
Syntax-Guided Program Synthesis

Rajeev Alur

University of Pennsylvania

Part I

(Syntax-guided) Synthesis: Why and What ?

3

3

Next Challenge: Beyond Verification and Testing ??

Formal Verification in Practice

4

Vision of Program Synthesis

Can programming be liberated, period.
David Harel, IEEE Computer, 2008

Enabling Technologies

 More computing power
 Mature software analysis/verification tools
 Better human-computer interfaces
 Data mining tools for code repositories

Applications in the near term …

1. Programming by examples (PBE)

2. Superoptimizing compilers

3. Program repair

4. Proof objects for verification

5

1. Programming By Examples (PBE)

Desired program P: bit-vector transformation that resets rightmost
substring of contiguous 1’s to 0’s

1. P should be constructed from standard bit-vector operations
|, &, ~, +, -, <<, >>, 0, 1, …

2. P specified using input-output examples
00101  00100
01010  01000
10110  10000

Desired solution:
x & (1 + (x | (x-1))

6

Input Output
(425)-706-7709 425-706-7709
510.220.5586 510-220-5586
1 425 235 7654 425-235-7654
425 745-8139 425-745-8139

FlashFill: PBE in Practice
Ref: Gulwani (POPL 2011)

Wired: Excel is now a lot easier for people who aren’t spreadsheet- and
chart-making pros. The application’s new Flash Fill feature
recognizes patterns, and will offer auto-complete options for your
data. For example, if you have a column of first names and a column
of last names, and want to create a new column of initials, you’ll only
need to type in the first few boxes before Excel recognizes what
you’re doing and lets you press Enter to complete the rest of the
column.

7

Scythe: SQL queries from input-output examples

Wang, Cheung, Bodik; scythe.cs.washington.edu

8

2. Program Optimization

9

Can regular programmers match experts in code performance?
Improved energy performance in resource constrained settings
Adoption to new computing platforms such as GPUs

Opportunity: Semantics-preserving code transformation

Possible Solution: Superoptimizing Compiler
Structure of transformed code may be dissimilar to original

Superoptimization Illustration

Given a program P, find a “better” equivalent program P’

average (bitvec[32] x, y) {
bitvec[64] x1 = x;
bitvec[64] y1 = y;
bitvec[64] z1 = (x1+y1)/2;
bitvec[32] z = z1;
return z

}

Find equivalent code without
extension to 64 bit vectors

10

average (x, y) =
(x and y) + [(x xor y) shift-right 1]

3. Repair/Feedback for Programming Homeworks
Singh et al (PLDI 2013)

Student Solution P
+ Reference Solution R
+ Error Model

11

Find min no of edits to P so
as to make it equivalent to R

4. Automatic Invariant Generation

SelectionSort(int A[],n) {
i := 0;
while(i < n−1) {
v := i;
j := i + 1;
while (j < n) {

if (A[j]<A[v])
v := j ;

j++;
}
swap(A[i], A[v]);
i++;

}
return A;

}

post: ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]

Invariant: ?

Invariant: ?

12

Constraint solver

Template-based Automatic Invariant Generation

SelectionSort(int A[],n) {
i :=0;
while(i < n−1) {
v := i;
j := i + 1;
while (j < n) {

if (A[j]<A[v])
v := j ;

j++;
}
swap(A[i], A[v]);
i++;

}
return A;

}

post: ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]

Invariant:
∀k1,k2. ? ∧ ?

Invariant:
? ∧ ? ∧
(∀k1,k2. ? ∧ ?) ∧ (∀k. ? ∧ ?)

13

Template-based Automatic Invariant Generation

SelectionSort(int A[],n) {
i :=0;
while(i < n−1) {
v := i;
j := i + 1;
while (j < n) {

if (A[j]<A[v])
v := j ;

j++;
}
swap(A[i], A[v]);
i++;

}
return A;

}

post: ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]

Invariant:
∀k1,k2. 0≤k1<k2<n ∧

k1<i ⇒ A[k1]≤A[k2]

Invariant:
i<j ∧
i≤v<n ∧
(∀k1,k2. 0≤k1<k2<n ∧

k1<i ⇒ A[k1]≤A[k2]) ∧
(∀k. i1≤k<j ∧

k≥0 ⇒ A[v]≤A[k])

14

Syntax-Guided Program Synthesis

Rich variety of projects in programming systems and software engineering

1. Programming by examples
2. Program superoptimization
3. Automatic program repair
4. Template-guided invariant generation

Computational problem at the core of all these synthesis projects:
Find a program that meets given syntactic and semantic constraints

15

Classical Program Synthesis

16

Specification
“What”

Logical relation ϕ(x,y)
among input x and output y

Synthesizer

Implementation
“How”

Constructive proof of
Exists f. For all x. ϕ(x,f(x))

Function f(x) such that
ϕ(x,f(x))

Church (1957)

Syntax-Guided Program Synthesis

17

Semantic
Specification

Logical formula
ϕ(x,y)

Synthesizer

Implementation

Syntactic
Specification

Set E of
expressions

Search for e in E
s.t. ϕ(x,e(x))

www.sygus.org

Part II

Syntax-guided Synthesis: Formalization

18

Syntax-Guided Program Synthesis

 Find a program snippet e such that
1. e is in a set E of programs (syntactic constraint)
2. e satisfies logical specification ϕ (semantic constraint)

 Core computational problem in many synthesis tools/applications

19

www.sygus.org

Can we formalize and standardize this computational problem?

Inspiration: Success of SMT solvers in formal verification

SMT: Satisfiability Modulo Theories

 Computational problem: Find a satisfying assignment to a formula

 Boolean + Int types, logical connectives, arithmetic operators
 Bit-vectors + bit-manipulation operations in C
 Boolean + Int types, logical/arithmetic ops + Uninterpreted functs

 “Modulo Theory”: Interpretation for symbols is fixed

 Can use specialized algorithms (e.g. for arithmetic constraints)

20

Little Engines of Proof

SAT; Linear arithmetic; Congruence closure

Syntax-Guided Synthesis (SyGuS) Problem

 Fix a background theory T: fixes types and operations

 Function to be synthesized: name f along with its type
 General case: multiple functions to be synthesized

 Inputs to SyGuS problem:
 Specification ϕ(x, f(x))

Typed formula using symbols in T + symbol f
 Set E of expressions given by a context-free grammar

Set of candidate expressions that use symbols in T

 Computational problem:
Output e in E such that ϕ[f/e] is valid (in theory T)

Syntax-guided synthesis; FMCAD’13
with Bodik, Juniwal, Martin, Raghothaman, Seshia, Singh, Solar-Lezama, Torlak, Udupa 21

SyGuS Example 1

 Theory QF-LIA (Quantifier-free linear integer arithmetic)
Types: Integers and Booleans
Logical connectives, Conditionals, and Linear arithmetic
Quantifier-free formulas

 Function to be synthesized f (int x1, x2) : int

 Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

 Candidate Implementations: Linear expressions
LinExp := x1 | x2 | Const | LinExp + LinExp | LinExp - LinExp

 No solution exists

22

SyGuS Example 2

 Theory QF-LIA

 Function to be synthesized: f (int x1 , x2) : int

 Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

 Candidate Implementations: Conditional expressions without +

Term := x1 | x2 | Const | If-Then-Else (Cond, Term, Term)
Cond := Term ≤ Term | Cond & Cond | ~ Cond | (Cond)

 Possible solution:
If-Then-Else (x1 ≤ x2, x2, x1)

23

From SMT-LIB to SYNTH-LIB

(set-logic LIA)
(synth-fun max2 ((x Int) (y Int)) Int

((Start Int (x y 0 1
(+ Start Start)
(- Start Start)
(ite StartBool Start Start)))

(StartBool Bool ((and StartBool StartBool)
(or StartBool StartBool)
(not StartBool)
(<= Start Start))))

(declare-var x Int)
(declare-var y Int)
(constraint (≤ x (max2 x y)))
(constraint (≤ y (max2 x y)))
(constraint (or (= x (max2 x y)) (= y (max2 x y))))
(check-synth)

24

www.sygus.org

Invariant Generation as SyGuS

25

bool x, y, z
int a, b, c

while(Test) {
loop-body
….

}

 Goal: Find inductive loop invariant automatically

 Function to be synthesized
Inv (bool x, bool z, int a, int b) : bool

 Compile loop-body into a logical predicate
Update(x,y,z,a,b,c, x’,y’,z’,a’,b’,c’)

 Specification:
(Inv & Update & Test’) ⇒ Inv’

& Pre ⇒ Inv & (Inv & ~Test ⇒ Post)

 Template for set of candidate invariants
Term := a | b | Const | Term + Term | If-Then-Else (Cond, Term, Term)
Cond := x | z | Cond & Cond | ~ Cond | (Cond)

Part III

Solving SyGuS

26

Solving SyGuS

 Is SyGuS same as solving SMT formulas with quantifier alternation?

 SyGuS can sometimes be reduced to Quantified-SMT, but not always
 Set E is all linear expressions over input vars x, y

SyGuS reduces to Exists a,b,c. Forall X. ϕ [f/ ax+by+c]
 Set E is all conditional expressions

SyGuS cannot be reduced to deciding a formula in LIA

 Syntactic structure of the set E of candidate implementations can be
used effectively by a solver

 Existing work on solving Quantified-SMT formulas suggests solution
strategies for SyGuS

27

SyGuS as Active Learning

28

Search
Algorithm

Verification
Oracle

Initial examples I

Fail Success

Candidate
Expression

Counterexample

Concept class: Set E of expressions

Examples: Concrete input values

Counterexample-Guided Inductive Synthesis
Solar-Lezama et al (ASPLOS’06)

 Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

 Set E: All expressions built from x1, x2,0,1, Comparison, If-Then-Else

29

Search
Algorithm

Verification
Oracle

I = { }
Candidate

f(x1, x2) = x1

Counterexample
(x1=0, x2=1)

CEGIS Example

 Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

 Set E: All expressions built from x1, x2,0,1, Comparison, If-Then-Else

30

Search
Algorithm

Verification
Oracle

I = {(x1 =0, x2 =1) }

Candidate
f(x1, x2) = x2

Counterexample
(x1 =1, x2 =0)

CEGIS Example

 Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

 Set E: All expressions built from x1, x2,0,1, Comparison, If-Then-Else

31

Search
Algorithm

Verification
Oracle

{(x1 =0, x2 =1)
(x1 =1, x2 =0)
(x1 =0, x2 =0)
(x1 =1, x2 =1)} Candidate

ITE(x1 ≤ x2,x2,x1)

Success

Goal: Find f in E such that for all x in D, ϕ(x, f) holds

I = { }; /* Interesting set of inputs */
Repeat

Learn: Find f in E such that for all x in I, ϕ(f, x) holds
Verify: Find x in D such that ϕ(f, x) does not hol

If so, add x to I
Else, return f

32

Counterexample-guided Inductive Synthesis (CEGIS)

SyGuS Solutions

 CEGIS approach (Solar-Lezama et al, ASPLOS’08)

 Similar strategies for solving quantified formulas and invariant
generation

 Initial learning strategies based on:
1. Enumerative (search with pruning): Udupa et al (PLDI’13)
2. Symbolic (solving constraints): Gulwani et al (PLDI’11)
3. Stochastic (probabilistic walk): Schkufza et al (ASPLOS’13)

33

1. Enumerative Search

 Given:
Specification ϕ(x, f(x))
Grammar for set E of candidate implementations
Finite set I of inputs

Find an expression e(x) in E s.t. ϕ(x,e(x)) holds for all x in I

 Attempt 0: Enumerate expressions in E in increasing size till you find
one that satisfies ϕ for all inputs in I

 Attempt 1: Pruning of search space based on:
Expressions e1 and e2 are equivalent

if e1(x)=e2(x) on all x in I
Only one representative among equivalent subexpressions needs

to be considered for building larger expressions

34

Illustrating Pruning

 Spec: (x1 < f(x1, x2)) & (x2 < f(x1, x2))
 Grammar: E := x1 | x2 | 0 | 1 | E + E
 I = { (x1=0, x2=1) }
 Find an expression f such that (f(0,1) > 0) & (f(0,1) > 1)

35

x1 x2

0 1

x1 + x1 x1 + x2 x2 + x2

x2 + x1

2. Symbolic Search

 Use a constraint solver for both synthesis and verification steps

36

 Each production in the grammar is thought of as a component.
Input and Output ports of every component are typed.

 A well-typed loop-free program comprising these component
corresponds to an expression DAG from the grammar.

ITE

Term

Term

Term

Cond
>=

Term Term

Cond

+

Term Term

Term

x
Term

y
Term

0
Term

1
Term

Symbolic Encoding

37

x
n1

x
n2

y
n3

y
n4

0
n5

1
n6

+
n7

+
n8

>=
n9

ITE
n10

 Synthesis Constraints:
Shape is a DAG, Types are consistent
Spec ϕ[f/e] is satisfied on every concrete input in I

 Use an SMT solver (Z3) to find a satisfying solution.

 If synthesis fails, try increasing the number of occurrences of
components in the library in an outer loop

 Start with a library consisting of some number of occurrences of each
component.

3. Stochastic Search

 Idea: Find desired expression e by probabilistic walk on graph where
nodes are expressions and edges capture single-edits

 Metropolis-Hastings Algorithm: Given a probability distribution P over
domain X, and an ergodic Markov chain over X, samples from X

 Fix expression size n. X is the set of expressions En of size n. P(e)
∝Score(e) (“Extent to which e meets the spec φ”)

 For a given set Examples, Score(e) = exp(- 0.5 Wrong(e)), where
Wrong(e) = No of inputs in Examples for which ~ ϕ [f/e]

 Score(e) is large when Wrong(e) is small. Expressions e with Wrong(e) =
0 more likely to be chosen in the limit than any other expression

38

 Initial candidate expression e sampled uniformly from En

 When Score(e) = 1, return e

 Pick node v in parse tree of e uniformly at random. Replace subtree
rooted at e with subtree of same size, sampled uniformly

Stochastic Search

39

+

z

e

+

yx

+

z

e’

-

1z

 With probability min{ 1, Score(e’)/Score(e) }, replace e with e’

 Outer loop responsible for updating expression size n

Part IV

SyGuS Competition and Evolution

40

SMT Success Story

41

SMT-LIB Standardized Interchange Format (smt-lib.org)
Problem classification + Benchmark repositories
LIA, LIA_UF, LRA, QF_LIA, …

+ Annual Competition (smt-competition.org)

Z3 Yices CVC4 MathSAT5

CBMC SAGE VCC Spec# …

…

SyGuS Competition

42

SYNTH-LIB Standardized Interchange Format
Problem classification + Benchmark repository

+ SyGuS-COMP (Competition for solvers) held since FLoC 2014

Program
optimization

Program
repair

Programming
by examples

Invariant
generation

Techniques for Solvers:
Learning, Constraint solvers, Enumerative/stochastic search

Collaborators: D. Fisman, S. Padhi, A. Reynolds, R. Singh, A. Solar-Lezama, A. Udupa

SyGuS Progress

 Over 2000 benchmarks
 Hacker’s delight
 Invariant generation (based on verification competition SV-Comp)
 FlashFill (programming by examples system from Microsoft)
 Synthesis of attack-resilient crypto circuits
 Program repair
 Motion planning
 ICFP programming competition

 Special tracks for competition
 Invariant generation
 Programming by examples
 Conditional linear arithmetic

 New solution strategies and applications
43

www.sygus.org

Scaling Enumerative Search by Divide & Conquer

 For the spec (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2)) the answer is
If-Then-Else (x1 ≤ x2, x2, x1)

 Size of expressions in conditionals and terms can be much smaller than
the size of the entire expression!

 f(x1, x2)= x2 is correct when x1 ≤ x2 and f(x1, x2)= x1 is correct otherwise

 Key idea:
 Generate partial solutions that are correct on subsets of inputs and

combine them using conditionals
 Enumerate terms and tests for conditionals separately
 Terms and tests are put together using decision tree learning

With A. Radhakrishna and A. Udupa (TACAS 2017)

44

Enumerative Search with Decision Tree Learning

Desired decision tree:
Internal nodes: predicates + Leaves : expressions

45

x1

x2

x2+x2

…

Expressions / Labels Inputs / Data points

(x1=0, x2=1)

(x1=1, x2=0)

…
…

Predicates / Attributes

x1 ≤ x2

x2+x2 ≤ x1

…

…
Input x labeled with expression e

if ϕ(x, e(x)) holds
Input x has attribute p

if p(x) holds

Acceleration Using Learned Probabilistic Models

 Can we bias the search towards likely programs?

 Step 1: Mine existing solutions to convert given grammar into a
probabilistic higher-order grammar
 Weighted production rules
 Conditioned on parent and sibling context
 Transfer learning used to avoid overfitting

 Step 2: Enumerative search to generate expressions in decreasing
likelihood
 Use A* with cost estimation heuristic
 Integrated with previous optimizations (equivalence-based pruning…)

With W. Lee, K. Heo, and M. Naik (PLDI 2018)

46

Experimental Evaluation

 2017 SyGuS Competition
Over 1500 benchmarks in different categories
Solution size:

about 20 AST nodes in string manipulation programs
upto 1000 AST nodes in bitvector manipulation programs

Number of participating solvers: 8
 State of the art solver: Euphony

Enumerative + Decision trees + Learned probabilistic models
 Evaluation of Euphony

70% of all benchmarks solved with a time limit of 1 hour
Average time ~ 10 min
Median time ~ 2 min

47

2019 Winner : CVC4 (Reynolds et al):
Integration of enumerative search with constraint solving !!

Emerging Applications of SyGuS

 Synthesis of crypto-circuits resilient to timing attack
(Wang et al, CAV 2016)

 Solving of quantified formulas in SMT solvers
(Biere et al, TACAS 2017)
To solve For all x. Exists y. ϕ(x,y)
synthesize Skolem function f(x) such that For all x. ϕ(x,f(x))

 Improved solver for bit-vector arithmetic in CVC4
(Barrett et al, CAV 2018)
Automatic generation of side conditions for bit-vector rewriting

 Automatic inversion of list manipulating programs
(Hu and D’Antoni, PLDI 2018)
Modeled as symbolic transducers and applied to string encoders 48

Side Channel Attacks on Cryptographic Circuits

49

PPRM1 AES S-Box implementation [Morioka and Satoh, 2002]

Vulnerability: Timing-based attack can reveal secret input In2

Countermeasure to Attack

50

FSA attack resilient ckt: All input-to-output paths have same delays

Manually hand-crafted solution [Schaumont et al, DATE 2014]

Synthesis of Attack Countermeasures

51

Given a circuit C, automatically synthesize a circuit C’ such that
1. C’ is functionally equivalent to C [sematic constraint]
2. All input-to-output paths in C’ have same length [syntactic constraint]

Existing EDA tools cannot handle this synthesis problem

SyGuS Result

52

Original ckt prone to attack

Hand-crafted attack resilient ckt

SyGuS-generated Attack resilient ckt

Fully automatic
Smaller size
Shorter delays

Part V

Application: Network Traffic Classification

Sharingan: Network traffic classification by program synthesis;
Collaborators: Shi, Loo; TACAS 2021

53

Network Traffic Engineering

Switch

54

Dynamic network management for traffic engineering requires
writing classification rules to identify anomalous traffic

Example attack: DDoS (flood attack to exhaust available resources)
Too many open connections within a short time interval from

SourceIPs in a close range

(source IP, dest IP, payload)
drop / forward to port X /
alert controller

Synthesis of Network Traffic Classifiers

Can we learn a traffic classifier from positive/negative examples?

Challenges:

 Example: (very large) sequences of raw network packets
 Very few examples, particularly of anomalous traffic
 Operators need to manually examine potential false reports
 Synthesized classifier should be interpretable (easy to decipher / edit)
 Synthesized classifier should be efficiently implementable
 Should be expressive to capture application-layer protocols …

Active research area:
automatic generation of classifiers using machine learning and data mining

Kitsune: An ensemble of Autoencoders for online network intrusion
detection; Mirsky et al; NSDI 2018 55

Syntax-Guided Synthesis Based Solution

1. Choose a suitable DSL for traffic classifiers
 Expressive enough to capture a variety of attacks
 Built-in abstractions for succinct descriptions

2. Design a synthesis tool that, given positive and negative examples,
finds a succinct expression in DSL consistent with examples
 Scalable enough to generate interesting classifiers
 Capable of handling traffic traces of thousands of packets

Program synthesis based approach, in principle, can meet challenges of
network traffic classification better than ML-based solutions

Our solution: Sharingan
56

Choosing a DSL for Classifiers

57

Low-level programming:
What state to maintain? How to update it?

Switch

(source IP, dest IP, payload)

Example classifier:
if number of packets in current VoIP session exceeds the average
over past VoIP sessions by a standard deviation then drop the packet

Desired high-level abstraction: Beyond packet sequence

drop / forward /
alert controller

High-level Specification of VoIP Session Monitor

58

1. Focus on traffic between a
specific source and destination

2. View data stream as a sequence
of VoIP sessions

3. View a VoIP session as a
sequence of three phases

4. Aggregate cost over call phase
during a session, and aggregate
cost across sessions

Init

Call

End

Session Initiation Protocol

 Core language: QRE (Quantitative Regular Expressions)
 Regular expressions
 Aggregate operators such as max, min, sum, average, …

 Domain-specific features
 Ports, IP addresses, Range types
 Group-by construct on IP-address keys
 Tests on packet fields
 References to time windows (e.g. packets in last 5 sec)

 Semantics of an expression: maps packet stream to a numerical value

 Efficient compiler and runtime system: each expression can be compiled
into optimized code (with theoretical guarantees of how much state is
stored)

59

NetQRE Language for Network Traffic Classifiers
SIGCOMM 2017 (with Y. Yuan and B.-T. Loo)

NetQRE Examples

60

 Flow-level traffic measurements
e.g. detection of heavy hitters, super spreaders

 TCP state monitoring
e.g. aggregate statistics of TCP connections

detect SYN flood attack
 Application level monitoring

e.g. collect statistics about VoIP sessions
18 lines of NetQRE code (vs 100s lines of C++)

 DDoS attack classifier (synthesized by Sharingan)

((/_* A _* B _*/)*sum /_* C _*/)sum > 4
where A = [ip.src_ip ->[0%,50%]]

B = [tcp.rst == 1]
C = [time_since_last_pkt <= 50%]

Synthesis of NetQRE Expressions from Examples

 Given sets P and N of positive and negative packet traces, find a
NetQRE expression that separates them
 Recall: An expression maps a packet trace to a numerical value

 Key challenges for synthesis
 Search space is large due to a rich set of constructs
 Expressions involve numerical constants
 Packet traces are long (thousands of packets)

 Ideas for optimized search from SyGuS solvers are relevant, yet can’t
use an off-the-shelf solver
 No SMT theory of quantitative regular expressions

 Search in Sharingan
 Optimized enumerative search (as in former SyGuS solvers)
 Merge search: Divide-and-conquer solution to handle long traces
 Partial evaluation for early pruning

61

Partial Evaluation

 Partial NetQRE expression e
 The expression e still contains some non-terminals
 Generated by the NetQRE grammar

 Partial evaluation of e on a packet trace t: interval [l, u]
 Requirement: for every completion f of e, f(t) should belong to [l,u]

 Partial evaluation of e on all positive and negative examples may allow us
to conclude that no completion of e can separate them
 This early pruning critical for performance of synthesis tool

 Key technical challenge: how to do partial evaluation efficiently

62

Experimental Evaluation

 Benchmarks from CICIDS2017 database
 8 types of attacks: Slowloris, Slowhttps, DoS Hulk, SSH Patator, HTP

Patator, DDoS, Botnet ARES, Portscan
 Accuracy of Sharingan:

 In 6 out of 8 attacks, 100% true positive rate at 1% false positive rate
 In 7 out of 8 attacks, above 0.994 of AUC-ROC
 Comparable to existing approaches such as Kitsune

 Synthesizes short NetQRE programs
 Can be interpreted
 Editing possible: threshold can be adjusted manually

 Synthesized program can be deployed directly (or translated to rules)
 Synthesis time

 For 7 out of 8: within 50 minutes; BotNET ARES: 300 minutes
 Size of synthesized expressions: 20 – 30 terms
 Optimizations (merge search and partial evaluation) critical for performance

63

Part VI

Conclusions and Research Directions

64

 Problem definition
Syntactic constraint on space of allowed programs
Semantic constraint given by logical formula

 Solution strategies
Counterexample-guided inductive synthesis
Search in program space + Verification of candidate solutions

 Applications
Programming by examples
Program repair/optimization with respect to syntactic constraints

 Annual competition (SyGuS-comp)
Standardized interchange format + benchmarks repository

65

SyGuS Conclusions

www.sygus.org

 Synthesis is a hot topic as measured by number of publications in
CAV/POPL/PLDI and even database / machine learning / software
engineering conferences.
 Many use SyGuS benchmarks for evaluation
 Some of these papers do use SyGuS or Sketch (Solar-Lezama et al) or

Rosette (Torlak et al), yet many are stand-alone efforts

 Future direction: integrate constraint solving and synthesis in
mainstream compilers such as LLVM

 Future direction: SyGuS-like back-end focused on efficient search, but
decoupled from SMT solvers so as to allow interface with alternative
testing / verification tools

66

What next: Infrastructure

 PBE-based tools for automating repetitive code transformations
 Sustained effort at Microsoft (see Bluepencil)
 Key challenge: programmer interaction

 Low-level code optimizations for heterogeneous platforms
 New effort on Machine Programming at Intel

 From data to logic (interpretable machine learning)
 Synthesis of logic programs from data

67

What next: Applications

 How to make synthesis scalable? No magic bullet here, but slow and
steady progress will continue…

 Exciting opportunity: Machine learning for program synthesis
 Challenges in ML research: how to learn structured objects, how to

integrate symbolic constraints in training of neural networks
 Challenges for program synthesis: what’s a suitable representation of a

program
 Lots of papers in ML conferences in last 2-3 years (e.g. Hoppity: Learning

graph transformations to detect and fix bugs in programs; Dinella et al;
ICLR 2020)

68

What next: Solution Techniques

69

IDEs of Future

Program
Synthesis

Machine
Learning

Human-Computer
Interaction

	Slide Number 1
	Part I��(Syntax-guided) Synthesis: Why and What ?
	Formal Verification in Practice
	Slide Number 4
	Applications in the near term …
	1. Programming By Examples (PBE)
	FlashFill: PBE in Practice�				Ref: Gulwani (POPL 2011)
	Scythe: SQL queries from input-output examples��Wang, Cheung, Bodik; scythe.cs.washington.edu
	2. Program Optimization
	Superoptimization Illustration
	3. Repair/Feedback for Programming Homeworks�						Singh et al (PLDI 2013)
	4. Automatic Invariant Generation
	Template-based Automatic Invariant Generation
	Template-based Automatic Invariant Generation
	Syntax-Guided Program Synthesis
	Classical Program Synthesis
	Syntax-Guided Program Synthesis
	Part II��Syntax-guided Synthesis: Formalization
	Syntax-Guided Program Synthesis
	SMT: Satisfiability Modulo Theories
	Syntax-Guided Synthesis (SyGuS) Problem
	SyGuS Example 1
	SyGuS Example 2
	From SMT-LIB to SYNTH-LIB
	Invariant Generation as SyGuS
	Part III��Solving SyGuS
	Solving SyGuS
	SyGuS as Active Learning
	Counterexample-Guided Inductive Synthesis�				Solar-Lezama et al (ASPLOS’06)
	CEGIS Example
	CEGIS Example
	Slide Number 32
	SyGuS Solutions
	1. Enumerative Search
	Illustrating Pruning
	2. Symbolic Search
	Symbolic Encoding
	3. Stochastic Search
	Stochastic Search
	Part IV��SyGuS Competition and Evolution
	SMT Success Story
	SyGuS Competition
	SyGuS Progress
	Scaling Enumerative Search by Divide & Conquer
	Enumerative Search with Decision Tree Learning
	Acceleration Using Learned Probabilistic Models
	Experimental Evaluation
	Emerging Applications of SyGuS
	Side Channel Attacks on Cryptographic Circuits
	Countermeasure to Attack
	Synthesis of Attack Countermeasures
	SyGuS Result
	Part V��Application: Network Traffic Classification��Sharingan: Network traffic classification by program synthesis; �Collaborators: Shi, Loo; TACAS 2021
	Network Traffic Engineering
	Synthesis of Network Traffic Classifiers
	Syntax-Guided Synthesis Based Solution
	 Choosing a DSL for Classifiers
	 High-level Specification of VoIP Session Monitor
	NetQRE Language for Network Traffic Classifiers�SIGCOMM 2017 (with Y. Yuan and B.-T. Loo)
	NetQRE Examples
	Synthesis of NetQRE Expressions from Examples
	Partial Evaluation
	Experimental Evaluation
	Part VI��Conclusions and Research Directions
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69

