Reasoning systems

 from
descriptive complexity

Antonina Kolokolova,
Memorial U. of Nenjfoundland

Simons Institute, April 7th, 2021

How hard is it?

What is the path from s to t in G ?

To prove ?

To describe?

$\mathrm{T} \vdash$ "Reachability is transitive"
$\phi(G)=$ "Graph G is connected"

How hard is it?

Complexity classes

- Here, only uniform classes.
- In particular, DLOGTIMEuniform AC_{0}

Fragments of SO

- On finite structures with arithmetic
$\square \quad+$ and $*$, as well as \leq
- AC_{0} : first-order logic [BIS]
- NL : second-order 2CNF [Grädel]
- P : second-order Horn [Grädel]
- NP : second-order \exists logic [Fagin]
- PH: second-order logic [Stockmeyer]

Fagin's Theorem [Fagin 1974]
Iso-invariant Existential
Non-deterministic $=$ Second-Order
Polynomial-time (NP) Logic (ESO)
a semantic class!
 class!
fo formula

Grädel＇s characterizations

SNP：formulas of the form

$$
\exists P_{1} \ldots \exists P_{k} \forall x_{1} \ldots \forall x_{\ell} \varphi
$$

－Grädel＇91：
－Restrict φ to Horn，2CNF，．．
－Resulting logics：
SOヨ Horn，SOヨ Krom
－Over successor structures
－SOヨ Horn captures P
－SOヨ Krom captures NL

Descriptive complexity

- Need arithmetic $(<,+, *)$ for FO vs. AC_{0}
- Successor for $\mathrm{SO} \exists$ Horn vs P and $50 \exists$ Krom vs NL
-SOヨ captures NP over general finite structures
- Two logics are equivalent iff the corresponding complexity classes are.

$$
\begin{gathered}
\text { From expressing to proving: } \\
\text { Theories of arithmetic }
\end{gathered}
$$

The uniform side of proof complexity

A little history

- Peano arithmetic
- Axioms of numbers + induction
- Too strong for efficient computation!
- Parikh's bounded version $I \Delta_{0}$
- Axioms of numbers + bounded induction
- Too weak: can only do linear time hierarchy
- Cook's PV:
- Exactly polynomial-time by design; equational.
- Buss' bounded arithmetic

> Much more on this in the next week session of this workshop

Bounded arithmetic

- All quantifiers are bounded by terms in free variables.
- Power of a theory of arithmetic ~how complex are the functions it proves total.
- Complexity of formulas defining the functions also matters
- Caveat: Two theories capturing the same class of functions may not be fully conservative over each other.
- A theory is conservative over another if it can prove the other theory's theorems

Systems of aritbmetic are uniform

 counterparts to propositional proof systems.- Direct translations of the form "a theory proves soundness of a proof system, and each proof in the theory can be done in the proof system".
- AC_{0} theory corresponds to Bounded Depth Frege proof system; P-theory to Extended Frege.

Let's build a theory

- Language: 2-sorted arithmetic (numbers + strings)
- Axioms:
- For numbers: standard ($x+1 \neq 0$, etc)
- For strings: defining length and string equality
- $X(y) \rightarrow y<|\mathrm{X}|, y+1=|X| \rightarrow X(y)$, ..
- Comprehension: for a class of formulas Φ
- $\exists X \leq n \forall z<n(X(z) \leftrightarrow \varphi(z))$ for $\varphi \in \Phi$
- Can also add induction (provable in all our theories):
- $X(0) \wedge \forall y<n(X(y) \rightarrow X(y+1)) \rightarrow X(n)$

Bounded arithmetic

- For Φ the levels of SO, get (2-sorted analogues) of Buss' hierarchy S_{2}^{i}
- Does it capture the corresponding classes?
- Buss' witnessing: SOヨ-theory captures P.
- If it proves that a function is in NP \cap co-NP, the function is in P .
- Generalizes to levels of PH
- What would it take to capture a class of functions exactly?

First vs. Second-order

- First-order: Buss's basic theories $\mathrm{S}_{2}^{\mathrm{i}}, \mathrm{T}_{2}^{\mathrm{i}}$. Have $x \# y=2|x|^{*}|y|$ in the language. Do not capture $A C_{0}$.
- Second-order: First, Buss's theories for PSPACE and beyond (with $x \# y$).
- By Razborov-Takeuti's RSUV isomorphism, removing x\#y and adding second sort (strings) get two-sorted theory $\mathrm{V}_{1}^{\mathrm{i}}$ for the same class.

Sorts are strings and numbers indexing string positions. No operations on strings other than length and index.

Build theories from logics of known descriptive complexity

- To create a theory, take basic axioms of arithmetic, and add an axiom stating "all objects definable in logic L exist".
- For levels of PH, get the same theories as before.
- For non-deterministic classes, so far provably get the functions in the deterministic level of PH.

Systems of bounded arithmetic

- First-order formulas give a theory for AC_{0}.
- $\Phi=\mathrm{SO}$ Krom gives a theory for NL.
- $\Phi=$ SOヨ Horn gives a (minimal) theory for P .

Systems of bounded arithmetic

- The correspondences are not automatic: recall that a system based on NP formulas captured functions in P .
- Need additional conditions on provability of properties.

Closure properties

- We want robust definitions of complexity classes.
- Closure under first-order operations: AND, OR, NOT (bardest one), bounded quantification, and function composition.
- NP is not known to be closed under complementation. However, P is robust.
- Closure properties should be "easy" to prove.

Closure properties

- Theorem: If proving that a class is closed can be done with the reasoning inside the class, then the resulting system of arithmetic captures that class.

Closure properties

If proving that a class is closed can be done inside the class, then the resulting system of aritbmetic captures that class.

- Holds for AC_{0} from the definitions.
- For P, need to formalize algorithms. [Cook, K '01,'03]
- Surprisingly, proof that NL=coNL can be done with NL reasoning. [Cook, K’04]
- LogCFL done from its circuit (SAC_{1}) definition (Kuroda)

Proof idea

- Translate logics from descriptive complexity setting to the language of arithmetic.
- Define class of theories based on the logics, and show that basic properties (e.g., induction) hold.
- Introduce functions into the theory by defining their bit graphs by formulas (not the usual recursion-theoretic definitions).
- Generalize Buss' witnessing theorem to apply to this setting (complicated base case).

Other approaches

- Constructing systems by adding to V^{0} an axiom asserting the existence of a solution to a complete problem (Nguyen/Cook).
- E.g., based on versions of reachability problems
- Different minimal theories for P , NL, L, etc.
- Universally axiomatizable theories
- Applicable to small circuit classes such as TC_{0}

Stephen Cook
Phuong Nguyen

LOGICAL FOUNDATIONS
OF PROOF COMPLEXITY

N는
стмmader

Provability of separations

Maybe it is easier to separate
theories than classes?

- Ajtai showed that Parity Principle is not provable in an AC_{0} theory.
The proof uses heavy model-theoretic machinery: forcing, non-standard models of arithmetic.
- Furst, Saxe, Sipser proved that Parity function is not computable by $A C_{0}$ circuits.

Conclusions

- There is a natural connection between the realms of descriptive complexity and bounded aritbmetic, each of which is closely related to complexity theory.

- This gives a general method for constructing theories of arithmetic with predefined power.

Open questions

- Prove that the theories corresponding to different complexity classes are different.
- Which techniques are formalizable in weak theories?
- Connecting from bounded arithmetic back to descriptive complexity?
- In which theory can SL=L be formalized?
- Existence of expander graphs is provable in an $N C_{1}$ theory

Thank

 You!

