
1

Formal Synthesis: Oracle-guided Learning of
Compositional Concepts

Susmit Jha
Principal Scientist
Computer Science Laboratory
SRI International

Acknowledgement: Sanjit A. Seshia, other fellow co-travelers over the last decade, my
employers Intel, Raytheon Technologies (UTRC) and SRI, and US funding agencies
DARPA, IARPA, NSA, NSF and ARL.

Formal Synthesis

• Formal synthesis is the process of learning a compositional concept
satisfying a high-level formal specification.

• Programs, controllers, and explanations/intent of machine learning
models/agents are examples of such compositional concepts.

• Compositionality enables automated deduction – making it no longer a
pure learning problem.

• Over the last decade, we have developed several techniques for formal
synthesis that include:
• Programs: ICSE’10 (MIP Award at ICSE’20), PLDI’11, DTTC’13, NSV’14, Acta

Informatica’17
• Controllers: ICCPS’10, EMSOFT’11, IJBRA’12, FORMATS’16, FORMATS’18, Allerton’18,

ACC’19
• Explanations and intent: NFM’17, RV’17, NFM’18, JAR’18, NeurIPS’18, FMSD’19
• Fun: A Case Study on Automated Synthesis of Magic Card Tricks. Jha et al. IEEE

Formal Methods in Computer-Aided Design (FMCAD), 2016
2

Formal Synthesis: Talk Outline

• A unifying view that describes formal synthesis techniques as an

interaction between an oracle and a learner – both of which are co-

designed for a target concept.

• A theoretical characterization of different formal synthesis techniques

by considering oracles and learners with different properties.

• Acta Informatica’17

• Example practical applications of this framework

• Jha et al. Oracle-guided component-based program synthesis. ACM/IEEE

International Conference on Software Engineering (ICSE), 2010 (10 year

MIP award at ICSE’2020)

• Jha et al. Explaining AI Decisions Using Efficient Methods for Learning

Sparse Boolean Formulae. Journal of Automated Reasoning, 2018

• Jha et al. Data-efficient Learning of Robust Control Policies. Allerton

Control, 2018

3

Why Formal Synthesis? Induction + Deduction

• Induction: Inferring general rules (functions) from specific examples
(observations)
• Generalization

• Deduction: Applying general rules to derive conclusions about specific
instances
• Specialization

• Formal Synthesis: Simultaneously learn from data and deduce from rules.

4

Number ≥ 7

Number ≥ 7 ∧ 8

Number ≥ 5?
Number ≥ 7

“Towards Automatic System Synthesis Using Sciduction – Structurally Constrained
Induction and Deduction.” Susmit Jha, Ph.D. Thesis (UC Berkeley, 2011).

E.g. Perception as Synthesis vs Inductive Learning

5

NuScenes dataset
Object classes and frequency of samples: human (19.46%), bicycle (1.04%),
motorcycle (1.11%), car (43.62%), truck (12.70%), movable_object (22.05%)

Occlusion at different levels

E.g. Perception as Synthesis vs Inductive Learning

6

NuScenes dataset
Object classes and frequency of samples: human (19.46%), bicycle (1.04%),
motorcycle (1.11%), car (43.62%), truck (12.70%), movable_object (22.05%)
+ Spatio-temporal rules of co-occurrence in addition to data.

Model Occlusion (%) Overall
accuracy

Class-wise accuracy

human bicycle motor-
cycle

car truck movable
object

CNN - ResNet
(Baseline)

No occlusion 88.65 92.44 57.24 61.31 92.59 69.74 90.69

CNN - ResNet
(Baseline)

30% 83.24 90.99 12.52 20.90 92.48 71.15 71.36

CNN - ResNet
(Baseline)

50% 79.17 90.93 2.36 12.48 87.33 58.94 67.95

Formal Synthesis No occlusion 95.51 98.38 66.25 73.37 97.13 82.17 98.62

Formal Synthesis 30% 94.70 97.72 65.66 65.40 96.62 81.31 96.73

Formal Synthesis 50% 93.13 97.53 31.36 64.88 94.17 81.10 96.34

Less frequent (~1%) classes

Formal Synthesis: Why Oracle-guided?

Even when symbolic specification is available,
it may not be amenable to deduction.

7

int obfuscated (int y)
{ a=1; b=0; z=1; c=0;
while(1) {
if (a == 0) {
if (b == 0) { y=z+y; a =~a;
b=~b; c=~c; if (~c) break; }
else {
z=z+y; a=~a; b=~b; c=~c;
if (~c) break; } }

else if(b == 0) {z=y << 2;
a=~a;}

else { z=y << 3; a=~a; b=~b;}
}}

("#$%, '$%)
("#$), '$))

("#$*, '$*)
………

int deobfuscated (int y)
{ z = y << 2;

y = z + y;
z = y << 3;
y = z + y;
return y; }

Specification is a black-box oracle and
not available in symbolic form.

E.g. static program analysis is challenging and obfuscation can target these limitations,
interaction with humans, deep learning models too large to be considered as white-box,
physics models too complex to be analytically represented for deduction.

Oracle Interfaces beyond positive and negative examples

8

LEARNER ORACLE

Positive Witness
x ∈ φ, if one exists, else ⊥

Negative Witness
x ∉ φ, if one exists, else ⊥

Membership: Is x ∈ φ?
Yes / No

Equivalence: Is f = φ?
Yes / No + x ∈ φ⊕f

Subsumption/Subset: Is f ⊆ φ?
Yes / No + x ∈ f \ φ

Distinguishing Input: f, X ⊆ f
f’ s.t. f’ ≠f ∧ X ⊆ f’, if it exists; o.w. ⊥

Oracle Interfaces

Oracle Guided Formal Synthesis

9

Learner Oracle

!
"

Positive Witness
x ∈ φ, if one exists, else ⊥

Negative Witness
x ∉ φ, if one exists, else ⊥

Membership: Is x ∈ φ?
Yes / No

Equivalence: Is f = φ?
Yes / No + x ∈ φ⊕f

Subsumption/Subset: Is f ⊆ φ?
Yes / No + x ∈ f \ φ

Distinguishing Input: f, X ⊆ f
f’ s.t. f’ ≠f ∧ X ⊆ f’, if it exists; o.w. ⊥

Concept Class

Oracle Interface

A dialogue is a sequence of (query, response) confirming to an oracle interface O
An Oracle-guided formal synthesis algorithm is a pair <L, T> where
• L is a learner, a non-deterministic algorithm mapping a dialogue to a concept c

and query q
• T is an oracle/teacher, a non-deterministic algorithm mapping a dialogue and

query to a response r

An Oracle-guided formal synthesis algorithm <L,T> solves a synthesis problem if there
exists a dialogue between L and T that converges in the target concept f ∈ C

Oracle guided formal synthesis as a generalization of
query based learning

10

• Formal Language Learning, 1967
• Class of languages identifiable in the limit if there is a

learning procedure that, for each language in that class,
given an infinite stream of strings, will eventually generate a
representation of the language.

• Sample results:
• Cannot learn regular languages, CFLs, CSLs using just

positive witness queries
• Can learn using both positive & negative witness queries

Dana Angluin

• Queries and Concept Learning, 1988
• Supports witness, equivalence, membership queries
• Sample results:

• Can learn DFAs in poly time from membership and
equivalence queries

• Cannot learn DFAs or DNF formulas in poly time with
just equivalence queries

Use advances in automated deduction techniques such as program analysis,
control theory, etc. to support richer oracle interfaces.

Theoretical Analysis of Oracle Guided Formal Synthesis:
Jha & Seshia, Acta Informatica’17

11

For concept class of programs recognizing indexed family of regular languages, we
studied Oracle-guided formal synthesis algorithm <L, T> for synthesis feasibility where
• Learner L has different memory:
• Finite memory
• Infinite memory

• Oracle O has different interfaces:
• Cex: Arbitrary counterexamples
• Any element of f ⊕ φ

• MCex: Minimal counterexamples
• A least element of f ⊕ φ according to size
• Motivated by debugging methods that seek to find small

counterexamples to explain errors & repair
• CBCex: Constant-bounded counterexamples (bound B)
• An element x of f ⊕ φ s.t. size(x) < B
• Motivation: Bounded Model Checking, Context bounded testing, etc.

• PBCex: Positive-bounded counterexamples
• An element x of f ⊕ φ s.t. size(x) is no larger than that of any

positive example seen so far
• Motivation: bug-finding methods that mutate a correct execution in

order to find buggy behaviors

Theoretical Analysis of Oracle Guided Formal Synthesis:
Jha & Seshia, Acta Informatica’17

12

• Cex: Arbitrary counterexamples
• Any element of f ⊕ φ

• MCex: Minimal counterexamples
• A least element of f ⊕ φ according to size

• CBCex: Constant-bounded counterexamples (bound B)
• An element x of f ⊕ φ s.t. size(x) < B

• PBCex: Positive-bounded counterexamples
• An element x of f ⊕ φ s.t. size(x) is no larger than that of any positive example seen so far

Cex ≈ MCex

CBCex

PBCex
Cex ≈ MCex

CBCex PBCex#$%&'(
#)($%&'(
#$%&)(
#'(

Finite memory learner Infinite memory learner

Example 1: Program Synthesis (ICSE’ 2010)

13

Learner Oracle

Distinguishing Input: f, X ⊆ f
f’ s.t. f’ ≠f ∧ X ⊆ f’, if it exists; o.w. ⊥

Oracle Interface

- 1

||

SomethingElse (x) {
r1 = x – 1;
r5 = !x
r2 = r5 || r1;
r4 = r2 && r5;
return r4;
}

+1

&&

!

p1

p2

p3

p4

p5

p6

p7

r1

r2

r3

r4

r5

X

o

Each program form
corresponds to some
composition topology.

Concept Class:
Programs as
composition of
functions.

P25: Higher order half of
product of x and y

o1 := x && 0xFFFF;
o2 := x >> 16;
o3 := y && 0xFFFF;
o4 := y >> 16;
o5 := o1 X o3;
o6 := o2 X o3;
o7 := o1 X o4;
o8 := o2 X o4);
o9 := o5 >> 16;
o10 := o6 + o9;
o11 := o10 && 0xFFFF;
o12 := o10 >> 16;
o13 := o7 + o11;
o14 := o13 >> 16);
o15 := o14 + o12;
res := o15 + o8;

P24: Round up to next
highest power of 2

o1 := x - 1;
o2 := o1 >> 1;
o3 := o1 || o2;
o4 := o3 >> 2;
o5 := o3 || o4;
o6 := o5 >> 4;
o7 := o5 || o6;
o8 := o7 >> 8;
o9 := o7 || o8;
o10 := o9>>16;
o11 := o9 || o10;
res := o10 && 1;

Implemented
using Satisfiability
Solving

Implemented
using Satisfiability
Solving

Example 2 – Explaining AI Models (NFM’17, JAR’18)

14

Learner Oracle

Oracle Interface

Membership: Is x ∈ φ?

Yes / No

Does plan satisfy "
E.g. Plan goes via some

segment

O1 = (0)
O2 = (1)

Design of experiments (input assignments)
m1 = (0,0,0,1,1,0,1)
m2 = (0,0,1,1,0,1,0)

What parts of the input are relevant to property " being
satisfied or not?
E.g. if Bridge A is blocked, optimal path goes via Bridge B

Example 2 – Explaining AI Models (NFM’17, JAR’18)

15

Learner Oracle

Oracle Interface

Membership: Is x ∈ φ?

Yes / No

O1 = (0)

O2 = (1)

Design of experiments (input assignments)

m1 = (0,0,0,1,1,0,1)

m2 = (0,0,1,1,0,1,0)

What parts of the input are relevant to property " being

satisfied or not?

E.g. does race play a role in loan eligibility decision?

Individual Data

Loan

No Loan

Example 2 – Explaining AI Models (NFM’17, JAR’18)

16

Explanations of decisions are often short and involve only few variables !

Example 2 – Explaining AI Models (NFM’17, JAR’18)

17

Learner OracleOracle Interface
Implemented using
Hamming Distance
Search over
inputs/instances

Implemented using
Local Verifier/Evaluator

Membership: Is x ∈ φ?
Yes / No

Explaining A* Planning
|V| = 2500
|U| <= 4
Runtime < 3 minutes

Reactive Exploration Strategy
|V| = 96
|U| <= 2
Runtime < 5 seconds

(Jha et al. NeurIPS’19: Confidence,
Detecting adv attacks)

Example 2 – Explaining AI Models (NFM’17, JAR’18)

18

• Randomly sample till black box differs on two
assignments or a bound M is reached.

• Binary Search over Hamming Distance between two
assignments to find a relevant variable.

• Add this relevant variable to the relevant set.
Recursively find relevant variables from the remaining
input set for each possible assignment to this relevant
variable.

2|#|

$ = 2|#| & ' 1
1 − *

for * PAC guarantee

&'(|,|)

Relevant variables can be found with confidence . in
// 0 12(|3|/(5 − .))

queries to the oracle.

, : set of all variables 6 : set of relevant variables

Example 3: Hierarchical Oracles - Controller Synthesis
(Jha and Lincoln, Allerton Control’18)

19

Plant Or

Control
Learner

(RL)
Control
Input
action

State

Reward

Surrogate
Models

Direct experiments on real world are costly, slow, and risk-prone.

Minimize the number of real world trajectories needed to learn the optimal
policy and simultaneously tune the surrogate model being used by RL

Reward

State

Control
Input
action Detailed

Simulator

20

Example 3: Hierarchical Oracles - Controller Synthesis
(Jha and Lincoln, Allerton Control’18)

Random safe policy !"
learnt using surrogate model with parameter #

Collect trajectories as sequence of tuples
$, &, $’ where & = !"($)

Surrogate
Models

Plant or Detailed
SimulatorRL (TRPO)

Detailed trajectories as sequence of $, &, $’
Current best policy !

Surrogate model with parameter #
that maximizes cross-entropy

&+,-&./∈1 − 3 # log(3 #)
Intuitively, use the model which will best
disambiguate existing possible models.
Randomly sample from 3

Guarantee of convergence for TRPO or any RL method that guarantees the KL
divergence between consecutive policies is bounded.

Example 3: Hierarchical Oracles - Controller Synthesis

(Jha and Lincoln, Allerton Control’18)

Training data: ("#, Δ "#), ("', Δ "'), "(, Δ "(, …

Learn a Gaussian Process approximation of the

function Δ [Squared Exponential Kernel]

21

Typical use of GPs to learn functions is often to find the extremum point

(maximum/minimum). But for us Δ itself is not fixed and will change as we collect

more real-world trajectories. Our interest is, thus, in maintaining a probability

distribution * over how likely a parameter " is to correspond to the most accurate

model of the real world.

Surrogate
Models

Random pick parameter " from parameter space +
Simulate physics engine model for state-action pair

,, - to get (,, -, .(,, -, "))

For each sampled ", we can compute

average model-deviation as:

Δ " = 1
|2| 3

4,5,46 ∈2
|,8 − . ,, -, " | (

Example 3: Hierarchical Oracles - Controller Synthesis
(Jha and Lincoln, Allerton Control’18)

Δ " =
1
|&|

'
(,*,(+ ∈&

|-. − 0 -, 1, " | 2

For each " ∈ 3, we define an indicator whether " minimizes Δ ∶
5 Δ, " = 1 67 " = 189:6;< Δ(>)

Now, the probability that " is the optimal model parameter representing
the plant is given by:

@ " = A
B
CD,E Δ ⋅ 5 Δ, " GΔ

The probability of " is the sum of probability of model-deviation functions
in which " minimizes these functions.

How do we compute this? Perform Monte Carlo sampling to approximate
the revised distribution @. Sample ΔH, Δ2, ΔI … , ΔK from the GP, for each
" ∈ 3, we compute the number of times 8 that " minimizes ΔL
[this is just evaluation, no simulation or real-world experiment]

@ " =
8
M 22

Example 3: Hierarchical Oracles - Controller Synthesis
(Jha and Lincoln, Allerton Control’18)

23

Estimate distribution
P of ! using "

Run TRPO with !# to get
corresponding optimal policy $#

Generate real-world trajectories
using $# and add to "

Sample !# using the distribution P
of likely parameters

Surrogate
Model

New
Real-world
Or Detailed
Simulator
Trajectories

Select !%&'# with
max entropy

Use GP to approximate
model-deviation function

Example 3: Hierarchical Oracles - Controller Synthesis

(Jha and Lincoln, Allerton Control’18)

OpenAI Gym with the MuJoCo simulator. Parameter space:

• Inverted Pendulum (IP): A pendulum is connected to a cart, which moves linearly.

The dimension is 2, one for the mass of the pendulum and one for the cart.

• Swimmer: The swimmer is a 3-link planar robot and has 3 dimensions, one for the

mass of each link..

• Hopper: The hopper is a 4-link planar mono-pod robot. Dimensionality: 4

• Walker2D: The walker is a 7-link planar biped robot. Dimensionality: 7

• HalfCheetah: The halfcheetah is a 7-link planar cheetah robot. Dimensionality: 7

Simulation model was constructed by decreasing the mass value by 10%.

Original OpenAI Gym model treated as real world.

24

model with correct parameter
combined learning of parameter +
policy
model with 10% off parameter

RewardAvg/sd
Reward

model with correct parameter
combined learning of parameter + policy
model with 10% off parameter

RewardAvg/sd
Reward

Conclusion

• Formal synthesis is the process of learning a compositional concept
satisfying a high-level formal specification.

• Programs, controllers, and explanations/intent of machine learning
models/agents are examples of such compositional concepts, and we
presented example formal synthesis approaches for these.

• A unifying view that describes formal synthesis techniques as an
interaction protocol between an oracle and a learner – both of which
are co-designed for a target concept.
• A theoretical characterization of different formal synthesis techniques by

considering oracles and learners with different properties.

25

References
• Jha et al. Synthesizing switching logic for safety and dwell-time requirements. ACM/IEEE International Conference on

Cyber-physical Systems (ICCPS), 2010
• Jha et al. Oracle-guided component-based program synthesis. ACM/IEEE International Conference on Software

Engineering (ICSE), 2010 (10 year MIP award at ICSE’2020)
• Jha et al. Synthesis of optimal switching logic for hybrid systems. ACM SIGBED International Conference on

Embedded Software (EMSOFT), 2011
• Jha et al. Synthesis of insulin pump controllers from safety specifications using Bayesian model validation. Journal of

Bioinformatics Research and Applications (IJBRA), 2012
• Jha et al. Synthesis of Optimal Fixed-Point Implementation of Numerical Software Routines.

Numerical Software Verification (NSV), 2014
• Jha et al. On exists-forall-exists Solving: A Case Study on Automated Synthesis of Magic Card Tricks. IEEE Formal

Methods in Computer-Aided Design (FMCAD), 2016
• Jha et al. TeLEx: Passive STL Learning Using Only Positive Examples. International Conference on Runtime

Verification (RV), 2017
• Jha et al. On Learning Sparse Boolean Formulae For Explaining AI Decisions. NASA Formal Methods (NFM), 2017
• Jha et al. Explaining AI Decisions Using Efficient Methods for Learning Sparse Boolean Formulae. Journal of

Automated Reasoning, 2018
• Jha et al. Data-efficient Learning of Robust Control Policies. Allerton Control, 2018
• Vazquez-Chanlatte et al. Learning Task Specifications from Demonstrations. Neural Information Processing Systems

(NeurIPS), 2018
• Jha et al. Inferring and Conveying Intentionality: Beyond Numerical Rewards to Logical Intentions. AAAI Spring

Symposium, Towards Conscious AI Systems, 2019
• Jha et al. TeLEx: Learning signal temporal logic from positive examples using tightness metric.

Formal Methods in System Design (FMSD), 2019
26

Thanks!

