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There has been amazing progress in 
game solving over the last 17 years.



Modules for solving games
• Automated abstraction

– State abstraction [Gilpin & S., AAAI-06, AAMAS-07, JACM-07, AAAI-08; Gilpin, S. & Sørensen, AAAI-07; S. & Singh, EC-12; Kroer & 
S., EC-14, AAMAS-15, EC-16, NeurIPS-18; Ganzfried & S., AAAI-14; Brown & S., IJCAI-15; Brown, Ganzfried & S., AAMAS-15]

– Action abstraction [Ganzfried & S., IJCAI-13; Brown & S., AAAI-14; Kroer & S., AAMAS-15]

• Real-time subgame solving [Ganzfried & S., AAMAS-15; Brown & S., NeurIPS-17, Science-18]
– Depth-limited search [Brown, S. & Amos, NeurIPS-18; Brown & S., Science-19]

• Equilibrium-finding algorithms
– Leading regret-minimization algorithms [Farina, Kroer & S., AAAI-19, ICML-19a,b, NeurIPS-19, ICML-20, AAAI-21; Brown & S., 

AAAI-19; Farina, Kroer, Brown & S., ICML-19; Farina & S., AAAI-21]
• Incorporating deep learning [Brown, Lerer, Gross & S., ICML-19]

– Leading first-order optimization methods [Hoda, Gilpin, Peña & S. Mathematics of Operations Research-10; Gilpin & S., AAMAS-
10; Gilpin, Peña & S., Mathematical Programming-12; Kroer, Farina & S., NeurIPS-18; Kroer, Waugh, Kilinc-Karzan & S., EC-16, EC-
17,  Mathematical Programming-20]

– Pruning [Brown & S., NeurIPS-15, ICML-17, Science-18, Science-19; Brown, Kroer & S., AAAI-17]
– Sound warm starting [Brown & S., AAAI-14, AAAI-16]
– Automatically sparsified LP for equilibrium finding [Zhang & S., ICML-20]
– Computing equilibria by incorporating qualitative models [Ganzfried & S., AAMAS-10]

• Algorithms for equilibrium refinements [Kroer, Farina & S., IJCAI-17, AAAI-18; Farina, Kroer & S., ICML-17; Farina, 
Gatti & S., NeurIPS-18; Farina, Marchesi, Kroer, Gatti & S, IJCAI-18; Marchesi, Farina, Kroer, Gatti & S., AAAI-19]

• Self-improvement techniques [Brown & S., Science-18]
• Finding correlated and coarse correlation equilibria [Farina, Ling, Fang & S., NeurIPS-19a,b; Farina & S., NeurIPS-20]
• Algorithms for multi-player games [Berg & S., AAAI-17; Brown & S., Science-19]
• Solving team games with pre-game correlation in the team [Farina, Celli, Gatti & S., NeurIPS-18, draft-21]
• Opponent exploitation techniques [Ganzfried & S., AAMAS-11, TEAC-15; S. AAAI-15; Kroer & S., IJCAI-16, AIJ-20; 

Kroer, Farina & S., AAAI-18]



What if the game model is 
inaccurate or unknown?

1. Sensitivity analysis

2. Lossy game abstraction techniques with ɛ-exploitability guarantees 
[S. & Singh, EC-12; Kroer & S., EC-14, AAMAS-15, EC-16, NeurIPS-18]
apply to modeling also

3. THIS TALK: First techniques for computing provably (near-)equilibrium 
strategies while searching only a tiny fraction of the game tree 
[Zhang & S., NeurIPS-20, AAAI-21]

– => algorithm with optimal Õ(#nodes/ 𝑇𝑇) convergence in this setting

– Prior methods (such as MCCFR) can be exponential in tree size



Black-Box Games
• Game is not explicitly given in the form of rules, 

but rather via access to playing it
– We can control all players during the practice phase

• E.g., war games, strategy video games, and 
financial simulations



Learning to Play Black-Box Games
• Deep Reinforcement Learning (e.g., AlphaStar [Vinyals et al., 2019], OpenAI

Five [Berner et al., 2019])
– Great practical performance for a while
– Issue: No exploitability bounds

• Leads to strategies that can be beaten in practice also

• Bandit Regret Minimization [Farina & Sandholm AAAI-21]
– Converges to ε-equilibrium after poly(N, 1/ε) game samples (N = size of game) 
– Issues (online MCCFR [Lanctot et al. 2009] has these issues also and other issues): 

• Worst-case exploitability bounds are trivial until number of iterations is much larger than N
• Need to expand rest of game tree to compute ex-post exploitability guarantee

• Certificates [This work]
– Compute Nash equilibrium by incrementally expanding game tree
– Exploitability bounds always computable ex post without expanding remainder of 

tree!
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Pseudogames and Certificates
Pseudogame: Game without 
known utilities on all terminal 
nodes

Think: partially-expanded game 
tree, “alpha-beta” style

In zero-sum land, gives rise to two 
games: 
• a lower-bound game in which 

rewards are optimistic for P2, 
and

• an upper-bound game in which 
rewards are optimistic for P1
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Pseudogames and Certificates
Pseudogame: Game without 
known utilities on all terminal 
nodes

Think: partially-expanded game 
tree, “alpha-beta” style

In zero-sum land, gives rise to two 
games: 
• a lower-bound game in which 

rewards are optimistic for P2, 
and

• an upper-bound game in which 
rewards are optimistic for P1

pseudoterminal
node

P1

C

P2 P2

≤ 0

−1 +1 +1 −1

1/2 1/2



Pseudogames and Certificates
(Approximate) Nash equilibrium in a 
pseudogame: strategy profile in 
which every player is provably playing 
an (approximate) best response 
(irrespective of what happens at 
pseudoterminal nodes)

Results in Nash equilibrium regardless 
of what the pseudoterminal node 
hides!

(Approximate) Certificate:
Pseudogame created from partial 
expansion of a full game + 
(approximate) Nash equilibrium of 
that pseudogame
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Small Certificates

Question: When do small 𝜀𝜀-certificates exist?
Specifically, size 𝑂𝑂 𝑁𝑁𝑐𝑐poly ⁄1 𝜀𝜀 for some 𝑐𝑐 < 1

Again, 𝑁𝑁 is the number of nodes.



When do Small Certificates Exist?

• Answer #1: They exist in perfect-information 
zero-sum games with no nature randomness, 

…under reasonable assumptions about the game tree (e.g., uniform branching factor and depth, alternating moves)

– Proof: The optimal alpha-beta search tree is a 
certificate of size ≈ 𝑁𝑁.



Small Certificates

Answer #2: They exist 
in (squarish) normal-
form games.
Proof:
Lipton et al., 2003: 
𝜀𝜀-Nash equilibrium exists 
where each player mixes 
between log 𝑚𝑚 /𝜀𝜀2 pure 
strategies.
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Small Certificates

Answer #2: They exist 
in (squarish) normal-
form games.
Proof: 
We only need those rows 
and columns!

⇒ 𝑂𝑂 ⁄𝑚𝑚 log 𝑚𝑚 𝜀𝜀2 -size 
certificate
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Small Certificates

So… small certificates exist in games where the 
players have perfect information or no 
information. 

What about in between?

A: Unfortunately, not in all games. 



Small Certificates
Counterexample: Consider this game:
• Matching pennies
• repeated 𝑇𝑇 times, each round worth 1/𝑇𝑇 points.
• After each round, P2 learns what P1 played, but P1 doesn’t 

learn what P2 played.
Game tree size: 4𝑇𝑇
Theorem: Any 𝜀𝜀-certificate of this game must have size 

Ω 4𝑇𝑇 1−𝑂𝑂 𝜀𝜀 .
Proof Sketch: P1’s strategy must have high entropy, but this is 
not possible unless lots of nodes get expanded



Bad News

Theorem: It is NP-hard to approximate the 
smallest certificate of an extensive-form zero-
sum game, to better than an 𝑂𝑂(log𝑁𝑁)
multiplicative factor.

Proof Idea: Reduction from set cover.



Simulators

Assume access to a simulator:
• Allows us to play through the game from the 

perspective of all players at once
• Gives bounds (not necessarily tight) on future utilities
• Allows us to control nature actions (I’ll relax this later..)
Goal: 
• Compute and verify “ex-post” approximate equilibria 

with only black-box access
• Output both an equilibrium strategy and a bound 𝜀𝜀 on 

exploitability



More Bad News

Theorem: With only a black-box simulator of an 
extensive-form zero-sum game, there is no 
equilibrium-finding algorithm that runs in time 
polynomial in the size of the smallest certificate.

Proof: One-player “SAT” games: certificate of 
size 𝑂𝑂 log𝑁𝑁 exists, but clearly no sublinear-
time algorithm.



Let’s Do It Anyway
Repeat until satisfied:
• Solve both the upper- and lower-bound pseudogames

exactly (e.g., using an LP solver)
• Create the next pseudogame by expanding all 

pseudoterminal nodes in the support of the optimistic 
profile (in which the max-player plays her equilibrium 
strategy in the upper-bound game, and the min-player 
plays her strategy in the lower-bound game)

Output: Pessimistic profile, and 𝜀𝜀 = difference in values 
between upper- and lower-bound pseudogames

Intuition: In the perfect-information setting with no nature 
randomness, it’s just alpha-beta search



Let’s Do It Anyway
Repeat until satisfied:
• Solve both the upper- and lower-bound pseudogames

exactly (e.g., using an LP solver)
• Create the next pseudogame by expanding all 

pseudoterminal nodes in the support of the optimistic 
profile (in which the max-player plays her equilibrium 
strategy in the upper-bound game, and the min-player 
plays her strategy in the lower-bound game)

Output: Pessimistic profile, and 𝜀𝜀 = difference in values 
between upper- and lower-bound pseudogames

Theorem: The expansion in the second step expands a node if 
and only if the game is not already solved.



Let’s Do It Anyway
Repeat until satisfied:
• Solve both the upper- and lower-bound pseudogames

exactly (e.g., using an LP solver)
• Create the next pseudogame by expanding all 

pseudoterminal nodes in the support of the optimistic 
profile (in which the max-player plays her equilibrium 
strategy in the upper-bound game, and the min-player 
plays her strategy in the lower-bound game)

Output: Pessimistic profile, and 𝜀𝜀 = difference in values 
between upper- and lower-bound pseudogames

Works even on games that have unbounded rewards!



Experiments



Simulators
Assume access to a simulator:
• Allows us to play through the game from the perspective of 

all players at once
• Gives bounds (not necessarily tight) on future utilities
• Allows us to control nature actions
Goal: 
• Compute and verify “ex-post” approximate equilibria with 

only black-box access
• Output both an equilibrium strategy and a bound 𝜀𝜀 on 

exploitability
• Want: correctness with high probability, say, 1 − 𝑇𝑇−𝛾𝛾 for 

some 𝛾𝛾 > 0 after 𝑇𝑇 iterations.
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Sampling-limited Compute-limited

Visiting a chance node gives 
the full distribution 

at that node
Our NeurIPS-20 paper

Our AAAI-21 paper
with regret minimizationVisiting a chance node gives 

an action sample 
at that node

Our AAAI-21 paper
with LP solver

Roadmap for the Rest of the Talk:
Certificate-Finding in Zero-Sum Games

Usable even in general-sum games
(computes coarse-correlated equilibrium)



Lower Bound
Theorem: Consider any algorithm with the following guarantee. 
For some constant 𝛾𝛾 > 0, 
given a zero-sum game in our black-box setting, 
with 𝑇𝑇 game samples, 
the algorithm outputs a pair of strategies (𝑥𝑥,𝑦𝑦) and a bound 𝜀𝜀𝑇𝑇 such 
that, with probability 1 – 𝑂𝑂 𝑇𝑇−𝛾𝛾 ,
(𝑥𝑥,𝑦𝑦) is an 𝜀𝜀𝑇𝑇-Nash equilibrium. 
Then

Our goal: Match this bound.



Main Tool: Pseudogames as 
Confidence Bounds

• At nodes that have not yet been expanded, 
use bounds given by simulator

• At nature nodes ℎ, give each player reward 
bounded by [−𝜌𝜌,𝜌𝜌], where

times ℎ has 
been reached confidence parameterrange of utilities

possible from ℎ



Main Tool: Pseudogames as 
Confidence Bounds

• At nodes that have not yet been expanded, 
use bounds given by simulator.

• At nature nodes ℎ, give each player reward 
bounded by [−𝜌𝜌,𝜌𝜌], where

Intuition: 𝜌𝜌 represents the uncertainty in the 
nature distribution at ℎ



Main Tool: Pseudogames as 
Confidence Bounds

• At nodes that have not yet been expanded, 
use bounds given by simulator.

• At nature nodes ℎ, give each player reward 
bounded by [−𝜌𝜌,𝜌𝜌], where

Intuition: It looks like UCB. That is not a 
coincidence, as I’ll discuss. 



Choice of Confidence Bound
During equilibrium computation, values of children are changing, so we need to use a 
Hoeffding bound to be robust:

where Δ is the range of possible utilities from ℎ

NEW IDEA SINCE OUR AAAI-21 PAPER:
During best response computation, strategy profiles after ℎ are fixed by induction, 
so we can use a tighter empirical Bernstein bound [Maurer & Pontil ’09]:

where 𝑆𝑆 is the unbiased sample standard deviation, and Δ′ is the range of possible 
utilities from ℎ under the fixed strategy profile, which may be much smaller than Δ



Main Tool: Pseudogames as 
Confidence Bounds

Theorem: For appropriate choice of 𝛿𝛿, with high 
probability, at every time, for every strategy 
profile, for every player, the true reward of the 
player is bounded by the pessimistic and 
optimistic rewards achieved in the confidence 
bound pseudogame.

(i.e., “confidence bounds are actually bounds”)



Zero-Sum LP-Based Algorithm
Repeat 𝑇𝑇 times:
• Solve both the upper- and lower-bound pseudogames exactly (e.g., using 

an LP solver)
• Sample one play-through from the optimistic profile (in which the max-

player plays her equilibrium strategy in the upper-bound game, and the 
min-player plays her strategy in the lower-bound game)

• Create the next pseudogame:
– Expand all encountered nodes
– Update empirical nature distributions of nature nodes sampled during play

Output: Pessimistic profile, and 𝜀𝜀𝑇𝑇 = difference in values between upper- and 
lower-bound pseudogames

Intuition: In the perfect-information setting with no nature randomness, it’s 
just alpha-beta search



Zero-Sum LP-Based Algorithm
Repeat 𝑇𝑇 times:
• Solve both the upper- and lower-bound pseudogames exactly (e.g., using 

an LP solver)
• Sample one play-through from the optimistic profile (in which the max-

player plays her equilibrium strategy in the upper-bound game, and the 
min-player plays her strategy in the lower-bound game)

• Create the next pseudogame:
– Expand all encountered nodes
– Update empirical nature distributions of nature nodes sampled during play

Output: Pessimistic profile, and 𝜀𝜀𝑇𝑇 = difference in values between upper- and 
lower-bound pseudogames

Intuition: In the one-player “multi-armed bandit” setting, it’s UCB (except 
algorithm has a different constant in the upper confidence bound term, and 
so does the regret bound). 



Zero-Sum LP-Based Algorithm
Advantage: Sample-efficient
Disadvantage: Expensive iterations (requires 
game re-solve on each iteration)
• We warm start from the previous LP, whose values typically 

change very little based on the one new sample

Theorem: The best iterate of the algorithm 
converges at rate

number of nodes in current pseudogame
(may be ≪ total number of nodes!)



Regret-Based Algorithm

Idea: Just use a regret minimizer, like CFR, for 
each player



Regret-Based Algorithm
Repeat 𝑇𝑇 times:
• Query the regret minimizers for all players to obtain a strategy 

profile
• Sample one play-through from that strategy profile
• Pass each player’s regret minimizer that player’s optimistic reward
• Create the next pseudogame:

– Expand all encountered nodes
– Update empirical nature distributions of nature nodes sampled during 

play
Output: Average strategy profile

Several problems!
.



Regret-Based Algorithm
Repeat 𝑇𝑇 times:
• Query the regret minimizers for all players to obtain a strategy 

profile
• Sample one play-through from that strategy profile
• Pass each player’s regret minimizer that player’s optimistic reward
• Create the next pseudogame:

– Expand all encountered nodes
– Update empirical nature distributions of nature nodes sampled during 

play
Output: Average strategy profile

Problem 1: The strategy space of each player is changing over time
Solution: CFR “handles it naturally”. Formalization: “Extendable” 
regret minimizers



Regret-Based Algorithm
Repeat 𝑇𝑇 times:
• Query the regret minimizers for all players to obtain a strategy 

profile
• Sample one play-through from that strategy profile
• Pass each player’s regret minimizer that player’s optimistic reward
• Create the next pseudogame:

– Expand all encountered nodes
– Update empirical nature distributions of nature nodes sampled during 

play
Output: Average strategy profile

Problem 2: We don’t want to run a full CFR iterate on every sample; 
that is expensive
Solution: Use MCCFR + outcome sampling. Nothing breaks



Regret-Based Algorithm
Repeat 𝑇𝑇 times:
• Query the regret minimizers for all players to obtain a strategy 

profile
• Sample one play-through from that strategy profile
• Pass each player’s regret minimizer that player’s optimistic reward
• Create the next pseudogame:

– Expand all encountered nodes
– Update empirical nature distributions of nature nodes sampled during 

play
Output: Average strategy profile

Problem 3: What equilibrium gap bound can we compute?
.



What Equilibrium Gap Bound Can We 
Compute?

• The natural game-specific equilibrium gap bound
—used in our exact LP-based algorithm—(difference in 
optimistic best response values using the final 
pseudogame) doesn’t converge as �𝑂𝑂( ⁄1 𝑇𝑇) in the 
worst case

• …but, we know that the worst-case-over-games
equilibrium gap bound of the algorithm does converge 
as �𝑂𝑂( ⁄1 𝑇𝑇) (for the same reason that MCCFR does)

• Solution: In practice, take the former; it’s basically 
always smaller. In theory, take the minimum of the two



Experiments

Vertical line: 
number of 

nodes in full 
game

Horizontal line: 
range of a 

player’s reward 
in full game

Horizontal line: 
number of 

nodes in full 
game



Experiments
In all games, with all 
algorithms, nontrivial 
certificates are found 

without expanding the 
full game tree, in fact,

with fewer game 
samples than there are 

game tree nodes 

MCCFR converges 
quickly in reality, 

but this cannot be 
verified without 

expanding the rest 
of the game tree 

(or knowing something 
else that enables best-
response computation)



Experiments
In all games, with all 
algorithms, nontrivial 
certificates are found 

without expanding the 
full game tree, in fact,

with fewer game 
samples than there are 

game tree nodes 

LP-based 
certificate finding 
has better sample 
efficiency and final 

certificate size 
than regret-based, 

but (not shown) 
runs slower



Conclusion

Black-box imperfect-information games 
(of at least moderate size) 
can now be solved

i.e., we can get the non-exploitability 
guarantee of game theory



This talk covered parts of the following 
papers and a new concentration result

• Small Nash Equilibrium Certificates in Very 
Large Games, NeurIPS-20
https://arxiv.org/abs/2006.16387

• Finding and Certifying (Near-)Optimal 
Strategies in Black-Box Extensive-Form Games, 
AAAI-21
https://arxiv.org/abs/2009.07384

https://arxiv.org/abs/2006.16387
https://arxiv.org/abs/2009.07384
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