Exercises on Matrix Rigidity

Satya Lokam

4 September 2014

1. Given any $n \times n$ matrix A, show that its rank can be reduced to $\leq r$ by changing at most $(n-r)^{2}$ entries of A.
2. (Midrijānis) The Sylvester matrix $S_{k} \in\{-1,+1\}^{2^{k} \times 2^{k}}$ is recursively defined by

$$
S_{1}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \quad S_{k}=\left[\begin{array}{cc}
S_{k-1} & S_{k-1} \\
S_{k-1} & -S_{k-1}
\end{array}\right]
$$

Let $n:=2^{k}$ and S_{k} be the $n \times n$ Sylvester matrix. Prove that, for r a power of $2, \mathcal{R}_{S_{k}}(r) \geq \frac{n^{2}}{4 r}$. (Hint: Consider a tiling of S_{k} by $2 r \times 2 r$ Sylvester matrices and use an averaging argument.)
3. Show that all submatrices of a Cauchy matrix $\left(\left(x_{i}+y_{j}\right)^{-1}\right)$ are nonsingular, where x_{i} and y_{j} are all distinct and for all $i, j, x_{i}+y_{j} \neq 0$.
4. Let $V=\left(a_{i}^{j-1}\right)_{i, j=1}^{n}$, where the a_{i} are distinct positive reals. Show that all submatrices of V are nonsingular.
(Hint: Descartes' rule of signs.)
5. Let $G=[I \mid A]$ be the generator matrix (in standard form) of a $[2 n, n, d]$ error correcting code over \mathbb{F}_{q} with $d \geq(1-\epsilon) n$, where q is a constant and $\epsilon>0$ is a constant depending on q. Thus G is an $n \times 2 n$ matrix and A is an $n \times n$ matrix over \mathbb{F}_{q}. Show that for every $t \geq \epsilon n+1$, every $2 t \times 2 t$ submatrix of A must have rank at least t.
6. Show that if a matrix has an eigenvlaue of multiplicity k, its rank can be reduced to $(n-k)$ by changing at most k entries. Conclude that an $n \times n$ Hadamard matrix has rigidity at most $n / 2$ for target rank $n / 2$. Show a similar upper bound for the Discrete Fourier Transform matrix.
7. (Valiant) Let \mathbb{F} be a finite field of order q. In this exercise, we will show that for "most" $n \times n$ matrices A over \mathbb{F}, we must change at least $\Omega\left((n-r)^{2} / \log n\right)$ entries to reduce the rank of A to r.
(a) Show that the number of matrices of rank at most r over \mathbb{F} is at most $q^{2 n r-r^{2}} \cdot\binom{n}{r}$.
(b) Observe $\mathcal{R}_{A}(r) \leq s$, if $A=B+C$ where $\operatorname{rank}(B) \leq r$ and C has at most s nonzero entries. How many choices do we have for C ? Using this and (a), show that the number of matrices of rigidity at most s is at most $q^{2 n r-r^{2}+s+2 s \log _{q} n+n \log _{q} 2}$.
(c) If $r \leq n-c_{1} \sqrt{n}$ and $s<c_{2}(n-r)^{2} / \log n$, for some positive constants c_{1} and c_{2}, show that the fraction of matrices A with $\mathcal{R}_{A}(r) \leq s$ is $O(1 / n)$.
8. (Pudlák-Rödl) In this exercise, we will show that most \mathbb{R} matrices with entries in $\{0,1\}$ have rigidity $\Omega\left(n^{2}\right)$ for target rank $r=O(n)$. As noted above, $\mathcal{R}_{A}(r) \leq s$ if $A=B+C$ where $\operatorname{rank}(B) \leq r$ and C has at most s nonzero entries. We express A by the sign-patterns of a set of real polynomials.
(a) Show that $n \times n$ matrices of rank at most r can be parametrized by at most $2 n r-r^{2}$ variables.
(b) Observe that each entry $a_{i j}$ is a polynomial $p_{i j}\left(z_{1}, \ldots, z_{m}\right)$ over \mathbb{R} on $m \leq 2 n r-r^{2}+s$ variables and degree at most 2 . Since $a_{i j} \in\{0,1\}$, the sign of $p_{i j}(z)-1 / 2$ uniquely determines it. Hence the number of $0-1$ matrices A such that $\mathcal{R}_{A}(r) \leq s$ is bounded above by the number of sign-patterns of such polynomials.
(c) Use the following theorem due to Warren to get an upper bound on the number of choices for A.
Theorem: Let $f=\left(f_{1}, \ldots, f_{m}\right)$ be a sequence of m polynomials of degree at most d in n variables over \mathbb{R}. Assume $m \geq n$ and $d \geq 1$. Then the number of sign-patterns of f is less than

$$
\left(\frac{4 \mathrm{e} m d}{n}\right)^{n}
$$

For an elementary (using linear algebra) proof of this inequality, see L. Rónyai, L. Babai, and M. K. Ganapathy, "On the number of zero-patterns of a sequence of polynomials," Journal of the American Mathematical Society, vol. 14, no. 3, pp. 717 - 735, 2001.
(d) Comparing the number of choices for A obtained above to $2^{n^{2}}$ (total number of 0-1 $n \times n$ matrices), prove that most $0-1$ matrices A must have $\mathcal{R}_{A}(\epsilon n) \geq \Omega\left(n^{2}\right)$ for sufficiently small $\epsilon>0$.

