A Finite-Model-Theoretic View on Propositional Proof Complexity

Erich Grädel, Martin Grohe, Benedikt Pago, Wied Pakusa

Mathematical Foundations of Computer Science - RWTH Aachen University

April 7, 2021

What does Proof Complexity have to do with Finite Model Theory?

- **Proof Complexity:** Studies *proof systems* for refuting the satisfiability of propositional formulas (e.g. Resolution).
- Finite Model Theory: Studies expressive power of *fixed-point logics* on finite structures.
- Given a translation between propositional formulas and finite structures, the two formalisms can simulate each other.
- Application: Transferring *lower-bound* results between the two fields.

- Resolution and least fixed-point logic (LFP).
- Polynomial Calculus (PC) and fixed-point logic with counting (FPC).
- Lower-bound applications.

Resolution

Resolution is a sound and complete decision procedure for the following problem:

CNF-Unsatisfiability

Input: A propositional formula ψ in conjunctive normal form. **Question:** Is ψ unsatisfiable?

Resolution rule:

$$\frac{(X \lor \bigvee Y_i), \ \ (\neg X \lor \bigvee Z_j)}{(\bigvee Y_i \lor \bigvee Z_j)}$$

A CNF-formula ψ is unsat iff the empty clause is derivable from it. Complexity of a refutation:

- *Size:* Number of clauses in the refutation.
- Width: Size of largest clause.

Least fixed-point logic (LFP)

LFP extends first-order logic by fixed-point formulas of the following form:

Semantics

 $\mathfrak{A} \models [\mathbf{lfp} \ Rx. \ \varphi(x; R)](a)$ iff *a* is in the *least fixed-point* of the following sequence:

•
$$R_0 := \emptyset$$
.

•
$$R_{i+1} := \{ b \in \mathfrak{A} \mid \mathfrak{A} \models \varphi(b; R_i) \}.$$

Expressive power: $FO \leq LFP \leq PTIME$.

A first example: The Reachability problem

Reachability problem

Input: A directed graph G = (V, E, s, t). **Question:** Is there a path from *s* to *t*?

$$\varphi := [\mathbf{lfp} \ Rx. \underbrace{(x = s \lor \exists y(Ry \land E \ yx))}_{\text{"Add to } R \text{ each vertex } x \text{ that is } s \text{ or has a predecessor in } R"}](t).$$

Fixed-point computation:

- $R_0 = \emptyset$.
- $R_1 = \{s\}.$
- $R_2 = \{s, v, w\}.$

•
$$R_3 = \{s, v, w, t\}.$$

A first example: The Reachability problem

Reachability problem

Input: A directed graph G = (V, E, s, t). **Question:** Is there a path from *s* to *t*?

Set of propositional clauses (UNSAT iff

Translating finite structures to CNF-formulas

An *FO-interpretation* \mathcal{I} is an "FO-definable mapping between finite structures".

Main properties:

- Elements of $\mathcal{I}(\mathfrak{A})$ correspond to tuples of elements of \mathfrak{A} .
- Relations of $\mathcal{I}(\mathfrak{A})$ are FO-definable in \mathfrak{A} .
- For any structure \mathfrak{A} , the image $\mathcal{I}(\mathfrak{A})$ can be *computed without recursion/fixed-point induction*.

Simulation of LFP-formula φ in Resolution: The "input structure" \mathfrak{A} for φ is mapped to a *CNF-formula* $\mathcal{I}(\mathfrak{A})$.

Theorem

For every $\varphi \in \mathsf{LFP}$ there is an FO-interpretation \mathcal{I}_{φ} such that for every finite structure \mathfrak{A} :

 $\mathfrak{A} \models \varphi$ iff the Horn-formula represented by $\mathcal{I}_{\varphi}(\mathfrak{A})$ is unsat.

Proof.

Model-checking games for LFP on finite structures are *reachability games*. They can be solved by Resolution similarly as reachability. \Box

Theorem

There is an **LFP**-sentence φ_{unsat} such that, for any structure \mathfrak{A}_{ψ} representing a Horn-formula ψ :

$$\mathfrak{A}_{\psi}\models \varphi_{unsat}$$
 iff ψ is unsat.

Benedikt Pago (RWTH Aachen)

FMT and Proof Complexity

Existential LFP (**EFP**): Fixed-point update formulas may not contain universal quantification (**EFP** \leq LFP).

Theorem

On finite structures, EFP can be simulated by width-3 Resolution. For any $k \in \mathbb{N}$, width-k Resolution can be simulated in EFP. **Part II:** The Polynomial Calculus and Fixed-point logic with counting.

Fixed-point logic with counting (FPC) extends LFP by *counting terms*:

 $\#x[\varphi(x)]$

= "the number of elements x that satisfy φ "

Expressive power:

 $\mathsf{LFP} \lneq \mathbf{FPC} \lneq \mathsf{PTIME}.$

The **Polynomial Calculus** (PC) is a sound and complete decision procedure for the (complement of the) following problem:

Satisfiability of Polynomial Equation Systems

Input: A set \mathcal{P} of multilinear polynomials over a variable set \mathcal{V} . **Question:** Is there a $\{0,1\}$ -assignment to the variables in \mathcal{V} that is a common zero of all polynomials in \mathcal{P} ?

There is a PC-derivation of the $1\text{-}\mathsf{polynomial}$ from $\mathcal P,$ iff $\mathcal P$ is unsat.

Proof rules of the Polynomial Calculus

Let \mathbb{F} be a field, \mathcal{V} the set of variables, f, g polynomials.

Linear combination: $\frac{f \ g}{a \cdot f + b \cdot g}$ $a, b \in \mathbb{F}.$ Multiplication with variable: $\frac{f}{Xf}$ $X \in \mathcal{V}.$

Example

Let $\mathcal{P} = \{(XY - 1), X\}$. No common zero exists. **Proof:**

• Derive XY from X (*multiplication with variable*).

2 Derive 1 from (XY - 1) and XY (*linear combination*).

Complexity of Polynomial Calculus

Complexity measures for PC-refutations:

- *Size:* Number of polynomials in the refutation.
- *Degree:* Maximum degree of a polynomial in the refutation.
- (Field: The characteristic of the underlying field ${\mathbb F}$ affects the complexity, too).

Theorem (Clegg, Edmonds, Impagliazzo)

For any constant k, exhaustive proof search for the k-degree PC can be done in PTIME.

Proof.

There are only poly. many monomials. Hence, the derivable polynomials form a *vector space* of poly. dimension, which can be computed with the *Gröbner basis algorithm*.

Benedikt Pago (RWTH Aachen)

FMT and Proof Complexity

$\mathsf{PC} = \mathsf{FPC}$

Theorem

On finite structures, FPC can be simulated by degree-2 Polynomial Calculus over \mathbb{Q} (w.r.t. FO⁺-interpretations).

Conversely, for any $k \in \mathbb{N}$, there is an FPC-sentence that decides the existence of a degree-k PC-refutation over \mathbb{Q} .

Proof.

 $\begin{array}{l} \mathsf{FPC} \Rightarrow \mathsf{PC}: \mbox{ Solve model-checking games involving counting.} \\ \mathsf{PC} \Rightarrow \mathsf{FPC}: \mbox{ Implement Gröbner-basis algorithm in FPC (linear algebra over <math display="inline">\mathbb Q$ is feasible in FPC). \\ \end{array}

Results in summary

- **Goal:** Transfer lower bounds from finite model theory to proof complexity.
- A complexity measure for finite structures: "*Number of first-order variables* required to identify a structure up to isomorphism".
- For structures \mathfrak{A} and \mathfrak{B} , " $\mathfrak{A} \equiv^k \mathfrak{B}$ " means: \mathfrak{A} and \mathfrak{B} cannot be distinguished by any k-variable sentence.
- Idea: If $\mathfrak{A} \equiv^k \mathfrak{B}$, and \mathcal{I} an FO-interpretation, then $\mathcal{I}(\mathfrak{A})$ and $\mathcal{I}(\mathfrak{B})$ are indistuingishable in *k*-Resolution/*k*-PC.

Lower bounds for Graph Isomorphism

- Fact ("CFI-construction"): There are sequences of *non-isomorphic* graphs (𝔄_n)_{n∈ℕ}, (𝔅_n)_{n∈ℕ} of size O(n) with 𝔄_n ≡^{Ω(n)} 𝔅_n.
- Let \mathcal{I}_{lso} be any FO-interpretation that maps pairs of graphs to propositional formulas/polynomials expressing the *existence of an isomorphism*.
- \Rightarrow The resolution-*width*/PC-*degree* required to refute $\mathcal{I}_{Iso}(\mathfrak{A}_n, \mathfrak{B}_n)$ is at least *linear*.
- ⇒ The proof *size* is *exponential* (well-known relationship between width/degree and size).
- This is not new, but now more independent of the concrete encoding of graph isomorphism.
- Exponential resolution lower-bounds for *pigeonhole principle* and *three-colourability* can be reproved this way.