
CEGIS(T)
CounterExample Guided Inductive Synthesis

modulo Theories

Alessandro Abate1, Cristina David2, Pascal Kesseli3, Daniel Kroening13,

Elizabeth Polgreen0

0University of Edinburgh, 1University of Oxford, 2University of Bristol, 3DiffBlue Ltd

CAV 2018

CEGIS(T)
CounterExample Guided Inductive Synthesis

modulo Theories

Alessandro Abate1, Cristina David2, Pascal Kesseli3, Daniel Kroening13,

Elizabeth Polgreen0

0University of Edinburgh, 1University of Oxford, 2University of Bristol, 3DiffBlue Ltd

CAV 2018

CEGIS(T)

Program synthesis is hard

3

CEGIS(T)

Program synthesis is hard

CEGIS framework that uses a theory solver to

• verify generalized candidate solutions

• return more general counterexamples

CEGIS(T) is able to synthesize programs containing
arbitrary constants that elude other solvers.

4

Outline
• Overview of CEGIS and motivation for CEGIS(T)

• CEGIS(T): algorithm in detail

• Evaluation

• CEGIS(T) in CVC4

• Ongoing work: beyond constants

5

SYNTHESIZE

VERIFY

CEGIS

∃P∀x . σ(P, x)

6

VERIFY

∃P . ∀xi . σ(P, x)

CEGIS

UNSAT
SYNTHESIZE

SA
T

7

SYNTHESIZE

VERIFY

P*

CEGIS

SA
T

UNSAT

8

SYNTHESIZE

CEGIS

SA
T

UNSAT
VERIFY

9

∃x . ¬σ(P * , x)

SYNTHESIZE

CounterExample

CEGIS

SA
T

UNSAT
VERIFY

10

VERIFY

∃P . ∀xi . σ(P, x)

CEGIS

SYNTHESIZE

SA
T

11

12

13

No
Is it a plant?

14

Does it have legs?

Yes

No
Is it a plant?

15

Can I eat it?

errm..
Does it have legs?

Yes

No
Is it a plant?

16

17
SYNTHESIZE VERIFY

Can I eat it?

errm..
Does it have legs?

Yes

No
Is it a plant?

18

19

No

20

No

No

21

No

No

No

22

No

23

No

No

24

No

No

No

25

int x = 5;

while (x < 1000)

 x++;

assert(5 < x && x < 1005)

Safety invariant

init(x) ⟺ x = 0
trans(x, x′￼) ⟺ x′￼ = x + 1

inv(x) ∧ (x < 1000) ∧ trans(x, x′￼) ⟹ inv(x′￼)

init(x) ⟹ inv(x)

inv(x) ∧ ¬(x < 1000) ⟹ (x < 1005) ∧ (x > 5)

find inv(x) such that:

26

Safety invariant

inv(x) = (4 < x) ∧ (x < 1003)

int x = 5;

while (x < 1000)

 x++;

assert(5 < x && x < 1005)

init(x) ⟺ x = 0
trans(x, x′￼) ⟺ x′￼ = x + 1

27

SYNTHESIZE

VERIFY

x = 95inv(x) = (x < 95)

Possible solution:

inv(x) = (4 < x) ∧ (x < 1003)

inv(x) = (x < 96) x = 96
inv(x) = (x < 97)

And so on ..

28

Can we ask more general
questions?

29

No
No

No

SYNTH VERIFY

Yes
Is it a plant?

Does it
have legs?

Yes

Can I eat
it?

errm..

SYNTH VERIFY

30
SYNTHESIZE VERIFY

31

No, it’s not a plant

32

No, it has
< 4 legs

No, it’s not a plant

33

No, it has
< 8 legs

No, it’s not a plant

No, I
can’t sit

on it

34

Can we give more general
answers?

35

More general questions

More general answers

CEGIS(T)

Outline
• Overview of CEGIS and motivation for CEGIS(T)

• CEGIS(T): algorithm in detail

• Evaluation

• CEGIS(T) in CVC4

• Ongoing work: beyond constants

36

37

PROPOSITIONAL
SAT SOLVER

ADD CLAUSESDEDUCTION

DPLL

Theory Solver

DPLL(T)

38

SYNTHESIZE

VERIFY

CEGIS(T) CEGIS

39

SYNTHESIZE

VERIFY

CEGIS(T) CEGIS

DEDUCTION Generalize
candidate

first order solver

40

SYNTHESIZE

VERIFY

CEGIS(T) CEGIS

DEDUCTION Generalize
candidate

SA
T

UNSAT

Counter
Example

first order solver

41

SYNTHESIZE

VERIFY

CEGIS(T) CEGIS

DEDUCTION Generalize
candidate

P*

first order solver

42

P*

P*[v]

Generalize
Candidate

Generalized candidate

(x < 95)

(x < v)

43

SYNTHESIZE

VERIFY

CEGIS(T) CEGIS

DEDUCTION Generalize
candidate

P*[v]

first order solver

44

Deduction

∃v∀x . σ(P*[v], x)

P*[v]¬P*[v]

SATUNSAT

BLOCK SOLUTION

is there a value for v that makes (x < v) a valid invariant

45

SYNTHESIZE

VERIFY

CEGIS(T) CEGIS

DEDUCTION Generalize
candidate

¬P*[v]

first order solver

46

First order solver

Solves 1st order formula with:

• Arbitrary propositional

structure

• 1 quantifier alternation

Paper presents 2 versions:

• SMT

• FM

47

CEGIS(T) - SMT

∃v∀x . σ(P*[v], x)

P*[v]¬P*[v]

SATUNSAT

BLOCK SOLUTION

48

CEGIS(T) - SMT

∃v∀x . σ(P*[v], x) ∧ (v < c)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > c)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < cv > c

49

∃v∀x . σ(P*[v], x) ∧ (v < c)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > c)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < cv > c

P* = (x < 95)

P*[v] = (x < v)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

50

∃v∀x . σ(P*[v], x) ∧ (v < 95)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > 95)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < 95v > 95

P* = (x < 95)

P*[v] = (x < v)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

51

UNSAT UNSAT

∃v∀x . σ(P*[v], x) ∧ (v < 95) ∃v∀x . σ(P*[v], x) ∧ (v > 95)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

Target:

inv(x) = (4 < x) ∧ (x < 1003)

52

UNSAT

∃v∀x . σ(P*[v], x) ∧ (v < 95) ∃v∀x . σ(P*[v], x) ∧ (v > 95)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

Target:

inv(x) = (4 < x) ∧ (x < 1003)

53

UNSAT

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

∃v∀x . σ(P*[v], x) ∧ (v < 95) ∃v∀x . σ(P*[v], x) ∧ (v > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

54

SAT

∃v∀x . σ(P*[v], x) ∧ (v1 < 95) ∃v∀x . σ(P*[v], x) ∧ (v1 > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

55

TIMEOUT TIMEOUT

∃v∀x . σ(P*[v], x) ∧ (v1 < 95) ∃v∀x . σ(P*[v], x) ∧ (v1 > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

Outline
• Overview of CEGIS and motivation for CEGIS(T)

• CEGIS(T): algorithm in detail

• Evaluation

• CEGIS(T) in CVC4

• Ongoing work: beyond constants

56

57

Experiments
Benchmarks:

• Bitvectors

• Syntax-guided Synthesis competition

(without the syntax)

• Loop invariants

• Danger invariants

Solvers:

• CVC4

• EUSolver, E3Solver, LoopInvGen –

bitvectors with no grammar unsupported

58

0

10

20

30

40

TIME (s)

<1s [1,10] [10,100] [100,3600] T/O

10
5

1012

22 24

46
11

38

Experiments

Counterexample Guided Inductive
Synthesis Modulo Theories

Alessandro Abate1, Cristina David2,3(B) , Pascal Kesseli3,
Daniel Kroening1,3 , and Elizabeth Polgreen1

1 University of Oxford, Oxford, UK
2 University of Cambridge, Cambridge, UK

cd652@cam.ac.uk
3 Diffblue Ltd., Oxford, UK

Abstract. Program synthesis is the mechanised construction of soft-
ware. One of the main difficulties is the efficient exploration of the very
large solution space, and tools often require a user-provided syntactic
restriction of the search space. We propose a new approach to program AQ1

synthesis that combines the strengths of a counterexample-guided induc-
tive synthesizer with those of a theory solver, exploring the solution space
more efficiently without relying on user guidance. We call this approach AQ2

CEGIS(T), where T is a first-order theory. In this paper, we focus on one
particular challenge for program synthesizers, namely the generation of
programs that require non-trivial constants. This is a fundamentally diffi-
cult task for state-of-the-art synthesizers. We present two exemplars, one
based on Fourier-Motzkin (FM) variable elimination and one based on
first-order satisfiability. We demonstrate the practical value of CEGIS(T)
by automatically synthesizing programs for a set of intricate benchmarks.

1 Introduction

Program synthesis is the problem of finding a program that meets a correctness
specification given as a logical formula. This is an active area of research in which
substantial progress has been made in recent years.

In full generality, program synthesis is an exceptionally difficult problem, and
thus, the research community has explored pragmatic restrictions. One particu-
larly successful direction is Syntax-Guided Program Synthesis (SyGuS) [2]. The
key idea of SyGuS is that the user supplements the logical specification with
a syntactic template for the solution. Leveraging the user’s intuition, SyGuS
reduces the solution space size substantially, resulting in significant speed-ups.

Unfortunately, it is difficult to provide the syntactic template in many prac-
tical applications. A very obvious exemplar of the limits of the syntax-guided
approach are programs that require non-trivial constants. In such a scenario, the

Supported by ERC project 280053 (CPROVER) and the H2020 FET OPEN 712689
SC2. Cristina David is supported by the Royal Society University Research Fellow-
ship UF160079.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 1–19, 2018.
https://doi.org/10.1007/978-3-319-96145-3_15

A
u

th
o

r
P

ro
o

f

SOLVED
CVC4 - 29

CEGIS(T) - 49
TIME-
OUT

59

0

10

20

30

40

TIME (s)

<1s [1,10] [10,100] [100,3600] T/O

39

75
10

22 24

46
11

38

Experiments - update

Counterexample Guided Inductive
Synthesis Modulo Theories

Alessandro Abate1, Cristina David2,3(B) , Pascal Kesseli3,
Daniel Kroening1,3 , and Elizabeth Polgreen1

1 University of Oxford, Oxford, UK
2 University of Cambridge, Cambridge, UK

cd652@cam.ac.uk
3 Diffblue Ltd., Oxford, UK

Abstract. Program synthesis is the mechanised construction of soft-
ware. One of the main difficulties is the efficient exploration of the very
large solution space, and tools often require a user-provided syntactic
restriction of the search space. We propose a new approach to program AQ1

synthesis that combines the strengths of a counterexample-guided induc-
tive synthesizer with those of a theory solver, exploring the solution space
more efficiently without relying on user guidance. We call this approach AQ2

CEGIS(T), where T is a first-order theory. In this paper, we focus on one
particular challenge for program synthesizers, namely the generation of
programs that require non-trivial constants. This is a fundamentally diffi-
cult task for state-of-the-art synthesizers. We present two exemplars, one
based on Fourier-Motzkin (FM) variable elimination and one based on
first-order satisfiability. We demonstrate the practical value of CEGIS(T)
by automatically synthesizing programs for a set of intricate benchmarks.

1 Introduction

Program synthesis is the problem of finding a program that meets a correctness
specification given as a logical formula. This is an active area of research in which
substantial progress has been made in recent years.

In full generality, program synthesis is an exceptionally difficult problem, and
thus, the research community has explored pragmatic restrictions. One particu-
larly successful direction is Syntax-Guided Program Synthesis (SyGuS) [2]. The
key idea of SyGuS is that the user supplements the logical specification with
a syntactic template for the solution. Leveraging the user’s intuition, SyGuS
reduces the solution space size substantially, resulting in significant speed-ups.

Unfortunately, it is difficult to provide the syntactic template in many prac-
tical applications. A very obvious exemplar of the limits of the syntax-guided
approach are programs that require non-trivial constants. In such a scenario, the

Supported by ERC project 280053 (CPROVER) and the H2020 FET OPEN 712689
SC2. Cristina David is supported by the Royal Society University Research Fellow-
ship UF160079.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 1–19, 2018.
https://doi.org/10.1007/978-3-319-96145-3_15

A
u

th
o

r
P

ro
o

f

SOLVED
CVC4 - 59

CEGIS(T) - 44
TIME-
OUT

CVC4 v1.7

CEGIS(T) updated

more benchmarks

Outline
• Overview of CEGIS and motivation for CEGIS(T)

• CEGIS(T): algorithm in detail

• Evaluation

• CEGIS(T) in CVC4

• Ongoing work: beyond constants

60

61

CEGIS(T) in CVC4

CVC4 implementation of CEGIS(T)

• CVC4 version 1.7

• Makes self-call to CVC4 SMT solver

• Supports CEGIS(T) with a syntactic template

62

CEGIS(T) in CVC4

SYNTHESIZE

VERIFY

CEGIS

DEDUCTION

x

first order solver

P*[v]

63

CEGIS(T) in CVC4
tim

e
(s

)

0

450

900

1350

1800

time(s)
0 450 900 1350 1800

CEGIS(T) vs add const
CEGIS(T) vs CEGIS
equal performance

• BV-invertibility benchmarks

• CEGIS(T) solves 8 unique benchmarks

• avg. ~20s faster on mutually solved benchmarks

• VBS solver gains avg. 48s on mutually solved benchmarks

64

CEGIS(T) solves program synthesis via 1st order
solvers that support quantifiers:

• Enables use of existing solvers

Algorithmic insights:

• verify generalized candidate solutions

• return generalized counterexamples

CEGIS(T)

65

CEGIS(T) solves program synthesis via 1st order
solvers that support quantifiers:

• Enables use of existing solvers

Algorithmic insights:

• verify generalized candidate solutions

• return generalized counterexamples

CEGIS(T)

SYNTHESIZE

VERIFY

66

CEGIS(T) solves program synthesis via 1st order
solvers that support quantifiers:

• Enables use of existing solvers

Algorithmic insights:

• verify generalized candidate solutions

• return generalized counterexamples

CEGIS(T)

SYNTHESIZE

VERIFY

Outline
• Overview of CEGIS and motivation for CEGIS(T)

• CEGIS(T): algorithm in detail

• Evaluation

• CEGIS(T) in CVC4

• Ongoing work: beyond constants

67

68

Beyond constants?

SYNTHESIZE

VERIFY

69

Beyond constants?

QUERY RESPONSE

SYNTHESIZE

ORACLE

Via Oracle Guided Synthesis

70

Beyond constants:

QUERY RESPONSE

SYNTHESIZE

ORACLE

Synthesis Modulo Oracles

Elizabeth Polgreen
work with Sangita . Saskia

is my program
,
correct ? n%%p¥IYhFieIYis .

If:÷÷' ¥

general queries and responses

71

no, but if I replace
7- with 9 it is .

no, and all

pwgramas.eotwthggsw.ua/;nJanIIIIgramhe this
,
make the

constant < 12 .

Is my p format ? \ /
yes ,

thenY÷:
⇐

CEGIS(T) as oracle guided
synthesis

72

Beyond constants:

QUERY RESPONSE

SYNTHESIZE

ORACLE

general queries and responses

- Future direction for SyGuS

- Syntax extension in SyGuS-IF

- What type of queries/responses? Any!

(Provided the response can be expressed a
logical constraint)

73

CEGIS(T) solves program synthesis via 1st order
solvers that support quantifiers

Algorithmic insights:

• verify generalized candidate solutions

• return generalized counterexamples

Broader communication is good!

Conclusions

CEGIS(T) solves program synthesis via 1st order
solvers that support quantifiers

Algorithmic insights:

• verify generalized candidate solutions

• return generalized counterexamples

Broader communication is good!

Conclusions

What is it?
It’s an owl!!

