-preserving

Experimental results with Koala

- Time-out: 300 sec of wall-clock time
- 349 restrained problems: 50 satisfiable and 283 unsatisfiable
- 351 PVD problems: 76 satisfiable and 232 unsatisfiable
- 1,246 stratified problems: 277 satisfiable and 643 unsatisfiable

Negative results with sign-based semantic guidance

SGGS with \mathcal{I}^- or \mathcal{I}^+ does not decide the following fragments that admit (ordered, not hyper) resolution-based decision procedures:

- Ackermann $(\exists^* \forall \exists^* \varphi)$ [Joyner: JACM 1976]
- Monadic (no functions, unary predicates) [Joyner: JACM 1976]
- FO² (no functions, unary predicates)
 [Scott: JSL 1962] [Grädel, Kolaitis, Vardi: BSL 1997] [Joyner: JACM 1976]
- ► Guarded (no functions, $\forall \bar{y}.(R(\bar{x}, \bar{y}) \supset \psi[\bar{x}, \bar{y}]), \exists \bar{y}.(R(\bar{x}, \bar{y}) \land \psi[\bar{x}, \bar{y}]))$ [de Nivelle, de Rijke: JSC 2003]

Current work on SGGS decision procedures

- Relationship between SGGS and hyperresolution:
 - If clauses are ground-preserving, SGGS halts whenever hyperresolution does
 - SGGS decides the bounded depth increase (BDI) fragment
- More new decidable fragments: SGGS decides the
 - Sort-restrained fragment (restrained on cyclic sorts)
 - Sort-refined PVD fragment (PVD on cyclic sorts)
 - Controlled Horn fragment (not ground-preserving): by the second approach (finitely many SGGS-extensions)
- Modularity of termination
- Complexity of SGGS via derivation length

Future work

- More work on strategies and inner algorithms for SGGS
- Further development of the Koala prover
- Extension to equality
 - SGGS(superposition)
 - CDSAT(SGGS)
- Initial interpretations not based on sign

- 4 回 ト 4 ヨ ト 4 ヨ ト

References

- Semantically-guided goal-sensitive reasoning: decision procedures and the Koala prover. In preparation (with Sarah Winkler).
- SGGS decision procedures. Proc. 10th IJCAR, Springer, LNAI 12166:356–374, 2020 (with Sarah Winkler).
- Semantically-guided goal-sensitive reasoning: inference system and completeness. *Journal of Automated Reasoning*, 59(2):165–218, 2017 (with David A. Plaisted).
- Semantically-guided goal-sensitive reasoning: model representation. Journal of Automated Reasoning 56(2):113–141, 2016. (with David A. Plaisted).
- SGGS theorem proving: an exposition. Proc. 4th PAAR Workshop, EPiC 31:25-38, 2015 (with David A. Plaisted).

Thank you!

Maria Paola Bonacina Conflict-driven first-order decision procedures

イロト イヨト イヨト イヨト

э