
Synthesis
of

coordination programs
from

temporal specifications

Suguman Bansal, Rice University

Kedar Namjoshi, Nokia Bell Labs, Murray Hill

Yaniv Sa’ar, Nokia Bell Labs, Kfar Saba

2

Coordination programs

3

Coordination programs

Thermostat

Controller/

Coordinator

Sensor

ACHeater

4

Coordination programs

5

Coordination programs

6

Coordination
program

Agents/
Devices

7

Coordination
program

Receive
inputs

Emits
outputs

Agents/
Devices

Designing
coordination
programs is hard

8

Coordination
program

Receive
inputs

Emits
outputs

Agents/
Devices

Designing
coordination
programs is hard

1. Reactive system

9

Coordination
program

Receive
inputs

Emits
outputs

Agents/
Devices

Repeated interaction with agents/devices

Designing
coordination
programs is hard

1. Reactive system

2. Asynchrony

10

Coordination
program

Receive
inputs

Emits
outputs

Agents/
Devices

Each device operates at its own clock

Designing
coordination
programs is hard

1. Reactive system

2. Asynchrony

3. Partial information

11

Coordination
program

Receive
inputs

Emits
outputs

Agents/
Devices

Coordination program has limited visibility:
Sees the interface only

12

Specifying intent of a coordination program is easier
E.g. “Thermostat should maintain ambient temperature”

Can we automatically generate a

coordination program from a high-

level specification?

13

Specifying intent of a coordination program is easier
E.g. “Thermostat should maintain ambient temperature”

Can we automatically generate a

coordination program from a high-

level specification?

14

Coordination synthesis

Specifying intent of a coordination program is easier
E.g. “Thermostat should maintain ambient temperature”

Contributions
Formulate, solve, and demonstrate coordination synthesis

Contributions
Formulate, solve, and demonstrate coordination synthesis

Formalize coordination synthesis

“Easier to specify” formalization

Contributions
Formulate, solve, and demonstrate coordination synthesis

Formalize coordination synthesis

“Easier to specify” formalization

Design efficient automata-based synthesis algorithm

Accounts for all three challenges – Reactive, asynchrony, partial information

Prior work accounts for at most two

Contributions
Formulate, solve, and demonstrate coordination synthesis

Formalize coordination synthesis

“Easier to specify” formalization

Design efficient automata-based synthesis algorithm

Accounts for all three challenges – Reactive, asynchrony, partial information

Prior work accounts for at most two

Conduct case-studies on prototype implementation

High-level specification

Intent of coordination program

Linear Temporal Logic (LTL) [Pnueli, FOCS 1977]

19

High-level specification

Intent of coordination program

Linear Temporal Logic (LTL) [Pnueli, FOCS 1977]

Device description

Communicating Sequential Processes (CSP) [Hoare, CACM 1978]

• Rich structure: asynchrony, non-determinism …

• Communication model: Message passing

• Interface: Visible and hidden actions

20

CSP processes [Hoare, , CACM 1978]

Processes: 𝑃, 𝑄, 𝑅, …

• Public actions (𝑎0, 𝑎1, … 𝑎𝑛) and Private actions (𝑏0, 𝑏1, … 𝑏𝑛)

𝑃 = 𝑎𝑐𝑡𝑖𝑜𝑛0 → 𝑄0 𝑎𝑐𝑡𝑖𝑜𝑛1 → 𝑄1 | … 𝑎𝑐𝑡𝑖𝑜𝑛𝑛 → 𝑄𝑛
“Process 𝑃 evolves to process 𝑄𝑖 on 𝑎𝑐𝑡𝑖𝑜𝑛𝑖”

CSP processes [Hoare, , CACM 1978]

Processes: 𝑃, 𝑄, 𝑅, …

• Public actions (𝑎0, 𝑎1, … 𝑎𝑛) and Private actions (𝑏0, 𝑏1, … 𝑏𝑛)

𝑃 = 𝑎𝑐𝑡𝑖𝑜𝑛0 → 𝑄0 𝑎𝑐𝑡𝑖𝑜𝑛1 → 𝑄1 | … 𝑎𝑐𝑡𝑖𝑜𝑛𝑛 → 𝑄𝑛
“Process 𝑃 evolves to process 𝑄𝑖 on 𝑎𝑐𝑡𝑖𝑜𝑛𝑖”

• Allows structural non-determinism: 𝑃 = 𝑎 → 𝑄0 | 𝑎 → 𝑄1

CSP processes [Hoare, , CACM 1978]

Processes: 𝑃, 𝑄, 𝑅, …

• Public actions (𝑎0, 𝑎1, … 𝑎𝑛) and Private actions (𝑏0, 𝑏1, … 𝑏𝑛)

𝑃 = 𝑎𝑐𝑡𝑖𝑜𝑛0 → 𝑄0 𝑎𝑐𝑡𝑖𝑜𝑛1 → 𝑄1 | … 𝑎𝑐𝑡𝑖𝑜𝑛𝑛 → 𝑄𝑛
“Process 𝑃 evolves to process 𝑄𝑖 on 𝑎𝑐𝑡𝑖𝑜𝑛𝑖”

• Allows structural non-determinism: 𝑃 = 𝑎 → 𝑄0 | 𝑎 → 𝑄1

Example: 𝐸 = 𝑎0 → 𝐸0 | 𝑎1 → 𝑆𝑇𝑂𝑃

𝐸0 = 𝑏0 → 𝐸0
𝐸

𝐸0

STOP

𝑎0

𝑎1

𝑏0

CSP interactions [Hoare, 1978]

Synchronized public actions

• Processes evolve together on public actions

Let, 𝑃0 = 𝑎 → 𝑄0, 𝑃1 = 𝑎 → 𝑄1 then (𝑃0 || 𝑃1) = 𝑎 → (𝑄0 || 𝑄1)

24

CSP interactions [Hoare, 1978]

Synchronized public actions

• Processes evolve together on public actions

Let, 𝑃0 = 𝑎 → 𝑄0, 𝑃1 = 𝑎 → 𝑄1 then (𝑃0 || 𝑃1) = 𝑎 → (𝑄0 || 𝑄1)

Let, 𝑃0 = 𝑎0 → 𝑄0, 𝑃1 = 𝑎1 → 𝑄1 then (𝑃0 || 𝑃1) no evolution

25

CSP interactions [Hoare, 1978]

Synchronized public actions

• Processes evolve together on public actions

Let, 𝑃0 = 𝑎 → 𝑄0, 𝑃1 = 𝑎 → 𝑄1 then (𝑃0 || 𝑃1) = 𝑎 → (𝑄0 || 𝑄1)

Let, 𝑃0 = 𝑎0 → 𝑄0, 𝑃1 = 𝑎1 → 𝑄1 then (𝑃0 || 𝑃1) no evolution

Internal private actions

• Process with private action evolves by itself

Let, 𝑃0 = 𝑏 → 𝑄0, 𝑃1 = 𝑎 → 𝑄1 then (𝑃0 || 𝑃1) = 𝑏 → (𝑄0 || 𝑃1)

26

Example

27

𝐸

𝐸0

𝐸1

𝑎0

𝑎1

𝑏0

𝑀
𝑎0

𝑎1

𝑀0𝑏1 ||

𝑎0𝑏0𝑏0𝑏0…

𝑎0𝑏1𝑎1…
…

Coordination synthesis

Given a CSP environment description

E = E1 || E2 || … || En

and an LTL specification S,

Generate a coordinator (CSP) M s.t.
E || M satisfies S

28

Challenge I: Partial information

Coordinator may not know the current state of E

• Structural non-determinism:
Evolution to multiple states

• Internal actions:
Evolution due to internal actions is unknown to coordinator

29

Challenge II: Deadlock freedom

Coordinator must guarantee no deadlock despite partial information

𝐸 = 𝑎0 → 𝐸0 | 𝑎1 → 𝐸1
𝐸0 = 𝑎1 → 𝐸0
𝐸1 = 𝑎1 → 𝐸1

30

𝐸
𝐸0

𝐸1

𝑎0

𝑎1

𝑎1

𝑎1

Challenge II: Deadlock freedom

Coordinator must guarantee no deadlock despite partial information

𝐸 = 𝑎0 → 𝐸0 | 𝑎1 → 𝐸1
𝐸0 = 𝑎1 → 𝐸0
𝐸1 = 𝑎1 → 𝐸1

31

𝑀 = 𝑎0 → 𝑀
𝐸||𝑀 deadlocks

𝐸
𝐸0

𝐸1

𝑎0

𝑎1

𝑎1

𝑎1

Challenge II: Deadlock freedom

Coordinator must guarantee no deadlock despite partial information

𝐸 = 𝑎0 → 𝐸0 | 𝑎1 → 𝐸1
𝐸0 = 𝑎1 → 𝐸0
𝐸1 = 𝑎1 → 𝐸1

32

𝑀 = 𝑎0 → 𝑀
𝐸||𝑀 deadlocks

𝐸
𝐸0

𝐸1

𝑎0

𝑎1

𝑎1

𝑎1

𝑀 = 𝑎1 → 𝑀
𝐸||𝑀 does not deadlock

Challenge III: Asynchrony

Coordinator doesn’t know how many or which actions have taken place

33

….

….

Expansion

Every valid expansion satisfies S

𝑎0 𝑎1 𝑎2 𝑎3

𝑎0 𝑎1 𝑎2 𝑎3𝑏0 𝑏1 𝑏2 𝑏3

Core technique

Coordination synthesis with E,S reduces to Synch. synthesis with TS(E,S)

34

Coordination
synthesis of E

with S

Synthesis of
transformed spec.

TS(E,S)
[Pnueli and Rosner, POPL 1989]

→

Core technique

Coordination synthesis with E,S reduces to Synch. synthesis with TS(E,S)

35

Coordination
synthesis of E

with S

Synthesis of
transformed spec.

TS(E,S)
[Pnueli and Rosner, POPL 1989]

→

Automaton
Aut(S)

Challenge III: Asynchrony

Coordinator doesn’t know how many or which actions have taken place

36

….

….

Expansion

Every valid expansion satisfies S

𝑎0 𝑎1 𝑎2 𝑎3

𝑎0 𝑎1 𝑎2 𝑎3𝑏0 𝑏1 𝑏2 𝑏3

Core technique

Coordination synthesis with E,S reduces to Synch. synthesis with TS(E,S)

37

Coordination
synthesis of E

with S

Synthesis of
transformed spec.

TS(E,S)
[Pnueli and Rosner, POPL 1989]

→

Automaton
Aut(S) Double the states in E and Aut(S)

Symbolic construction

Implementation

Prototype CoSy (Coordination Synthesis)

• Core reduction in Python

• BDD-based symbolic reduction

Front end

SPOT

LTL
spec. S

FDR

CSPs E1,
E2 ... En

Core reduction

BuDDy BDD
library

Python
Aut. for S

E =
E1||… ||En

Back end

BoSy
synthesis

tool

New
spec.

TS(S,E)

Un-
realizable

If
realizable,
CSP M

Thermostat How will coordination synthesis help?

Thermostat case study

40

Maintain ambient
temperature

Thermostat
doesn’t interact
with all devices

Phase I

Thermostat must
interact with all

devices (Fairness)

Phase II

AC and Heater are
switched on at
the same time

Energy efficient

Phase III

+ +

SATISFIED!

Coordination synthesis, in a nutshell

41

• Modelling
• CSP environments – Interface, non-determinism, private/public actions
• LTL specifications – Expressive

• Algorithm
• Efficient automata-based reduction to synchronous synthesis
• Prototype + Case studies demonstrate utility

• Complexity analysis
• PSPACE-hard in size of E
• Algorithm is exponential in E, number of devices

