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Coordination synthesis

Specifying intent of a coordination program is easier
E.g. “Thermostat should maintain ambient temperature”
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Contributions
Formulate, solve, and demonstrate coordination synthesis

Formalize coordination synthesis

“Easier to specify” formalization

Design efficient automata-based synthesis algorithm

Accounts for all three challenges – Reactive, asynchrony, partial information

Prior work accounts for at most two

Conduct case-studies on prototype implementation



High-level specification

Intent of coordination program

Linear Temporal Logic (LTL) [Pnueli, FOCS 1977]
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High-level specification

Intent of coordination program

Linear Temporal Logic (LTL) [Pnueli, FOCS 1977]

Device description

Communicating Sequential Processes (CSP) [Hoare, CACM 1978]

• Rich structure: asynchrony, non-determinism …

• Communication model: Message passing

• Interface: Visible and hidden actions
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CSP processes [Hoare, , CACM 1978]

Processes: 𝑃, 𝑄, 𝑅, …

• Public actions (𝑎0, 𝑎1, … 𝑎𝑛)  and Private actions (𝑏0, 𝑏1, … 𝑏𝑛)

𝑃 = 𝑎𝑐𝑡𝑖𝑜𝑛0 → 𝑄0 𝑎𝑐𝑡𝑖𝑜𝑛1 → 𝑄1 | … 𝑎𝑐𝑡𝑖𝑜𝑛𝑛 → 𝑄𝑛
“Process 𝑃 evolves to process 𝑄𝑖 on 𝑎𝑐𝑡𝑖𝑜𝑛𝑖”
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CSP processes [Hoare, , CACM 1978]

Processes: 𝑃, 𝑄, 𝑅, …

• Public actions (𝑎0, 𝑎1, … 𝑎𝑛)  and Private actions (𝑏0, 𝑏1, … 𝑏𝑛)

𝑃 = 𝑎𝑐𝑡𝑖𝑜𝑛0 → 𝑄0 𝑎𝑐𝑡𝑖𝑜𝑛1 → 𝑄1 | … 𝑎𝑐𝑡𝑖𝑜𝑛𝑛 → 𝑄𝑛
“Process 𝑃 evolves to process 𝑄𝑖 on 𝑎𝑐𝑡𝑖𝑜𝑛𝑖”

• Allows structural non-determinism: 𝑃 = 𝑎 → 𝑄0 | 𝑎 → 𝑄1

Example:   𝐸 = 𝑎0 → 𝐸0 | 𝑎1 → 𝑆𝑇𝑂𝑃

𝐸0 = 𝑏0 → 𝐸0
𝐸

𝐸0

STOP

𝑎0

𝑎1

𝑏0



CSP interactions [Hoare, 1978]

Synchronized public actions

• Processes evolve together on public actions

Let, 𝑃0 = 𝑎 → 𝑄0, 𝑃1 = 𝑎 → 𝑄1 then (𝑃0 || 𝑃1) = 𝑎 → (𝑄0 || 𝑄1)
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CSP interactions [Hoare, 1978]

Synchronized public actions

• Processes evolve together on public actions

Let, 𝑃0 = 𝑎 → 𝑄0, 𝑃1 = 𝑎 → 𝑄1 then (𝑃0 || 𝑃1) = 𝑎 → (𝑄0 || 𝑄1)

Let, 𝑃0 = 𝑎0 → 𝑄0, 𝑃1 = 𝑎1 → 𝑄1 then (𝑃0 || 𝑃1) no evolution

Internal private actions

• Process with private action evolves by itself

Let, 𝑃0 = 𝑏 → 𝑄0, 𝑃1 = 𝑎 → 𝑄1 then (𝑃0 || 𝑃1) = 𝑏 → (𝑄0 || 𝑃1)
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Example 
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𝐸

𝐸0

𝐸1

𝑎0

𝑎1

𝑏0

𝑀
𝑎0

𝑎1

𝑀0𝑏1 ||

𝑎0𝑏0𝑏0𝑏0…

𝑎0𝑏1𝑎1…
…



Coordination synthesis

Given a CSP environment description 

E = E1 || E2 || … || En

and an LTL specification S, 

Generate a coordinator (CSP) M s.t.
E || M satisfies S
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Challenge I: Partial information

Coordinator may not know the current state of E

• Structural non-determinism:
Evolution to multiple states 

• Internal actions:
Evolution due to internal actions is unknown to coordinator

29



Challenge II: Deadlock freedom

Coordinator must guarantee no deadlock despite partial information

𝐸 = 𝑎0 → 𝐸0 | 𝑎1 → 𝐸1
𝐸0 = 𝑎1 → 𝐸0
𝐸1 = 𝑎1 → 𝐸1

30
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𝑀 = 𝑎0 → 𝑀
𝐸||𝑀 deadlocks

𝐸
𝐸0

𝐸1

𝑎0

𝑎1

𝑎1

𝑎1

𝑀 = 𝑎1 → 𝑀
𝐸||𝑀 does not deadlock



Challenge III: Asynchrony

Coordinator doesn’t know how many or which actions have taken place
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….

….

Expansion

Every valid expansion satisfies S

𝑎0 𝑎1 𝑎2 𝑎3

𝑎0 𝑎1 𝑎2 𝑎3𝑏0 𝑏1 𝑏2 𝑏3



Core technique

Coordination synthesis with E,S reduces to Synch. synthesis with TS(E,S)
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Coordination 
synthesis of E

with S

Synthesis of 
transformed spec. 

TS(E,S)
[Pnueli and Rosner, POPL 1989]

→

Automaton 
Aut(S) Double the states in E and Aut(S)

Symbolic construction



Implementation

Prototype CoSy (Coordination Synthesis)

• Core reduction in Python

• BDD-based symbolic reduction

Front end

SPOT

LTL 
spec. S

FDR

CSPs E1, 
E2 ... En

Core reduction

BuDDy BDD 
library

Python
Aut. for S

E = 
E1||… ||En

Back end

BoSy
synthesis 

tool

New 
spec.

TS(S,E)

Un-
realizable

If
realizable,
CSP M



Thermostat How will coordination synthesis help?



Thermostat case study
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Maintain  ambient 
temperature

Thermostat 
doesn’t interact 
with all devices

Phase I

Thermostat must  
interact with all 

devices (Fairness)

Phase II

AC and Heater are 
switched on at 
the same time

Energy efficient

Phase III

+ +

SATISFIED!



Coordination synthesis, in a nutshell
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• Modelling
• CSP  environments – Interface, non-determinism, private/public actions
• LTL specifications – Expressive 

• Algorithm
• Efficient automata-based reduction to synchronous synthesis
• Prototype + Case studies demonstrate utility

• Complexity analysis
• PSPACE-hard in size of E
• Algorithm is exponential in E, number of devices


