
Synthesizing Approximate Implementations for

Unrealizable Specifications

Rayna Dimitrova Bernd Finkbeiner Hazem Torfah

March 8, 2021
Workshop on Synthesis of Models and Systems

Simons Institute Berkeley

Synthesis of Reactive Systems

Synthesisspecification '

realizable

unrealizable

implementation

For ' a linear-time property, the implementation satisfies '
for every possible infinite sequence of input values.

Implementation
Input

i0i1i2 . . .

Output

o0o1o2 . . .

2 / 22

Synthesis of Approximate Implementations

Synthesisspecification ' approximate

implementation

realizable

unrealizable

Approximate implementation: guaranteed to satisfy the specification for

1 sequences of input values that belong to a given class

2 at least a specified portion of the sequences in the given class

3 / 22

Example

Synthesise an arbiter serving two client processes

Input: r1, r2 (requests), Output: g1, g2 (grants)

Specification:

The two grants are never given simultaneously: ¬(g1 ^ g2)

Every request is eventually followed by a grant:
V2

i=1(ri ! gi)

A grant should not be revoked while the client keeps requesting it,
provided that the client will eventually release the grant:

2̂

i=1

(gi ^ ri ^ (¬ri) ! gi)

Unrealizable!

After gaining a grant, the client might never lower the request.

4 / 22

Example

Synthesise an arbiter serving two client processes

Input: r1, r2 (requests), Output: g1, g2 (grants)

Specification:

The two grants are never given simultaneously: ¬(g1 ^ g2)

Every request is eventually followed by a grant:
V2

i=1(ri ! gi)

A grant should not be revoked while the client keeps requesting it,
provided that the client will eventually release the grant:

2̂

i=1

(gi ^ ri ^ (¬ri) ! gi)

Unrealizable!

After gaining a grant, the client might never lower the request.

4 / 22

Unrealizable Specifications: Environment Assumptions

In reality, environments are often subject to restrictions.

Arbiter example: Each client either releases the grant within some
fixed bounded number of steps, or keeps it forever.

=) The example specification becomes realizable.

5 / 22

Unrealizable Specifications: Environment Assumptions

How are environment assumptions specified?

Logical formulas or automata describing allowed sequences of inputs
[Chatterjee et al.’08, Li et al.’11, Alur et al.’13]

Structural assumptions, such as bounded size of environment process
[Kupferman et al.’11]

In this work:

bound associated with the input sequences produced by the environment

5 / 22

Environments with Bounded-Lassos

Inputs generated by the environment:

ultimately periodic, defined by lassos of length at most k

. . .u · v!
u v v v

|u · v|  k

k-lasso-precise implementation

satisfies ' for input sequences representable as lassos of length at most k

✏-k-approximate implementation

satisfies ' on at least a (1� ✏) fraction of the input lassos of length k

6 / 22

Environments with Bounded-Lassos

Inputs generated by the environment:

ultimately periodic, defined by lassos of length at most k

. . .u · v!
u v v v

|u · v|  k

k-lasso-precise implementation

satisfies ' for input sequences representable as lassos of length at most k

✏-k-approximate implementation

satisfies ' on at least a (1� ✏) fraction of the input lassos of length k

6 / 22

Environments with Bounded-Lassos

Inputs generated by the environment:

ultimately periodic, defined by lassos of length at most k

. . .u · v!
u v v v

|u · v|  k

k-lasso-precise implementation

satisfies ' for input sequences representable as lassos of length at most k

✏-k-approximate implementation

satisfies ' on at least a (1� ✏) fraction of the input lassos of length k

6 / 22

Synthesis of k-lasso precise implementations

Synthesisspecification ' k-lasso precise

implementation

k 2 N
realizable

unrealizable

k-lasso-precise implementation

satisfies ' for input sequences representable as lassos of length at most k

7 / 22

Our Contributions

1 Automata-based synthesis of k-lasso precise implementations

2 Symbolic bounded synthesis of k-lasso precise implementations

3 Synthesis algorithms for ✏-k-approximate implementations

8 / 22

Outline

1 Automata-based synthesis of k-lasso precise implementations

2 Symbolic bounded synthesis of k-lasso precise implementations

3 Synthesis algorithms for ✏-k-approximate implementations

8 / 22

Lasso-precise Implementations

A k-lasso precise implementation

satisfies ' on inputs representable as lassos of length at most k,
can behave arbitrarily (violate ') on all other input sequences.

'

input seq.

representable

by k-lassos

overapproximation

of allowed traces

9 / 22

Lasso-precise Implementations

A k-lasso precise implementation

satisfies ' on inputs representable as lassos of length at most k,
can behave arbitrarily (violate ') on all other input sequences.

'

input seq.

representable

by k-lassos

overapproximation

of allowed traces

9 / 22

Lasso-precise Implementations

A k-lasso precise implementation

satisfies ' on inputs representable as lassos of length at most k,
can behave arbitrarily (violate ') on all other input sequences.

'

input seq.

representable

by k-lassos

overapproximation

of allowed traces

9 / 22

Lasso-precise Implementations

A k-lasso precise implementation

satisfies ' on inputs representable as lassos of length at most k,
can behave arbitrarily (violate ') on all other input sequences.

'

input seq.

representable

by k-lassos

overapproximation

of allowed traces

9 / 22

Lasso-precise Implementations

A k-lasso precise implementation

satisfies ' on inputs representable as lassos of length at most k,
can behave arbitrarily (violate ') on all other input sequences.

'

input seq.

representable

by k-lassos

overapproximation

of allowed traces

9 / 22

Automata-based Synthesis

of Lasso-precise Implementations

Given: deterministic parity automaton A' accepting the words satisfying '

1 Construct a DFA Ak that
accepts the prefixes of words
representable by k-lassos

2 Construct a deterministic
parity automaton bA',k
accepting the words that

I are accepted by A' or
I have a prefix rejected by Ak

Deterministic parity automaton A'

DFA Ak

Deterministic parity

automaton bA',k

10 / 22

Automata-based Synthesis

of Lasso-precise Implementations

DPA bA',k

DPA A' DFA Ak

size: exponential in k

size: polynomial in |A'| and exponential in k

matching lower bound

L(tree(bA',k)) 6= ; () 9 k-lasso precise implementation for '

Theorem

For a specification given as a deterministic parity automaton A', the
synthesis problem for k-lasso precise implementations can be solved in
time polynomial in the size of the automaton A' and exponential in k.

11 / 22

Outline

1 Automata-based synthesis of k-lasso precise implementations

2 Symbolic bounded synthesis of k-lasso precise implementations

3 Synthesis algorithms for ✏-k-approximate implementations

12 / 22

Outline

1 Automata-based synthesis of k-lasso precise implementations

2 Symbolic bounded synthesis of k-lasso precise implementations

3 Synthesis algorithms for ✏-k-approximate implementations

12 / 22

Bounded Synthesis of Lasso-precise Implementations

Synthesis
LTL specification

'

k-lasso precise

implementation

with n states

k n 2 N
realizable

unrealizable

SAT encoding: using Ak, encode as in [Finkbeiner, and Schewe’13]
size of constraint system: exponential in |'| and in k

QBF encoding: we propose a direct encoding as 98 QBF problem
size of constraint system: polynomial in |'| and in k

13 / 22

Symbolic bounded synthesis

of k-lasso precise implementations

Idea of the QBF-encoding:

9 implementation of size n, encoded as
I transitions
I output labelling

8 input lasso of length k, encoded as
I k input values
I loop start position

the corresponding sequence of inputs and outputs satisfies '

Theorem

For a specification given as an LTL formula ', there exists a QBF formula
of size O(|'|+ n

2 + k
2) that is satisfiable if and only if there exists a

k-lasso precise implementation of size n for the property '.

14 / 22

Outline

1 Automata-based synthesis of k-lasso precise implementations

2 Symbolic bounded synthesis of k-lasso precise implementations

3 Synthesis algorithms for ✏-k-approximate implementations

15 / 22

Outline

1 Automata-based synthesis of k-lasso precise implementations

2 Symbolic bounded synthesis of k-lasso precise implementations

3 Synthesis algorithms for ✏-k-approximate implementations

15 / 22

✏, k-approximate Implementations: Example

Simplified arbiter with

Input: r (request), p (permission); Output: g (grant)

Specification:

Every request is eventually followed by a grant: (r ! g)

Grants are not to be given when there is no permission:

(¬p ! ¬g)

Ratio of lassos of given length for which the spec. can be enforced?

16 / 22

✏, k-approximate Implementations: Example

Simplified arbiter with

Input: r (request), p (permission); Output: g (grant)

Specification:

Every request is eventually followed by a grant: (r ! g)

Grants are not to be given when there is no permission:

(¬p ! ¬g)

Unrealizable!

Ratio of lassos of given length for which the spec. can be enforced?

16 / 22

✏, k-approximate Implementations: Example

Simplified arbiter with

Input: r (request), p (permission); Output: g (grant)

Specification:

Every request is eventually followed by a grant: (r ! g)

Grants are not to be given when there is no permission:

(¬p ! ¬g)

Unrealizable for bound on the input lassos equal to 1!

Ratio of lassos of given length for which the spec. can be enforced?

16 / 22

✏, k-approximate Implementations: Example

Simplified arbiter with

Input: r (request), p (permission); Output: g (grant)

Specification:

Every request is eventually followed by a grant: (r ! g)

Grants are not to be given when there is no permission:

(¬p ! ¬g)

Unrealizable for bound on the input lassos equal to 1!

Ratio of lassos of given length for which the spec. can be enforced?

16 / 22

Bounded Synthesis of ✏, k-approximate Implementations

Synthesis
LTL specification

'

✏, k-approximate

implementation

with n states

k ✏ n

realizable

unrealizable

Goal: synthesize an implementation with n states such that

#k-lasso-representable input sequences which satisfy '

#k-lasso-representable input sequences
� 1� ✏

Approach: compute an implementation that maximizes this ratio
18 / 22

Bounded Synthesis of ✏, k-approximate Implementations

Synthesis
LTL specification

'

✏, k-approximate

implementation

with n states

k ✏ n

realizable

unrealizable

Encoding the problem as a maximum model counting instance

maximize over the implementations of size n

maximizing the number of input lassos of length k

for which the corresponding sequence of inputs and outputs satisfies '

18 / 22

Bounded Synthesis of ✏, k-approximate Implementations

Synthesis
LTL specification

'

✏, k-approximate

implementation

with n states

k ✏ n

realizable

unrealizable

Theorem

For a specification given as an LTL formula ', there exists a maximum
model counting instance of size O(|'|+ n

2 + k
2) that encodes the

synthesis of an implementation with n states that satisfies ' for a
maximum number of input sequences representable as lassos of size k.

18 / 22

Experimental Evaluation

Proof-of-concept implementation of the bounded synthesis methods:

using the CAQE QBF solver [1] for k-lasso precise implementations

using the MaxCount tool [2] for ✏-optimal implementations

For small bounds on lasso and system size (up to 4) we can synthesize

k-lasso precise implementations for unrealizable specifications

✏-optimal implementations for input lassos of length k

Instances quickly become large

a lot of room for optimization and experimentation

[1] Markus N. Rabe and Leander Tentrup. CAQE: A certifying QBF solver. (FMCAD’15)

[2] Daniel J. Fremont et al. Maximum model counting (AAAI’17)
19 / 22

Summary

Introduced notion of k-lasso precise implementations

Provided two methods for synthesizing lasso-precise approximations

I explicit automata-based approach

I symbolic QBF-based approach

Introduced notion of ✏, k-approximate implementations

Provided a maximum model counting-based method for synthesis of
approximate implementations that are ✏-optimal for k-lassos

Thank you for your attention!

Questions?

20 / 22

