
Reasoning systems 

from 

descriptive complexity
Antonina Kolokolova, 

Memorial U. of  Newfoundland

Simons Institute, April 7th, 2021



How hard is it ?

 (G) = “Graph G is connected”T  ` “Reachability is transitive”

What is the path from s to t in G?

To find ?

To prove ? To describe ?



How hard is it ?

Algorithms and 

complexity 

To describe ?

To find ?

To prove ?

Bounded arithmetic

(and proof systems)

Descriptive complexity

(finite model theory)



Complexity classes
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◼ Here, only uniform classes. 

◼ In particular,  DLOGTIME-

uniform AC0



Fragments of SO
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◼ On finite structures with arithmetic

◼ + and *, as well as ≤

◼ AC0 : first-order logic [BIS]

◼ NL : second-order 2CNF [Grädel]

◼ P : second-order Horn [Grädel] 

◼ NP : second-order 9 logic [Fagin] 

◼ PH: second-order logic [Stockmeyer]
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Grädel’s characterizations
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𝑆𝑁𝑃:  formulas of  the form 

∃𝑃1…∃𝑃𝑘∀𝑥1…∀𝑥ℓ 𝜑

◼ Grädel’91:  

◼ Restrict 𝜑 to Horn, 2CNF,..

◼ Resulting logics: 

𝑆𝑂∃ 𝐻𝑜𝑟𝑛, 𝑆𝑂∃ 𝐾𝑟𝑜𝑚

◼ Over successor structures 

◼ 𝑆𝑂∃ 𝐻𝑜𝑟𝑛 captures P

◼ 𝑆𝑂∃ 𝐾𝑟𝑜𝑚 captures NL FO

SO

SO9 SO8



AC0

L

NL

P

NP
co-NP

r.e.
co-r.e.

PH

◼ Need arithmetic (<,+,*) for 

FO vs. AC0

◼ Successor for 𝑆𝑂∃ 𝐻𝑜𝑟𝑛 vs 

P and 𝑆𝑂∃ 𝐾𝑟𝑜𝑚 vs NL

◼ 𝑆𝑂∃ captures NP over 

general finite structures

◼ Two logics are equivalent iff

the corresponding complexity 

classes are. 
FO
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Descriptive complexity   



From expressing to proving: 

Theories of  arithmetic 

The uniform side of proof complexity



◼ Peano arithmetic

◼ Axioms of numbers + induction 

◼ Too strong for efficient computation! 

◼ Parikh’s bounded version 𝐼Δ0
◼ Axioms of numbers + bounded induction 

◼ Too weak:  can only do linear time hierarchy

◼ Cook’s PV:  

◼ Exactly polynomial-time by design; equational. 

◼ Buss’ bounded arithmetic  

A little history 

Much more on this in the next 

week session of  this workshop



◼ All quantifiers are bounded by terms in free variables. 

◼ Power of a theory of arithmetic ~ how complex are the 

functions it proves total. 

◼ Complexity of formulas defining the functions also matters

◼ Caveat:  Two  theories capturing the same class of 

functions may not be fully conservative over each other. 

◼ A theory is conservative over another if it can prove the other 

theory’s theorems 

Bounded arithmetic  



◼ Direct translations of the form “a theory proves 
soundness of a proof system, and each proof in 
the theory can be done in the proof system”.

◼ AC0 theory corresponds to Bounded Depth 
Frege proof system; P-theory to Extended Frege.

Systems of  arithmetic are uniform 

counterparts to propositional proof  systems.



◼ Language: 2-sorted arithmetic (numbers + strings)

◼ Axioms: 

◼ For numbers: standard (𝑥 + 1 ≠ 0, etc) 

◼ For strings:  defining length and string equality 

◼ 𝑋 𝑦 → 𝑦<|X|,  𝑦 + 1 = 𝑋 → 𝑋(𝑦),..

◼ Comprehension: for a class of formulas Φ

◼ ∃𝑋 ≤ 𝑛 ∀𝑧 < 𝑛 𝑋 𝑧 ↔ 𝜑 𝑧 for 𝜑 ∈ Φ

◼ Can also add induction (provable in all our theories):

◼ 𝑋 0 ∧ ∀𝑦 < 𝑛 𝑋 𝑦 → 𝑋 𝑦 + 1 → 𝑋(𝑛)

Let’s build a  theory



◼ For Φ the levels of SO, get (2-sorted analogues) 
of Buss’ hierarchy 𝑆2

𝑖

◼ Does it capture the corresponding classes? 

◼ Buss’ witnessing: 𝑆𝑂∃-theory captures  P. 

◼ If it proves that a function is in NP Å co-NP,  the 
function is in P. 

◼ Generalizes to levels of PH 

◼ What would it take to capture a class of functions 
exactly? 

Bounded arithmetic  



◼ First-order: Buss’s basic theories Si
2, T

i
2.  Have 

x#y = 2|x|*|y| in the language. Do not capture AC0.   

◼ Second-order: First, Buss’s theories for PSPACE 
and beyond (with x#y). 

◼ By Razborov-Takeuti’s RSUV isomorphism, 
removing x#y and adding second sort (strings) get 
two-sorted theory  Vi

1 for the same class. 

Sorts are strings and numbers indexing string positions.  
No operations on strings other than length and index.

First vs. Second-order  



◼ To create a theory, take basic axioms of 

arithmetic, and add an axiom stating “all objects 

definable in logic L exist”. 

◼ For levels of PH, get the same theories as before.

◼ For non-deterministic classes, so far provably get 

the functions in the deterministic level of PH. 

Build theories from logics of  known descriptive complexity
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Systems of bounded 

arithmetic

◼ First-order formulas give 

a theory for AC0. 

◼ Φ = SO∃ 𝐾𝑟𝑜𝑚 gives a 

theory for NL.

◼ Φ = SO∃ 𝐻𝑜𝑟𝑛 gives a 

(minimal) theory for P. 

V0

V-Krom

V-Horn
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Systems of bounded 

arithmetic

◼ The correspondences 
are not automatic: recall 
that a system based on 
NP formulas captured 
functions in P. 

◼ Need additional 
conditions on 
provability of properties.

V0

V-Krom

V-Horn
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SO
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Closure properties

◼ We want robust definitions of complexity classes.

◼ Closure under first-order operations: AND, OR,

NOT (hardest one), bounded quantification, and 

function composition.

◼ NP is not known to be closed under 

complementation. However, P is robust.

◼ Closure properties should be “easy” to prove.



Closure properties
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V0

V-Krom

V-Horn

◼ Theorem: If  proving that 

a class is closed can be 

done with the  reasoning 

inside the class, then the 

resulting system of  

arithmetic captures that 

class.



Closure properties

◼ Holds for AC0 from the definitions. 

◼ For P, need to formalize algorithms. [Cook, K ‘01,’03]

◼ Surprisingly, proof that NL=coNL can be done with NL 
reasoning. [Cook, K’04]

◼ LogCFL done from its circuit (SAC1) definition (Kuroda)

If  proving that a class is closed can be done inside the class, 

then the resulting system of  arithmetic  captures that class.



Proof idea

◼ Translate logics from descriptive complexity setting to 
the language of arithmetic.

◼ Define class of theories based on the logics, and show 
that basic properties (e.g., induction) hold.

◼ Introduce functions into the theory by defining their bit 
graphs by formulas (not the usual recursion-theoretic 
definitions).

◼ Generalize Buss’ witnessing theorem to apply to this 
setting (complicated base case). 



Other approaches

◼ Constructing systems by adding to V0 an 

axiom asserting the existence of a solution to a 

complete problem (Nguyen/Cook).

◼ E.g., based on versions of 

reachability problems

◼ Different minimal theories for P, 

NL, L, etc.

◼ Universally axiomatizable theories

◼ Applicable to small circuit classes 

such as TC0



Provability of separations

◼ Ajtai showed that Parity Principle is not provable in 
an AC0 theory.

The proof uses heavy model-theoretic machinery: 
forcing, non-standard models of arithmetic.

◼ Furst, Saxe, Sipser proved that Parity function is 
not computable by AC0 circuits.

Maybe it is easier to separate 

theories than classes?



Conclusions

◼ There is a natural connection between 

the realms of descriptive complexity and 

bounded arithmetic, each of which is  

closely related to complexity theory. 

◼ This gives a general method for 

constructing theories of arithmetic with 

predefined power. 

Much more on arithmetic, etc next Wednesday!



Open questions

◼ Prove that the theories corresponding to 

different complexity classes are different. 

◼ Which techniques are formalizable in weak 

theories? 

◼ Connecting from bounded arithmetic back to 

descriptive complexity?

◼ In which theory can SL=L be formalized?
◼ Existence of expander graphs is provable in an 𝑁𝐶1

theory



Thank 

You! 


