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Formal Synthesis

• Formal synthesis is the process of learning a compositional concept 
satisfying a high-level formal specification. 

• Programs, controllers, and explanations/intent of machine learning 
models/agents are examples of such compositional concepts. 

• Compositionality enables automated deduction – making it no longer a 
pure learning problem. 

• Over the last decade, we have developed several techniques for formal 
synthesis that include: 
• Programs: ICSE’10 (MIP Award at ICSE’20), PLDI’11, DTTC’13, NSV’14, Acta 

Informatica’17 
• Controllers: ICCPS’10, EMSOFT’11, IJBRA’12, FORMATS’16, FORMATS’18, Allerton’18, 

ACC’19
• Explanations and intent: NFM’17, RV’17, NFM’18, JAR’18, NeurIPS’18, FMSD’19
• Fun: A Case Study on Automated Synthesis of Magic Card Tricks. Jha et al. IEEE 

Formal Methods in Computer-Aided Design (FMCAD), 2016 
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Formal Synthesis: Talk Outline

• A unifying view that describes formal synthesis techniques as an 

interaction between an oracle and a learner – both of which are co-

designed for a target concept. 

• A theoretical characterization of different formal synthesis techniques 

by considering oracles and learners with different properties. 

• Acta Informatica’17

• Example practical applications of this framework

• Jha et al. Oracle-guided component-based program synthesis. ACM/IEEE 

International Conference on Software Engineering (ICSE), 2010 (10 year 

MIP award at ICSE’2020)

• Jha et al. Explaining AI Decisions Using Efficient Methods for Learning 

Sparse Boolean Formulae. Journal of Automated Reasoning, 2018

• Jha et al. Data-efficient Learning of Robust Control Policies. Allerton 

Control, 2018
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Why Formal Synthesis? Induction + Deduction

• Induction: Inferring general rules (functions) from specific examples 
(observations)
• Generalization

• Deduction: Applying general rules to derive conclusions about specific 
instances
• Specialization

• Formal Synthesis: Simultaneously learn from data and deduce from rules. 
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Number ≥ 7

Number ≥ 7   ∧ 8

Number ≥ 5?
Number ≥ 7

“Towards Automatic System Synthesis Using Sciduction – Structurally Constrained 
Induction and Deduction.” Susmit Jha, Ph.D. Thesis (UC Berkeley, 2011).



E.g. Perception as Synthesis vs Inductive Learning
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NuScenes dataset 
Object classes and frequency of samples: human (19.46%), bicycle (1.04%), 
motorcycle (1.11%), car (43.62%), truck (12.70%), movable_object (22.05%)

Occlusion at different levels



E.g. Perception as Synthesis vs Inductive Learning
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NuScenes dataset 
Object classes and frequency of samples: human (19.46%), bicycle (1.04%), 
motorcycle (1.11%), car (43.62%), truck (12.70%), movable_object (22.05%)
+ Spatio-temporal rules of co-occurrence in addition to data. 

Model Occlusion (%) Overall 
accuracy

Class-wise accuracy

human bicycle motor-
cycle

car truck movable
object

CNN - ResNet
(Baseline)

No occlusion 88.65 92.44 57.24 61.31 92.59 69.74 90.69

CNN - ResNet
(Baseline)

30% 83.24 90.99 12.52 20.90 92.48 71.15 71.36

CNN - ResNet
(Baseline)

50% 79.17 90.93 2.36 12.48 87.33 58.94 67.95

Formal Synthesis No occlusion 95.51 98.38 66.25 73.37 97.13 82.17 98.62

Formal Synthesis 30% 94.70 97.72 65.66 65.40 96.62 81.31 96.73

Formal Synthesis 50% 93.13 97.53 31.36 64.88 94.17 81.10 96.34

Less frequent (~1%) classes



Formal Synthesis: Why Oracle-guided?

Even when symbolic specification is available, 
it may not be amenable to deduction. 
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int obfuscated (int y)
{ a=1; b=0; z=1; c=0;
while(1) { 
if (a == 0) {
if (b == 0) { y=z+y; a =~a;
b=~b;  c=~c; if (~c) break; }
else {
z=z+y; a=~a; b=~b; c=~c;
if (~c) break; } }

else if(b == 0) {z=y << 2; 
a=~a;}

else { z=y << 3; a=~a; b=~b;} 
}}

("#$%, '$%)
("#$), '$))

("#$*, '$*)
………

int deobfuscated (int y)
{  z = y << 2; 

y = z + y;
z = y << 3; 
y = z + y; 
return y;  }

Specification is a black-box oracle and 
not available in symbolic form. 

E.g. static program analysis is challenging and obfuscation can target these limitations, 
interaction with humans, deep learning models too large to be considered as white-box, 
physics models too complex to be analytically represented for deduction.  



Oracle Interfaces beyond positive and negative examples
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LEARNER ORACLE

Positive Witness
x ∈ φ, if one exists, else ⊥

Negative Witness
x ∉ φ, if one exists, else ⊥

Membership: Is x ∈ φ?
Yes / No

Equivalence: Is f = φ?
Yes / No + x ∈ φ⊕f

Subsumption/Subset: Is f ⊆ φ?
Yes / No + x ∈ f \ φ

Distinguishing Input: f, X ⊆ f
f’ s.t. f’ ≠f ∧ X ⊆ f’, if it exists; o.w. ⊥

Oracle Interfaces



Oracle Guided Formal Synthesis
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Learner Oracle

!
"

Positive Witness
x ∈ φ, if one exists, else ⊥

Negative Witness
x ∉ φ, if one exists, else ⊥

Membership: Is x ∈ φ?
Yes / No

Equivalence: Is f = φ?
Yes / No + x ∈ φ⊕f

Subsumption/Subset: Is f ⊆ φ?
Yes / No + x ∈ f \ φ

Distinguishing Input: f, X ⊆ f
f’ s.t. f’ ≠f ∧ X ⊆ f’, if it exists; o.w. ⊥

Concept Class

Oracle Interface

A dialogue is a sequence of (query, response) confirming to an oracle interface O
An Oracle-guided formal synthesis algorithm is a pair <L, T> where
• L is a learner, a non-deterministic algorithm mapping a dialogue to a concept c 

and query q
• T is an oracle/teacher, a non-deterministic algorithm mapping a dialogue and 

query to a response r

An Oracle-guided formal synthesis algorithm <L,T> solves a synthesis problem if there 
exists a dialogue between L and T that converges in the target concept f ∈ C



Oracle guided formal synthesis as a generalization of 
query based learning
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• Formal Language Learning, 1967
• Class of languages identifiable in the limit if there is a 

learning procedure that, for each language in that class, 
given an infinite stream of strings, will eventually generate a 
representation of the language.

• Sample results:
• Cannot learn regular languages, CFLs, CSLs using just 

positive witness queries
• Can learn using both positive & negative witness queries

Dana Angluin

• Queries and Concept Learning, 1988 
• Supports witness, equivalence, membership queries
• Sample results:

• Can learn DFAs in poly time from membership and 
equivalence queries

• Cannot learn DFAs or DNF formulas in poly time with 
just equivalence queries

Use advances in automated deduction techniques such as program analysis, 
control theory, etc. to support richer oracle interfaces.



Theoretical Analysis of Oracle Guided Formal Synthesis: 
Jha & Seshia, Acta Informatica’17 
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For concept class of programs recognizing indexed family of regular languages, we 
studied Oracle-guided formal synthesis algorithm <L, T> for synthesis feasibility where
• Learner L has different memory:
• Finite memory
• Infinite memory 

• Oracle O has different interfaces:
• Cex:  Arbitrary counterexamples
• Any element of f ⊕ φ

• MCex: Minimal counterexamples
• A least element of f ⊕ φ according to size 
• Motivated by debugging methods that seek to find small 

counterexamples to explain errors & repair
• CBCex: Constant-bounded counterexamples (bound B)
• An element x of f ⊕ φ s.t. size(x) < B 
• Motivation: Bounded Model Checking, Context bounded testing, etc.

• PBCex: Positive-bounded counterexamples
• An element x of f ⊕ φ s.t. size(x) is no larger than that of any 

positive example seen so far 
• Motivation: bug-finding methods that mutate a correct execution in 

order to find buggy behaviors



Theoretical Analysis of Oracle Guided Formal Synthesis: 
Jha & Seshia, Acta Informatica’17 
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• Cex:  Arbitrary counterexamples
• Any element of f ⊕ φ

• MCex: Minimal counterexamples
• A least element of f ⊕ φ according to size 

• CBCex: Constant-bounded counterexamples (bound B)
• An element x of f ⊕ φ s.t. size(x) < B 

• PBCex: Positive-bounded counterexamples
• An element x of f ⊕ φ s.t. size(x) is no larger than that of any positive example seen so far 

Cex ≈ MCex

CBCex

PBCex
Cex ≈ MCex

CBCex PBCex#$%&'(
#)($%&'(
#$%&)(
#'(

Finite memory learner Infinite memory learner



Example 1: Program Synthesis (ICSE’ 2010) 
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Learner Oracle

Distinguishing Input: f, X ⊆ f
f’ s.t. f’ ≠f ∧ X ⊆ f’, if it exists; o.w. ⊥

Oracle Interface

- 1

||

SomethingElse (x) {
r1 = x – 1;
r5 = !x
r2 = r5 || r1;
r4 = r2 && r5;
return r4;
}

+1

&&

!

p1

p2

p3

p4

p5

p6

p7

r1

r2

r3

r4

r5

X

o

Each program form 
corresponds to some 
composition topology.

Concept Class:
Programs as 
composition of 
functions.

P25: Higher order half of 
product of x and y

o1 := x && 0xFFFF;
o2 := x >> 16;
o3 := y && 0xFFFF;
o4 := y >> 16;
o5 := o1 X o3;
o6 := o2 X o3;
o7 := o1 X o4;
o8 := o2 X o4);
o9 := o5 >> 16;
o10 := o6 + o9;
o11 := o10 && 0xFFFF;
o12 := o10 >> 16;
o13 := o7 + o11;
o14 := o13 >> 16);
o15 := o14 + o12;
res := o15 + o8;

P24: Round up to next 
highest power of 2

o1 := x - 1;
o2 := o1 >> 1;
o3 := o1 || o2;
o4 := o3 >> 2;
o5 := o3 || o4;
o6 :=  o5 >> 4;
o7 := o5 || o6;
o8 := o7 >> 8;
o9 := o7 || o8;
o10 := o9>>16;
o11 := o9 || o10;
res := o10 && 1;

Implemented 
using Satisfiability 
Solving

Implemented 
using Satisfiability 
Solving



Example 2 – Explaining AI Models (NFM’17, JAR’18) 

14

Learner Oracle

Oracle Interface

Membership: Is x ∈ φ?

Yes / No

Does plan satisfy "
E.g. Plan goes via some 

segment 

O1 = (0) 
O2 = (1)

Design of experiments (input assignments)
m1 = (0,0,0,1,1,0,1) 
m2 = (0,0,1,1,0,1,0)

What parts of the input are relevant to property " being 
satisfied or not?
E.g. if Bridge A is blocked, optimal path goes via Bridge B



Example 2 – Explaining AI Models (NFM’17, JAR’18) 
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Learner Oracle

Oracle Interface

Membership: Is x ∈ φ?

Yes / No

O1 = (0) 

O2 = (1)

Design of experiments (input assignments)

m1 = (0,0,0,1,1,0,1) 

m2 = (0,0,1,1,0,1,0)

What parts of the input are relevant to property " being 

satisfied or not?

E.g. does race play a role in loan eligibility decision? 

Individual Data

Loan 

No Loan



Example 2 – Explaining AI Models (NFM’17, JAR’18) 

16

Explanations of decisions are often short and involve only few variables !



Example 2 – Explaining AI Models (NFM’17, JAR’18) 
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Learner OracleOracle Interface
Implemented using 
Hamming Distance 
Search over 
inputs/instances

Implemented using 
Local Verifier/Evaluator

Membership: Is x ∈ φ?
Yes / No

Explaining A* Planning
|V| = 2500 
|U| <= 4
Runtime < 3 minutes

Reactive Exploration Strategy
|V| = 96
|U| <= 2
Runtime < 5 seconds

(Jha et al. NeurIPS’19: Confidence, 
Detecting adv attacks)



Example 2 – Explaining AI Models (NFM’17, JAR’18) 
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• Randomly sample till black box differs on two 
assignments or a bound M is reached. 

• Binary Search over Hamming Distance between two 
assignments to find a relevant variable.

• Add this relevant variable to the relevant set. 
Recursively find relevant variables from the remaining 
input set for each possible assignment to this relevant 
variable.

2|#|

$ = 2|#| & ' 1
1 − *

for * PAC guarantee

&'(|,|)

Relevant variables can be found with confidence . in 
// 0 12(|3|/(5 − .))

queries to the oracle.

, : set of all variables 6 : set of relevant variables



Example 3: Hierarchical Oracles - Controller Synthesis 
(Jha and Lincoln, Allerton Control’18) 
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Plant Or

Control
Learner 

(RL)
Control 
Input
action

State

Reward

Surrogate
Models

Direct experiments on real world are costly, slow, and risk-prone.

Minimize the number of real world trajectories needed to learn the optimal 
policy and simultaneously tune the surrogate model being used by RL

Reward

State

Control 
Input
action Detailed

Simulator
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Example 3: Hierarchical Oracles - Controller Synthesis 
(Jha and Lincoln, Allerton Control’18) 

Random safe policy !"
learnt using surrogate model with parameter #

Collect trajectories as sequence of tuples 
$, &, $’ where & = !"($)

Surrogate
Models

Plant or Detailed
SimulatorRL (TRPO)

Detailed trajectories as sequence of  $, &, $’
Current best policy !

Surrogate model with parameter #
that maximizes cross-entropy

&+,-&./∈1 − 3 # log( 3 # )
Intuitively, use the model which will best
disambiguate existing possible models.
Randomly sample from 3

Guarantee of convergence for TRPO or any RL method that  guarantees the KL 
divergence between consecutive policies is bounded.



Example 3: Hierarchical Oracles - Controller Synthesis 

(Jha and Lincoln, Allerton Control’18) 

Training data: ( "#, Δ "# ), ( "', Δ "' ), "(, Δ "( , …

Learn a Gaussian Process approximation of the 

function Δ [Squared Exponential Kernel ]
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Typical use of GPs to learn functions is often to find the extremum point 

(maximum/minimum). But for us Δ itself is not fixed and will change as we collect 

more real-world trajectories. Our interest is, thus, in maintaining a probability 

distribution * over how likely a parameter " is to correspond to the most accurate 

model of the real world. 

Surrogate
Models

Random pick parameter " from parameter space +
Simulate physics engine model for state-action pair 

,, - to get ( ,, -, .(,, -, ") )

For each sampled ", we can compute 

average model-deviation as: 

Δ " = 1
|2| 3

4,5,46 ∈2
|,8 − . ,, -, " | (



Example 3: Hierarchical Oracles - Controller Synthesis 
(Jha and Lincoln, Allerton Control’18) 

Δ " =
1
|&|

'
(,*,(+ ∈&

|-. − 0 -, 1, " | 2

For each " ∈ 3, we define an indicator whether " minimizes Δ ∶
5 Δ, " = 1 67 " = 189:6;< Δ(>)

Now, the probability that " is the optimal model parameter representing 
the plant is given by:

@ " = A
B
CD,E Δ ⋅ 5 Δ, " GΔ

The probability of " is the sum of probability of model-deviation functions 
in which " minimizes these functions. 

How do we compute this? Perform Monte Carlo sampling to approximate 
the revised distribution @.  Sample ΔH, Δ2, ΔI … , ΔK from the GP,  for each 
" ∈ 3, we compute the number of times 8 that " minimizes ΔL
[this is just evaluation, no simulation or real-world experiment]

@ " =
8
M 22



Example 3: Hierarchical Oracles - Controller Synthesis 
(Jha and Lincoln, Allerton Control’18) 
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Estimate distribution 
P of ! using "

Run TRPO with !# to get 
corresponding optimal policy $#

Generate real-world trajectories 
using $# and add to "

Sample !# using the distribution P 
of likely parameters

Surrogate
Model

New 
Real-world
Or Detailed
Simulator
Trajectories

Select !%&'# with 
max entropy

Use GP to approximate 
model-deviation function



Example 3: Hierarchical Oracles - Controller Synthesis 

(Jha and Lincoln, Allerton Control’18) 

OpenAI Gym with the MuJoCo simulator.  Parameter space: 

• Inverted Pendulum (IP): A pendulum is connected to a cart, which moves linearly. 

The dimension is 2, one for the mass of the pendulum and one for the cart.

• Swimmer: The swimmer is a 3-link planar robot and has 3 dimensions, one for the 

mass of each link..

• Hopper: The hopper is a 4-link planar mono-pod robot. Dimensionality: 4

• Walker2D: The walker is a 7-link planar biped robot. Dimensionality: 7

• HalfCheetah: The halfcheetah is a 7-link planar cheetah robot. Dimensionality: 7

Simulation model was constructed by decreasing the mass value by 10%. 

Original OpenAI Gym model treated as real world. 
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model with correct parameter
combined learning of parameter + 
policy
model with 10% off parameter

RewardAvg/sd
Reward

model with correct parameter
combined learning of parameter + policy
model with 10% off parameter

RewardAvg/sd
Reward



Conclusion

• Formal synthesis is the process of learning a compositional concept 
satisfying a high-level formal specification. 

• Programs, controllers, and explanations/intent of machine learning 
models/agents are examples of such compositional concepts, and we 
presented example formal synthesis approaches for these.  

• A unifying view that describes formal synthesis techniques as an 
interaction protocol between an oracle and a learner – both of which 
are co-designed for a target concept. 
• A theoretical characterization of different formal synthesis techniques by 

considering oracles and learners with different properties. 
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