
Reasoning systems

from

descriptive complexity
Antonina Kolokolova,

Memorial U. of Newfoundland

Simons Institute, April 7th, 2021

How hard is it ?

 (G) = “Graph G is connected”T ` “Reachability is transitive”

What is the path from s to t in G?

To find ?

To prove ? To describe ?

How hard is it ?

Algorithms and

complexity

To describe ?

To find ?

To prove ?

Bounded arithmetic

(and proof systems)

Descriptive complexity

(finite model theory)

Complexity classes

AC0

L

NL

P

NP
co-NP

r.e.
co-r.e.

PH

◼ Here, only uniform classes.

◼ In particular, DLOGTIME-

uniform AC0

Fragments of SO

AC0

L

NL

P

NP
co-NP

r.e.
co-r.e.

PH

◼ On finite structures with arithmetic

◼ + and *, as well as ≤

◼ AC0 : first-order logic [BIS]

◼ NL : second-order 2CNF [Grädel]

◼ P : second-order Horn [Grädel]

◼ NP : second-order 9 logic [Fagin]

◼ PH: second-order logic [Stockmeyer]

FO

SO

SO9 SO8

Grädel’s characterizations

AC0

L

NL

P

NP
co-NP

r.e.
co-r.e.

PH

𝑆𝑁𝑃: formulas of the form

∃𝑃1…∃𝑃𝑘∀𝑥1…∀𝑥ℓ 𝜑

◼ Grädel’91:

◼ Restrict 𝜑 to Horn, 2CNF,..

◼ Resulting logics:

𝑆𝑂∃ 𝐻𝑜𝑟𝑛, 𝑆𝑂∃ 𝐾𝑟𝑜𝑚

◼ Over successor structures

◼ 𝑆𝑂∃ 𝐻𝑜𝑟𝑛 captures P

◼ 𝑆𝑂∃ 𝐾𝑟𝑜𝑚 captures NL FO

SO

SO9 SO8

AC0

L

NL

P

NP
co-NP

r.e.
co-r.e.

PH

◼ Need arithmetic (<,+,*) for

FO vs. AC0

◼ Successor for 𝑆𝑂∃ 𝐻𝑜𝑟𝑛 vs

P and 𝑆𝑂∃ 𝐾𝑟𝑜𝑚 vs NL

◼ 𝑆𝑂∃ captures NP over

general finite structures

◼ Two logics are equivalent iff

the corresponding complexity

classes are.
FO

SO

SO9 SO8

Descriptive complexity

From expressing to proving:

Theories of arithmetic

The uniform side of proof complexity

◼ Peano arithmetic

◼ Axioms of numbers + induction

◼ Too strong for efficient computation!

◼ Parikh’s bounded version 𝐼Δ0
◼ Axioms of numbers + bounded induction

◼ Too weak: can only do linear time hierarchy

◼ Cook’s PV:

◼ Exactly polynomial-time by design; equational.

◼ Buss’ bounded arithmetic

A little history

Much more on this in the next

week session of this workshop

◼ All quantifiers are bounded by terms in free variables.

◼ Power of a theory of arithmetic ~ how complex are the

functions it proves total.

◼ Complexity of formulas defining the functions also matters

◼ Caveat: Two theories capturing the same class of

functions may not be fully conservative over each other.

◼ A theory is conservative over another if it can prove the other

theory’s theorems

Bounded arithmetic

◼ Direct translations of the form “a theory proves
soundness of a proof system, and each proof in
the theory can be done in the proof system”.

◼ AC0 theory corresponds to Bounded Depth
Frege proof system; P-theory to Extended Frege.

Systems of arithmetic are uniform

counterparts to propositional proof systems.

◼ Language: 2-sorted arithmetic (numbers + strings)

◼ Axioms:

◼ For numbers: standard (𝑥 + 1 ≠ 0, etc)

◼ For strings: defining length and string equality

◼ 𝑋 𝑦 → 𝑦<|X|, 𝑦 + 1 = 𝑋 → 𝑋(𝑦),..

◼ Comprehension: for a class of formulas Φ

◼ ∃𝑋 ≤ 𝑛 ∀𝑧 < 𝑛 𝑋 𝑧 ↔ 𝜑 𝑧 for 𝜑 ∈ Φ

◼ Can also add induction (provable in all our theories):

◼ 𝑋 0 ∧ ∀𝑦 < 𝑛 𝑋 𝑦 → 𝑋 𝑦 + 1 → 𝑋(𝑛)

Let’s build a theory

◼ For Φ the levels of SO, get (2-sorted analogues)
of Buss’ hierarchy 𝑆2

𝑖

◼ Does it capture the corresponding classes?

◼ Buss’ witnessing: 𝑆𝑂∃-theory captures P.

◼ If it proves that a function is in NP Å co-NP, the
function is in P.

◼ Generalizes to levels of PH

◼ What would it take to capture a class of functions
exactly?

Bounded arithmetic

◼ First-order: Buss’s basic theories Si
2, T

i
2. Have

x#y = 2|x|*|y| in the language. Do not capture AC0.

◼ Second-order: First, Buss’s theories for PSPACE
and beyond (with x#y).

◼ By Razborov-Takeuti’s RSUV isomorphism,
removing x#y and adding second sort (strings) get
two-sorted theory Vi

1 for the same class.

Sorts are strings and numbers indexing string positions.
No operations on strings other than length and index.

First vs. Second-order

◼ To create a theory, take basic axioms of

arithmetic, and add an axiom stating “all objects

definable in logic L exist”.

◼ For levels of PH, get the same theories as before.

◼ For non-deterministic classes, so far provably get

the functions in the deterministic level of PH.

Build theories from logics of known descriptive complexity

AC0

L
NL

P

NP
co-NP

r.e.
co-r.e.

PH

SO9

FO

SO

SO8

Systems of bounded

arithmetic

◼ First-order formulas give

a theory for AC0.

◼ Φ = SO∃ 𝐾𝑟𝑜𝑚 gives a

theory for NL.

◼ Φ = SO∃ 𝐻𝑜𝑟𝑛 gives a

(minimal) theory for P.

V0

V-Krom

V-Horn

AC0

L
NL

P

NP
co-NP

r.e.
co-r.e.

PH

Systems of bounded

arithmetic

◼ The correspondences
are not automatic: recall
that a system based on
NP formulas captured
functions in P.

◼ Need additional
conditions on
provability of properties.

V0

V-Krom

V-Horn

FO

SO

SO8SO9

Closure properties

◼ We want robust definitions of complexity classes.

◼ Closure under first-order operations: AND, OR,

NOT (hardest one), bounded quantification, and

function composition.

◼ NP is not known to be closed under

complementation. However, P is robust.

◼ Closure properties should be “easy” to prove.

Closure properties

AC0

L
NL

P

NP
co-NP

r.e.
co-r.e.

PH

SO9

FO

SO

SO8

V0

V-Krom

V-Horn

◼ Theorem: If proving that

a class is closed can be

done with the reasoning

inside the class, then the

resulting system of

arithmetic captures that

class.

Closure properties

◼ Holds for AC0 from the definitions.

◼ For P, need to formalize algorithms. [Cook, K ‘01,’03]

◼ Surprisingly, proof that NL=coNL can be done with NL
reasoning. [Cook, K’04]

◼ LogCFL done from its circuit (SAC1) definition (Kuroda)

If proving that a class is closed can be done inside the class,

then the resulting system of arithmetic captures that class.

Proof idea

◼ Translate logics from descriptive complexity setting to
the language of arithmetic.

◼ Define class of theories based on the logics, and show
that basic properties (e.g., induction) hold.

◼ Introduce functions into the theory by defining their bit
graphs by formulas (not the usual recursion-theoretic
definitions).

◼ Generalize Buss’ witnessing theorem to apply to this
setting (complicated base case).

Other approaches

◼ Constructing systems by adding to V0 an

axiom asserting the existence of a solution to a

complete problem (Nguyen/Cook).

◼ E.g., based on versions of

reachability problems

◼ Different minimal theories for P,

NL, L, etc.

◼ Universally axiomatizable theories

◼ Applicable to small circuit classes

such as TC0

Provability of separations

◼ Ajtai showed that Parity Principle is not provable in
an AC0 theory.

The proof uses heavy model-theoretic machinery:
forcing, non-standard models of arithmetic.

◼ Furst, Saxe, Sipser proved that Parity function is
not computable by AC0 circuits.

Maybe it is easier to separate

theories than classes?

Conclusions

◼ There is a natural connection between

the realms of descriptive complexity and

bounded arithmetic, each of which is

closely related to complexity theory.

◼ This gives a general method for

constructing theories of arithmetic with

predefined power.

Much more on arithmetic, etc next Wednesday!

Open questions

◼ Prove that the theories corresponding to

different complexity classes are different.

◼ Which techniques are formalizable in weak

theories?

◼ Connecting from bounded arithmetic back to

descriptive complexity?

◼ In which theory can SL=L be formalized?
◼ Existence of expander graphs is provable in an 𝑁𝐶1

theory

Thank

You!

