Inferring Specifications From Demonstrations

A Maximum (Causal) Entropy Approach
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Motivating Example

Consider an agent acting in the following stochastic grid world.

1. Setof actions: { 1, |, <, —}.

2.p = ?%2 slip and move | .

Q: What was the agent trying to do?




What was the agent trying to do?

Consider an agent acting in the following stochastic grid world.

Q: Did the agent intend to touch the red tile?




What was the agent trying to do?

Consider an agent acting in the following stochastic grid world.

Q: Did the agent intend to touch the red tile? A: Probably Not.

Q: Did the agent intend to eventually touch a yellow tile?




What was the agent trying to do?

Consider an agent acting in the following stochastic grid world.

Q: Did the agent intend to touch the red tile? A: Probably Not.

Q: Did the agent intend to eventually touch a yellow tile? A: Probably.




Communication through demonstrations
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Demonstration information channel.

Can often learn given unlabeled demonstration errors!
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Communication through demonstrations
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Demonstration information channel.

Goal: Develop algorithms to learn specifications from
unlabeled demonstrations.

Q: Why not learn rewards?




Problems with rewards

Problem 1: Requires a “common currency” for reward.

Yellow = +100 Blue =-10 Yellow = +100, Blue =-10
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Littman, Topcu, Fu, Isbell, Wen & MacGlashan (2017)

How to safely compose in a dynamics invariant way?



Problems with rewards

Problem 2: Quantitative reward functions are usually Markov.

Yellow = +100 Yellow = +100, Green = +10
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1. Dynamic States |= Reward States

2. Beware the curse of history (Pineau et al 2003).

Adding history can result in exponential state space explosion.



Specifications admit composition

Example Task

xL) )( ® = Y1 N\ P2 N\ 3

Qo FHeé Qe

Q@ /6 O QO

= TOr®
66 1 = Eventually recharge.
L) AR
8 @ w9 = Avoid lava.
Example Gridworld Domain. 3 = If agent enters water, the agent must dry
off before recharging.

Can learn incrementally or in parallel and then recompose.
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Structure of the talk

Prelude - Problem Setup
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Act 1 - Naive Problem Formulation

Act 2 - Exploiting Boolean Structure

Finale - Experiment



Basic definitions

1. Assume some fixed sets of states and actions.
SONONO

2. A trace, &, is a sequence of states and actions.

3. Assume all traces the same length, 7 € N.



Basic definitions

1. Assume some fixed sets of states and actions.
2. A trace, &, is a sequence of states and actions.
3. Assume all traces the same length, 7 € N.

4. A (Boolean) specification ¢, is a set of traces.

L =
AN
AN
AN /
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5. We say & satisfies P writﬁégé{ @, if&€ € .

Traces



No a-priori order on traces

Agent model induces ordering.

1. Need to know what moves are "risky".

2. Need to know agent's objective and competency.



Agent model induces ordering

o A demonstration of a task ¢ is an unlabeled example where
the agent tries to satisfy .
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e Agency is key. Need a notion of action.

e Success probabilities induce an ordering.
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Solution Ingredients

1. Compare Likelihoods.
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Solution Ingredients

1. Compare Likelihoods. Focus on this today.

Pr( ) > Prf
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Structure of the talk

Act 1 - Naive Problem Formulation

1. Cast problem as inverse reinforcement learning.
2. Apply principle of maximum causal entropy.



Inverse Reinforcement Learning

Assume agent is acting in a Markov Decision process and optimizing the
sum of an unknown state reward, 7(s), i.e;:

T

max (Es” ( Z r(s;) | 7'('))

1=1

where
mw(a | s) =Pr(a]| s)

Given a series of demonstrations, what reward, 7(s), best explains the
behavior? (Abbeel and Ng 2004)




Inverse Reinforcement Learning

Given a series of demonstrations, what reward, 'r(s), best explains the
behavior? (Abbeel and Ng 2004)

1. Problem: There is no unique solution as posed!

Pr(r| &) =7

2. Idea: Disambiguate via the Principle of Maximum Causal
Entropy. (Ziebart, et al. 2010)




ldea: Reduce Specification Inference to IRL.

Q: What should the reward be?

V.o
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Proposal: Use indicator.

T(g)ﬁ{l if€ €

0 otherwise



ldea: Reduce Specification Inference to IRL.

r(g)é{l iféco

0 otherwise

Note: States are now traces.
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ldea: Reduce Specification Inference to IRL.

0 otherwise

r(g)é{l iféco

Note: States are now traces.

enviroment action

/ t=2
1 o 1 1 7/8
:f % 5 3 6
0 [0} 0 0 o} 0 0 1 0

Suppose @ is over traces of length 2.




ldea: Reduce Specification Inference to IRL.

nnnnnnnnnnnnnnnn

t=1

6 X fo! tobio]

Problem: Naive reduction leds to exponential blow up.

Post-pone this concern for now.




Structure of the talk

Act 1 - Naive Problem Formulation

1. Cast problem as inverse reinforcement learning.

r(g)é{l if £ € ¢

0 otherwise



Structure of the talk

Act 1 - Naive Problem Formulation

2. Apply principle of maximum causal entropy.



High Entropy Policies are Robust

Key problem

Given ¢, was is demonstrator likely to do?

PI‘(At | Sl:t) =7

Note: Maximum causal entropy forecaster minimizes worst case
prediction log-loss. (Ziebart, et al. 2010)

Maximum causal entropy — Robust agent proxy




Maximum Causal Entropy

PI‘(At | Sl:t) = 7

Key Idea: Don't commit more than the observations require.

Formally: Maximize expected causal entropy.

H(A1:T H Sl:T) — ET:H(At ‘ Sl:t)

t=1

subject to expected reward matching.




Maximum Causal Entropy

PI‘(At | Sl:t) = 7

Key Idea: Don't commit more than the observations require.

Formally: Maximize expected causal entropy.

T
H(AI:T H Sl:T) — ZH(At ‘ Sl;t)
t=1

subjectto E|r(S1.;)| = r*.




Maximum Causal Entropy

PI‘(At | Sl:t) = 7

Key Idea: Don't commit more than the observations require.

Formally: Maximize expected causal entropy.
T
H(A].:T H S].:T) — ZH(At ‘ Sl:t)
t=1

*

subjectto Pr(S1.; € ) = p*.




Will consider two cases

H(AlzT H S]_:T) ~ H(A]_:T ‘ S]_:’T)

"Learning Task Specifications from Demonstrations.” NeurlPS 2018

H(A]_ZT H S]_:T) # H(A]_ZT ‘ Sl:T)
"Maximum Causal Entropy Specification Inference from
Demonstrations.", CAV 2020




Lets start with MaxEnt case

H(A]_:T H S]_ZT) ~ H(A]_:T ‘ S]_:T)

"Learning Task Specifications from Demonstrations.” NeurlPS 2018




Structure of the talk

Prelude - Problem Setup

Act 1 - Naive Problem Formulation

Act 2 - Exploiting Boolean Structure



Change of perspective

Random bit model: Represent Markov Decision Process as

deterministic transition system with access to n. coin flips.

Coin flips =—J»
Action =——3p»

State =—Pp

Dynamics

Next State
—

Dynamics : § x {0,1}""™ — §




Change of perspective

Unrolling and composing with specification results in a predicate.

Coin flips
Action Bits ‘
Coin flips —3» > SAT
Dynamics —> Dynamics > Specification [—3
Action Bits =3 —_

¥ : {0,137 (e s 40 1}




Policy closes the loop

—» Dynamics ——»| Sensor

] 5
: action

> Specification

Monitor

Policy |«




Looks like a biased coin

. Oorl

Observe satisfaction probability, p, .

Need to be consistent with Bernoulli random variable.



Pulling back the curtain

i Oorl
> ; - | Specification ;
> Dynamics >  Sensor "] Monitor | ’
L. H‘xh_ I
| acton Environment
' bias

Satisfaction probability, p,,, affected by policy and how “easy" the
specification/dynamics combination is.

ST ST
¢ 1 ¢ 1
Y Y




Policy doesn't need to be reactive

i Oor1l
i » Specification i
ynamics »  Sensor Monitor ——r
: \\‘H P
| acton Environment
' bias
Policy <

H(AlzT H Sl:T) ~ H(AlzT ‘ Sl:T)

"Learning Task Specifications from Demonstrations.” NeurlPS 2018

Effects separable in MaxEnt case



Effects separable in MaxEnt case

.| Specification
"1 Monitor

\‘\-\

| acton Environment
' bias '

Policy <

- W

p, = Pr(£ E ¢ | teacher ) g, = Pr(¢ | ¢ | uniform A;.,)

1. The Maximum Entropy Distribution given p,, is:

Py

( | ) q. if Sl:T cp
Pr(S1.- | demos, @) ?
o S gy

2. Note: When the dynamics are deterministic, this recovers the size
principle from concept learning! (Tenenbaum 1999)



Maximum Entropy Likelihood given i.i.d. demos

Additional Assumptions

Teacher at least as good as random: p, > q,,

Demonstrations, demos given i.i.d.

Demonstrations are representative: n - p, ~ #{§ € ¢}.

P, £ coin with bias P, Qo £ coin with bias o

Pr(demos | ) o< 1[p, > q,] exp (n D1 (P, || Q@))

TV
better than random InfoGain over random actions.

Aside: Can be interpreted as quantifying the atypicality of
demos over random action hypothesis. (Sanov's Theorem 1957)



Max Entropy and Max Causal Entropy

H(Aln' H S]_:T) # H(A]_ZT ‘ Sl:T)

"Maximum Causal Entropy Specification Inference from
Demonstrations.", CAV 2020




Generally need to be reactive.

i Oor1l
Dynam > Sensor SD:ﬂ(;i:in tion —:—"

\\“-\ ]
| acton Environment
' bias '

Policy |«
4.\_?.‘;

A N

H(Al:T H Sl:T) # H(AlzT ‘ Sl:T)

"Maximum Causal Entropy Specification Inference from Demonstrations.”,
CAV 2020




Soft Bellman backup

Maximum Causal Entropy Policy

log (mg(as | s1:¢)) = Qo(art, s1+) — Va(s1:t)

where
Vo (s1) 2 {lnz eQlenosie) ift o 7,
' 0 [3117 € | otherwise.

Qo(ais, s1:4) = B, [Va(sta1) | 8145 a1:4]

Find 0 to match p*.




Soft Bellman backup

Maximum Causal Entropy Policy

In eWolarsie)  if ¢ o 7
%(Slzt) { Z #

6 - [81,7 € @] otherwise.

Qﬁ(al:ta Sl:t) = ESl;t+1 [%(StJrl) ‘ S1:t al:t]

Focus on recursive soft-value calculation.




Looks like standard Bellman backup

Maximum Causal Entropy Policy

Vi (8 ) é Smaxalzt Qe(a’l:t7 Sl:t) ift # T,
o(S1:t 0-1[s1.; € ¢ otherwise.

Qe(al:ta Sl:t) = E31;t+1 [Ve(3t+1) ’ S1:t alzt]

max — smooth maximum.




Soft Bellman backup

Vi (S ) é Smaxalzt Qﬁ(al;t, Sl:t) lft 7& T,
T 0 - 1[31:7' S ‘P] otherwise.

QO(al:t7 Slzt) = Esl;tH [%(&H—l) | Sl:taal:t]




Backup as computation graph

A J SInaX, . Qﬁ(al:ta Sl:t) if ¢ 7& T,
Vo(s14) = { 0-1[s1.- € ] otherwise.

QO(aflzty Slzt) = Esl;tH [‘/O(St—H) | Sl:taal:t]

Find 0 to match p*.




Backup as computation graph

Note: Satisfaction probability grows monotonically in 6.

Can binary search for 6 such that satisfaction probability matches data.




Backup as computation graph

Problem: Unrolled tree grows exponentially in horizon!




Backup as computation graph

Observation 1: A lot of shared structure in computation graph.

Observation 2: System and environment actions are ordered.




Backup as computation graph

Idea: Encode graph as a binary predicate

v :{0,1}" — {0,1}

and represent as Reduced Ordered Binary Decision Diagram
(Bryant 1986).




Random Bit Model

Coin flips
Action Bits ‘
Coin flips  =—3 —_— SAT

Dynamics > Specification [—3

Dynamics

Yy

Action Bits =——3»

Idea: Encode graph as a binary predicate

¥ : 40,1}t £ 1)

and represent as Reduced Ordered Binary Decision Diagram
(Bryant 1986).




Random Bit Model

¥ : {0,1}7 T s g0 1)

Proposal: Represent 1) as Binary Decision Diagram with bits in causal order.

Time

———————————————————————————

Action Bits Action Bits

Coin Flips Coin Flips




Random Bit Model

¢ {0,137 — 0,13

Proposal: Represent 1) as Binary Decision Diagram with bits in causal order.

.
0
-
....
. -
"""""
.
el

‘e
e,
.
-------------------------------




Maximum Causal Entropy and BDDs

Q: Can Maximum Entropy Causal Policy be computed on causally

ordered BDDs? A: Yes!

1. Associativity of smax and .

4

smax(ag,...,0q) = IH(Z e™)

1=1



Maximum Causal Entropy and BDDs

Q: Can Maximum Entropy Causal Policy be computed on causally

ordered BDDs? A: Yes!

1. Associativity of smax and [E.

smax(ozl, o ,014) _ ln(eln(eal +e%2) + eln(ea3 —l—ea4))



Maximum Causal Entropy and BDDs

Q: Can Maximum Entropy Causal Policy be computed on causally

ordered BDDs? A: Yes!

1. Associativity of smax and [E.

smax(aq,...,qs) = smax(smax(a, s ), smax(as,ay))



Maximum Causal Entropy and BDDs

Q: Can Maximum Entropy Causal Policy be computed on causally

ordered BDDs? A: Yes!

1. Associativity of smax and [E.
2. smax(a,a) = a + In(2)
3. E(a,a) =



Maximum Causal Entropy and BDDs

1. Associativity of smax and IX.

2. smax(a,a) = a + In(2)

3. E(a,a) =«

Time

Yo
.
e,
.
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Maximum Causal Entropy and BDDs

1. Associativity of smax and .

2. smax(a,a) = a + 1n(2)

3. E(a,a) =«

Time

SMmax
A

\

/

sSmax

sSmax

N\ /A
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Size Bounds

Q: How big can these Causal BDDs be?

# inputs
BDD| < 7 - (log(|A]) + #coins) - ( |S/e| 4] -27™)
horizon g

composed automaton



Size Bounds

# inputs
BDD| < 7 (log(|Al) + #eoins) - ( [S/gl- 4] -2#m)
horizon Do

composed automaton

Linear in horizon!

Note: Using function composition, can build BDD efficiently.




Max Entropy and Max Causal Entropy

H(AlzT H S]_:T) ~ H(A]_:T ‘ S]_:’T)

Need to compute performance of unifomly random actions.

H(A]_ZT H S]_:T) # H(A]_ZT ‘ Sl:T)

Compressed Bellman backup on binary decision diagram.
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Solution Ingredients

1. Compare Likelihoods.

NuNEmES ? NIATTE
I rf . [
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r{ &= r( oo
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Demonstrations Abstract Traces Demonstrations Abstract Traces



Structure of the talk

Prelude - Problem Setup

Act 1 - Naive Reduction to Maximum Causal Entropy IRL

Act 2 - Exploiting Boolean structure

Finale - Experiment
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Toy Experiment




Toy Experiment

Dynamics

e Agent can attemptto move{1, |, <, —}

o With probability 3% agent will slip and move <.



Toy Experiment

Dynamics

° A:{T’ l)«—’—>}.

* D= 3% slip and move .




Toy Experiment

=Tt i Dynamics

.A:{T,l’(—'—>}.

NP

* D= 3—12 slip and move <.

Provided 6 unlabeled demonstrations for the task:

e Go to and stay at the yellow tile (recharge).
e Avoid red tiles (lava).
e If you enter a blue, touch a brown tile before recharging.

e Within 10 time steps.

Note: Dashed demonstration fails to dry off

due to slipping.




Toy Experiments

NE=

Dynamics

’A={T, l,<—’—>}.

e p= 3% slip and move <.

Spec Policy Size ROBDD Relative Log Likelihood
(#nodes) build time (Compared to True)

true 1 0.48s 0

Rq= Avoid Lava 1797 1.5s -22

Ro= Recharge 1628 1.2s 5

R3= Don't recharge while wet 750 1.6s -10

R4=R1 ARy 523 1.9s 4

R5=Rq A R3 1913 1.5s -2

Re = Ry A R3 1842 2s 15

R.=Rq1 ARy A R3 577 1.6 27

(smaller better)

(smaller better) (bigger better)




Toy Experiments

Spec Policy Size ROBDD Relative Log Likelihood
(#nodes) build time (Compared to True)

true 1 0.48s 0

R1= Avoid Lava 1797 1.5s -22

Ro=Recharge 1628 1.2s 5

R3=Don't recharge while wet 750 1.6s -10

Rs=R1 ARy 523 1.9s 4

Rs5=R1 A R3 1913 1.5s -2

Re = Ry A R3 1842 2s 15

R.=Rq1 ARy A R3 577 1.6 27

(smaller better) (smaller better) (bigger better)

Key observation: True specification more

likely than consistent specifications.




Toy Experiments

i
a5

Al

~F Dynamics

’A={T, l,<—’—>}.

H =

e p= 3% slip and move <.

Find ipython binder for experiment at:
bit.ly/2WgzDcW

Code for this paper:
)

github.com/mvcisback/mce-spec-inference


https://mybinder.org/v2/gist/mvcisback/f62056f5257691160f3a0e99c6539394/master
https://github.com/mvcisback/mce-spec-inference

Structure of the talk

Prelude - Problem Setup

Act 1 - Naive Reduction to Maximum Causal Entropy IRL

Finale - Experiment

Act 2 - Exploiting Boolean structure
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Conclusions
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Demos are often a natural way to relay a trace property.

Can still learn given unlabeled demonstration errors!

Sketched 2 algorithms based on maximizing (causal) entropy.




Questions?
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Causal Policies

Actions shouldn't depend on information from the future.

Goal: Reach yellow. How will agent act?



Non-Causal Policies

Actions shouldn't depend on information from the future.
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Example of conditioning on the future.



Causal Policies

Actions shouldn't depend on information from the future.
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Maybe we get pushed by wind.



Causal Conditioning

Actions shouldn't depend on information from the future.

Pr(A].:T || S].:’T) é HPr(At | Sl:taAlzt—l)

t=1

Simplify by assuming ¢ only depends on states.



Causal Conditioning

Actions shouldn't depend on information from the future.

Pr(A].:T || S].:T) — HPr(At ‘ Sl:t)

t=1

Simplify by assuming ¢ only depends on states.

Key problem

Given @, was is demonstrator likely to do?

Pr(Al:T H S].:T) =7?




Maximum Causal Entro

Dy

Pr(AlzT || Sl:T) =7

Key Idea: Don't commit more than the observations require.

Formally: Maximize expected causal entropy.

1

H(Ayr || S17) = E llog(Pr(

Arr ] 51:7))]

subjectto E[r(S1.;)] = 7.




High Entropy Policies are Robust

Maximize

H(Ay || Sir) = E llog(Pr(Alzfl\ 51:7))]

while matching satisification probabilities.

Goal: Reach yellow. How will agent act?

- >




High Entropy Policies are Robust

Maximize

H(Ay || Sir) = E llog(Pr(Alzfl\ 51:7))]

while matching satisification probabilities.

Minimum Entropy Forecaster

_ 11 ||
|| ||

Put all of the probability mass one 1 path.




High Entropy Policies are Robust

Maximize

H(Ay || Sir) = E llog(Pr(Alzfl\ 51:7))]

while matching satisification probabilities.

High Entropy Forecaster

’ ), N 4
" .
R .
1 ‘. I
H . . A
., .® 0
i N N :

Distribute prediction over high value paths.




