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CEGIS(T)

Program synthesis is hard
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CEGIS(T)

Program synthesis is hard


CEGIS framework that uses a theory solver to

• verify generalized candidate solutions

• return more general counterexamples


CEGIS(T) is able to synthesize programs containing 
arbitrary constants that elude other solvers.
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Outline
• Overview of CEGIS and motivation for CEGIS(T) 

• CEGIS(T): algorithm in detail 


• Evaluation


• CEGIS(T) in CVC4


• Ongoing work: beyond constants
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int x = 5;


while ( x < 1000)

  x++;


assert( 5 < x && x < 1005)


Safety invariant

init(x) ⟺ x = 0
trans(x, x′￼) ⟺ x′￼ = x + 1

inv(x) ∧ (x < 1000) ∧ trans(x, x′￼) ⟹ inv(x′￼)

init(x) ⟹ inv(x)

inv(x) ∧ ¬(x < 1000) ⟹ (x < 1005) ∧ (x > 5)

find inv(x) such that:
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Safety invariant

inv(x) = (4 < x) ∧ (x < 1003)

int x = 5;


while ( x < 1000)

  x++;


assert( 5 < x && x < 1005)


init(x) ⟺ x = 0
trans(x, x′￼) ⟺ x′￼ = x + 1
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SYNTHESIZE

VERIFY

x = 95inv(x) = (x < 95)

Possible solution:

inv(x) = (4 < x) ∧ (x < 1003)

inv(x) = (x < 96) x = 96
inv(x) = (x < 97)

And so on ..



28

Can we ask more general 
questions?
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No, it’s not a plant
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No, it has 
< 4 legs

No, it’s not a plant
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No, it has 
< 8 legs

No, it’s not a plant

No, I 
can’t sit 

on it
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Can we give more general 
answers?
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More general questions

More general answers

CEGIS(T)



Outline
• Overview of CEGIS and motivation for CEGIS(T)


• CEGIS(T): algorithm in detail  

• Evaluation


• CEGIS(T) in CVC4


• Ongoing work: beyond constants
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PROPOSITIONAL 
SAT SOLVER

ADD CLAUSESDEDUCTION

DPLL

Theory Solver

DPLL(T)
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P*

P*[v]

Generalize
Candidate

Generalized candidate

(x < 95)

(x < v)
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Deduction

∃v∀x . σ(P*[v], x)

P*[v]¬P*[v]

SATUNSAT

BLOCK SOLUTION

is there a value for v that makes (x < v)  a valid invariant
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First order solver

Solves 1st order formula with:

• Arbitrary propositional 

structure

• 1 quantifier alternation


Paper presents 2 versions:

• SMT

• FM
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CEGIS(T) - SMT

∃v∀x . σ(P*[v], x)

P*[v]¬P*[v]

SATUNSAT

BLOCK SOLUTION
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CEGIS(T) - SMT

∃v∀x . σ(P*[v], x) ∧ (v < c)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > c)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < cv > c
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∃v∀x . σ(P*[v], x) ∧ (v < c)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > c)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < cv > c

P* = (x < 95)

P*[v] = (x < v)

Target:

inv(x) = (4 < x) ∧ (x < 1003)
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∃v∀x . σ(P*[v], x) ∧ (v < 95)

P*[v]

∃v∀x . σ(P*[v], x) ∧ (v > 95)

SOLUTION
¬P*[v]

BLOCK CONSTRAINT CONSTRAINT
v < 95v > 95

P* = (x < 95)

P*[v] = (x < v)

Target:

inv(x) = (4 < x) ∧ (x < 1003)
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UNSAT UNSAT

∃v∀x . σ(P*[v], x) ∧ (v < 95) ∃v∀x . σ(P*[v], x) ∧ (v > 95)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

Target:

inv(x) = (4 < x) ∧ (x < 1003)
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UNSAT

∃v∀x . σ(P*[v], x) ∧ (v < 95) ∃v∀x . σ(P*[v], x) ∧ (v > 95)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

Target:

inv(x) = (4 < x) ∧ (x < 1003)
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UNSAT

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95

∃v∀x . σ(P*[v], x) ∧ (v < 95) ∃v∀x . σ(P*[v], x) ∧ (v > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)
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SAT

∃v∀x . σ(P*[v], x) ∧ (v1 < 95) ∃v∀x . σ(P*[v], x) ∧ (v1 > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95
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TIMEOUT TIMEOUT

∃v∀x . σ(P*[v], x) ∧ (v1 < 95) ∃v∀x . σ(P*[v], x) ∧ (v1 > 95)

Target:

inv(x) = (4 < x) ∧ (x < 1003)

P*[v]
SOLUTION

¬P*[v]
BLOCK CONSTRAINT CONSTRAINT

v < 95v > 95



Outline
• Overview of CEGIS and motivation for CEGIS(T)


• CEGIS(T): algorithm in detail 


• Evaluation 

• CEGIS(T) in CVC4


• Ongoing work: beyond constants
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Experiments
Benchmarks:

• Bitvectors

• Syntax-guided Synthesis competition 

(without the syntax)

• Loop invariants

• Danger invariants


Solvers:

• CVC4

• EUSolver, E3Solver, LoopInvGen – 

bitvectors with no grammar unsupported




58

0

10

20

30

40

TIME (s)

<1s [1,10] [10,100] [100,3600] T/O

10
5

1012

22 24

46
11

38

Experiments

Counterexample Guided Inductive
Synthesis Modulo Theories

Alessandro Abate1, Cristina David2,3(B) , Pascal Kesseli3,
Daniel Kroening1,3 , and Elizabeth Polgreen1

1 University of Oxford, Oxford, UK
2 University of Cambridge, Cambridge, UK

cd652@cam.ac.uk
3 Diffblue Ltd., Oxford, UK

Abstract. Program synthesis is the mechanised construction of soft-
ware. One of the main difficulties is the efficient exploration of the very
large solution space, and tools often require a user-provided syntactic
restriction of the search space. We propose a new approach to program AQ1

synthesis that combines the strengths of a counterexample-guided induc-
tive synthesizer with those of a theory solver, exploring the solution space
more efficiently without relying on user guidance. We call this approach AQ2

CEGIS(T ), where T is a first-order theory. In this paper, we focus on one
particular challenge for program synthesizers, namely the generation of
programs that require non-trivial constants. This is a fundamentally diffi-
cult task for state-of-the-art synthesizers. We present two exemplars, one
based on Fourier-Motzkin (FM) variable elimination and one based on
first-order satisfiability. We demonstrate the practical value of CEGIS(T )
by automatically synthesizing programs for a set of intricate benchmarks.

1 Introduction

Program synthesis is the problem of finding a program that meets a correctness
specification given as a logical formula. This is an active area of research in which
substantial progress has been made in recent years.

In full generality, program synthesis is an exceptionally difficult problem, and
thus, the research community has explored pragmatic restrictions. One particu-
larly successful direction is Syntax-Guided Program Synthesis (SyGuS) [2]. The
key idea of SyGuS is that the user supplements the logical specification with
a syntactic template for the solution. Leveraging the user’s intuition, SyGuS
reduces the solution space size substantially, resulting in significant speed-ups.

Unfortunately, it is difficult to provide the syntactic template in many prac-
tical applications. A very obvious exemplar of the limits of the syntax-guided
approach are programs that require non-trivial constants. In such a scenario, the
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SC2. Cristina David is supported by the Royal Society University Research Fellow-
ship UF160079.

c© The Author(s) 2018
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Abstract. Program synthesis is the mechanised construction of soft-
ware. One of the main difficulties is the efficient exploration of the very
large solution space, and tools often require a user-provided syntactic
restriction of the search space. We propose a new approach to program AQ1

synthesis that combines the strengths of a counterexample-guided induc-
tive synthesizer with those of a theory solver, exploring the solution space
more efficiently without relying on user guidance. We call this approach AQ2

CEGIS(T ), where T is a first-order theory. In this paper, we focus on one
particular challenge for program synthesizers, namely the generation of
programs that require non-trivial constants. This is a fundamentally diffi-
cult task for state-of-the-art synthesizers. We present two exemplars, one
based on Fourier-Motzkin (FM) variable elimination and one based on
first-order satisfiability. We demonstrate the practical value of CEGIS(T )
by automatically synthesizing programs for a set of intricate benchmarks.

1 Introduction

Program synthesis is the problem of finding a program that meets a correctness
specification given as a logical formula. This is an active area of research in which
substantial progress has been made in recent years.

In full generality, program synthesis is an exceptionally difficult problem, and
thus, the research community has explored pragmatic restrictions. One particu-
larly successful direction is Syntax-Guided Program Synthesis (SyGuS) [2]. The
key idea of SyGuS is that the user supplements the logical specification with
a syntactic template for the solution. Leveraging the user’s intuition, SyGuS
reduces the solution space size substantially, resulting in significant speed-ups.

Unfortunately, it is difficult to provide the syntactic template in many prac-
tical applications. A very obvious exemplar of the limits of the syntax-guided
approach are programs that require non-trivial constants. In such a scenario, the
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Outline
• Overview of CEGIS and motivation for CEGIS(T)


• CEGIS(T): algorithm in detail 


• Evaluation


• CEGIS(T) in CVC4 

• Ongoing work: beyond constants
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CEGIS(T) in CVC4

CVC4 implementation of CEGIS(T)

• CVC4 version 1.7

• Makes self-call to CVC4 SMT solver

• Supports CEGIS(T) with a syntactic template
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CEGIS(T) in CVC4

SYNTHESIZE

VERIFY

CEGIS

DEDUCTION

x

first order solver

P*[v]
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CEGIS(T) in CVC4
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• BV-invertibility benchmarks

• CEGIS(T) solves 8 unique benchmarks 

• avg. ~20s faster on mutually solved benchmarks

• VBS solver gains avg. 48s on mutually solved benchmarks
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CEGIS(T) solves program synthesis via 1st order 
solvers that support quantifiers: 

• Enables use of existing solvers


Algorithmic insights:

• verify generalized candidate solutions

• return generalized counterexamples


CEGIS(T)
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CEGIS(T) solves program synthesis via 1st order 
solvers that support quantifiers: 

• Enables use of existing solvers


Algorithmic insights:

• verify generalized candidate solutions

• return generalized counterexamples
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CEGIS(T) solves program synthesis via 1st order 
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• Overview of CEGIS and motivation for CEGIS(T)


• CEGIS(T): algorithm in detail 


• Evaluation


• CEGIS(T) in CVC4


• Ongoing work: beyond constants
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Beyond constants?

SYNTHESIZE

VERIFY
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Beyond constants?

QUERY RESPONSE

SYNTHESIZE

ORACLE

Via Oracle Guided Synthesis



70

Beyond constants:

QUERY RESPONSE

SYNTHESIZE

ORACLE

Synthesis Modulo Oracles

Elizabeth Polgreen
work with Sangita . Saskia

is my program
,
correct ? n%%p¥IYhFieIYis .

If:÷÷' ¥

general queries and responses
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no, but if I replace
7- with 9 it is .

no, and all

pwgramas.eotwthggsw.ua/;nJanIIIIgramhe this
,
make the

constant < 12 .

Is my p format ? \ /
yes ,

thenY÷:
⇐

CEGIS(T) as oracle guided 
synthesis
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Beyond constants:

QUERY RESPONSE

SYNTHESIZE

ORACLE

general queries and responses

- Future direction for SyGuS

- Syntax extension in SyGuS-IF

- What type of queries/responses? Any! 

(Provided the response can be expressed a 
logical constraint)
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CEGIS(T) solves program synthesis via 1st order 
solvers that support quantifiers


Algorithmic insights:

• verify generalized candidate solutions

• return generalized counterexamples


Broader communication is good!


Conclusions



CEGIS(T) solves program synthesis via 1st order 
solvers that support quantifiers


Algorithmic insights:

• verify generalized candidate solutions

• return generalized counterexamples


Broader communication is good!


Conclusions

What is it?
It’s an owl!!


