Synthesizing Approximate Implementations for
Unrealizable Specifications

Rayna Dimitrova Bernd Finkbeiner =~ Hazem Torfah

March 8, 2021
Workshop on Synthesis of Models and Systems
Simons Institute Berkeley

Synthesis of Reactive Systems

realizable
implementation

specification p =====3! Synthesis

unrealizable

For © a linear-time property, the implementation satisfies ¢
for every possible infinite sequence of input values.

| Output
Implementation
I 0p0109. ..

(Y
4

Input I
ioigig ... |

2/22

Synthesis of Approximate Implementations

realizable

approximate
implementation

specification =====3{ Synthesis

unrealizable

Approximate implementation: guaranteed to satisfy the specification for

© sequences of input values that belong to a given class

@ at least a specified portion of the sequences in the given class

3/22

Example

Synthesise an arbiter serving two client processes

Input: 71, 72 (requests), Output: g1, g2 (grants)

Specification:

The two grants are never given simultaneously: [J—(g1 A g2)

Every request is eventually followed by a grant: Ij/\?zl(n — i)

A grant should not be revoked while the client keeps requesting it,
provided that the client will eventually release the grant:

2

O/ (gi Ari A (O=ri) = Ogi)

=1

4/22

Example

Synthesise an arbiter serving two client processes

Input: 71, 72 (requests), Output: g1, g2 (grants)
Specification:

The two grants are never given simultaneously: [J—(g1 A g2)

Every request is eventually followed by a grant: Ij/\?zl(n — i)

A grant should not be revoked while the client keeps requesting it,
provided that the client will eventually release the grant:

2

O/ (gi Ari A (O=ri) = Ogi)

=1

Unrealizable!
After gaining a grant, the client might never lower the request.

4/22

Unrealizable Specifications: Environment Assumptions

In reality, environments are often subject to restrictions.

Arbiter example: Each client either releases the grant within some
fixed bounded number of steps, or keeps it forever.
— The example specification becomes realizable.

5/22

Unrealizable Specifications: Environment Assumptions

How are environment assumptions specified?

@ Logical formulas or automata describing allowed sequences of inputs
[Chatterjee et al.'08, Li et al."11, Alur et al."13]

@ Structural assumptions, such as bounded size of environment process
[Kupferman et al.'11]

In this work:
bound associated with the input sequences produced by the environment

5/22

Environments with Bounded-Lassos
Inputs generated by the environment:

ultimately periodic, defined by lassos of length at most £

lu-v| <k

6/22

Environments with Bounded-Lassos
Inputs generated by the environment:

ultimately periodic, defined by lassos of length at most £

u v v v

lu-v| <k

k-lasso-precise implementation
satisfies ¢ for input sequences representable as lassos of length at most &

6/22

Environments with Bounded-Lassos
Inputs generated by the environment:

ultimately periodic, defined by lassos of length at most £

u v v v

lu-v| <k

k-lasso-precise implementation
satisfies ¢ for input sequences representable as lassos of length at most &

e-k-approximate implementation
satisfies ¢ on at least a (1 — €) fraction of the input lassos of length &

6/22

Synthesis of k-lasso precise implementations

EeN
l realizable
specification ¢ —)I Synthesis ﬁ:if:;g::;fiﬁn

unrealizable

k-lasso-precise implementation
satisfies ¢ for input sequences representable as lassos of length at most &

7/22

Our Contributions

© Automata-based synthesis of k-lasso precise implementations
@ Symbolic bounded synthesis of k-lasso precise implementations

© Synthesis algorithms for e-k-approximate implementations

8/22

Outline

© Automata-based synthesis of k-lasso precise implementations

8/22

Lasso-precise Implementations

A k-lasso precise implementation
@ satisfies ¢ on inputs representable as lassos of length at most k&,
@ can behave arbitrarily (violate ¢) on all other input sequences.

9/22

Lasso-precise Implementations

A k-lasso precise implementation
@ satisfies ¢ on inputs representable as lassos of length at most k&,
@ can behave arbitrarily (violate ¢) on all other input sequences.

9/22

Lasso-precise Implementations

A k-lasso precise implementation
@ satisfies ¢ on inputs representable as lassos of length at most k&,
@ can behave arbitrarily (violate ¢) on all other input sequences.

input seq.
representable
by k-lassos

9/22

Lasso-precise Implementations

A k-lasso precise implementation
@ satisfies ¢ on inputs representable as lassos of length at most k&,
@ can behave arbitrarily (violate ¢) on all other input sequences.

overapproximation
of allowed traces

input seq.
representable
by k-lassos

9/22

Lasso-precise Implementations

A k-lasso precise implementation
@ satisfies ¢ on inputs representable as lassos of length at most k&,
@ can behave arbitrarily (violate ¢) on all other input sequences.

overapproximation
of allowed traces

input seq.
representable
by k-lassos

9/22

Automata-based Synthesis
of Lasso-precise Implementations

Given: deterministic parity automaton A, accepting the words satisfying ¢

Deterministic parity
automaton A,

@ Construct a DFA A4, that
accepts the prefixes of words

representable by k-lassos DFA A,

@ Construct a deterministic
parity automaton A j
accepting the words that

> are accepted by A, or
» have a prefix rejected by Ay

Deterministic parity automaton A,

10/22

Automata-based Synthesis
of Lasso-precise Implementations

DPA A, DFA Ay,

size: exponential in k

/ matching lower bound

DPA A, 1

size: polynomial in |A,| and exponential in k

o~

L(tree(A,r)) #0 <= 3 k-lasso precise implementation for ¢

Theorem

For a specification given as a deterministic parity automaton A,, the
synthesis problem for k-lasso precise implementations can be solved in
time polynomial in the size of the automaton A, and exponential in k.

11/22

Outline

© Automata-based synthesis of k-lasso precise implementations
@ Symbolic bounded synthesis of k-lasso precise implementations

© Synthesis algorithms for e-k-approximate implementations

12/22

Outline

@ Symbolic bounded synthesis of k-lasso precise implementations

12/22

Bounded Synthesis of Lasso-precise Implementations

realizable

k-lasso precise
implementation
with n states

unrealizable

LTL spz:lflcatlon i I Synthesis

SAT encoding: using Ay, encode as in [Finkbeiner, and Schewe'13]
size of constraint system: exponential in || and in k

QBF encoding: we propose a direct encoding as 3V QBF problem
size of constraint system: polynomial in || and in k

13/22

Symbolic bounded synthesis
of k-lasso precise implementations

Idea of the QBF-encoding:

J implementation of size n, encoded as

> transitions
» output labelling

Y input lasso of length k, encoded as

» k input values
> loop start position

the corresponding sequence of inputs and outputs satisfies ¢

Theorem

For a specification given as an LTL formula o, there exists a QBF formula
of size O(|p| + n? + k?) that is satisfiable if and only if there exists a
k-lasso precise implementation of size n for the property .

14/22

Outline

© Automata-based synthesis of k-lasso precise implementations
@ Symbolic bounded synthesis of k-lasso precise implementations

© Synthesis algorithms for e-k-approximate implementations

15/22

Outline

© Synthesis algorithms for e-k-approximate implementations

15/22

€, k-approximate Implementations: Example

Simplified arbiter with
Input: 7 (request), p (permission); Output: g (grant)

Specification:
Every request is eventually followed by a grant: O(r — <g)

Grants are not to be given when there is no permission:

O(—p — O—g)

16/22

€, k-approximate Implementations: Example

Simplified arbiter with
Input: 7 (request), p (permission); Output: g (grant)

Specification:
Every request is eventually followed by a grant: O(r — < g)

Grants are not to be given when there is no permission:

O(-p — O—yg)

Unrealizable!

16/22

€, k-approximate Implementations: Example

Simplified arbiter with
Input: 7 (request), p (permission); Output: g (grant)

Specification:
Every request is eventually followed by a grant: O(r — < g)

Grants are not to be given when there is no permission:

O(-p — O—yg)

Unrealizable for bound on the input lassos equal to 1!

16/22

€, k-approximate Implementations: Example

Simplified arbiter with
Input: 7 (request), p (permission); Output: g (grant)

Specification:
Every request is eventually followed by a grant: O(r — < g)

Grants are not to be given when there is no permission:

O(-p — O—yg)

Unrealizable for bound on the input lassos equal to 1!

Ratio of lassos of given length for which the spec. can be enforced?

16/22

Bounded Synthesis of ¢, k-approximate Implementations

1]

realizable

¢, k-approximate
implementation
with n states

LTL spjpclflcanon iI Synthesis

unrealizable

Goal: synthesize an implementation with n states such that

#k-lasso-representable input sequences which satisfy ¢

. >1—c€
#k-lasso-representable input sequences -

Approach: compute an implementation that maximizes this ratio
18/22

Bounded Synthesis of ¢, k-approximate Implementations

1]

realizable

¢, k-approximate
implementation
with n states

LTL spe:pc:lflcatwn iI Synthesis

unrealizable
Encoding the problem as a maximum model counting instance

maximize over the implementations of size n
maximizing the number of input lassos of length &

for which the corresponding sequence of inputs and outputs satisfies

18/22

Bounded Synthesis of ¢, k-approximate Implementations

realizable

L € n
LTL sp?pcification iI Synthesis

¢, k-approximate
implementation
with n states

unrealizable

Theorem

For a specification given as an LTL formula o, there exists a maximum
model counting instance of size O(|p| + n? + k?) that encodes the
synthesis of an implementation with n states that satisfies ¢ for a
maximum number of input sequences representable as lassos of size k.

18/22

Experimental Evaluation

Proof-of-concept implementation of the bounded synthesis methods:
e using the CAQE QBF solver [1] for k-lasso precise implementations

@ using the MaxCount tool [2] for e-optimal implementations

For small bounds on lasso and system size (up to 4) we can synthesize
@ k-lasso precise implementations for unrealizable specifications

@ c-optimal implementations for input lassos of length k

Instances quickly become large

a lot of room for optimization and experimentation

[1] Markus N. Rabe and Leander Tentrup. CAQE: A certifying QBF solver. (FMCAD'15)
[2] Daniel J. Fremont et al. Maximum model counting (AAAI'17)

19/22

Summary

@ Introduced notion of k-lasso precise implementations

@ Provided two methods for synthesizing lasso-precise approximations

» explicit automata-based approach

» symbolic QBF-based approach

@ Introduced notion of €, k-approximate implementations

@ Provided a maximum model counting-based method for synthesis of
approximate implementations that are e-optimal for k-lassos

Approximate Automata
Synthesizing Approximate Implementations for for Omega-regular Languages*
Unrealizable Specifications*

Rayna Dimitrova!, Bernd Finkbeiner?, and Hazem Torfah?
Rayna Dimitrova!, Bernd Finkbeiner? and Hazem Torfah? e)
University of Leicester

2 o
! University of Leicester Saarland University

2 Saarland University

Abstract. Automata over infinite words, also known as w-automata,
play a key role in the verification and synthesis of reactive systems. The
spectrum of w-automata is defined by two characteristics: the acceptance
condition (e.g. Biichi or parity) and the determinism (e.g., deterministic

Abstract. The unrealizability of a specification is often due to the as-
sumption that the behavior of the environment is unrestricted. In this
paper, we present algorithms for synthesis in bounded environments,

wtrhh A Fhh A Aritrrirti v vt a1 ey et atra ctrirvtit cdmnvtrimr cne A atr ava 11l

