
Safe Human-Interactive
Control via Shielding

Jeevana Priya Inala1, Yecheng Jason Ma2,
Osbert Bastani2, Xin Zhang3, Armando Solar-Lezama1

1 MIT 2 University of Pennsylvania 3 Peking University

Human-Robot Interaction

• Robots are increasingly being deployed in settings where they must
interact with humans
• Both cooperative and non-cooperative (not necessarily zero-sum!)

Park et al. Intention-Aware Motion Planning Using
Learning Based Human Motion Prediction. RSS 2017

Human-Robot Interaction

• Key question: How to model the human?

• General solution: Two-player dynamic game

robot

human

Human-Robot Interaction

(Actual) human and robot negotiate who passes first at an intersection

Roadmap

• Problem formulation
• Background on human interactive control
• Background on shielding
• Our algorithm
• Theoretical guarantees
• Experiments

Roadmap

• Problem formulation
• Background on human interactive control
• Background on shielding
• Our algorithm
• Theoretical guarantees
• Experiments

Game Theoretical Formulation

• Two-player dynamic game
• Dynamics 𝑥!"# = 𝑓 𝑥!, 𝑢$,!, 𝑢&,!
• Agent 𝛿 ∈ {𝑅,𝐻} has utility

𝐽! 𝑥; 𝑢" , 𝑢# ='
$%&

'

𝑟! 𝑥$, 𝑢!,$

• Human strategy
• Nash equilibrium action sequence

Control Problem

• Robot control
• Construct a robot controller 𝑢$,! = 𝜋$ 𝑥!

• Goal reaching
• Goal region 𝒳'()*
• Reach 𝑥! ∈ 𝒳'()* for some 𝑡

• Safety
• Safe region 𝒳+),-
• Ensure 𝑥! ∈ 𝒳+),- for all 𝑡 ∈ 1,… , 𝑇

Challenges

• Challenge 1: Computational complexity
• Hard to compute Nash equilibrium strategies

• Challenge 2: Unknown human reward function
• Human reward function 𝑟& is unknown

Roadmap

• Problem formulation
• Background on human interactive control
• Background on shielding
• Our algorithm
• Theoretical guarantees
• Experiments

Prior Work (Sadigh et al. 2016)

• Challenge 1: Computational complexity
• Re-formulate as Stackelberg game

• Challenge 2: Unknown human reward function
• Use inverse reinforcement learning to infer human reward function

Sadigh, Sastry, Seshia, Dragan, Planning for Autonomous Cars that Leverage Effects on Human Actions. RSS, 2016.

Computational Complexity

• Stackelberg Game
• Agents play sequentially (not simultaneously)
• Dynamics 𝑥!"# = 𝑓& 𝑓$ 𝑥!, 𝑢$,! , 𝑢&,!

Sadigh, Sastry, Seshia, Dragan, Planning for Autonomous Cars that Leverage Effects on Human Actions. RSS, 2016.

Stackelberg Game

Sadigh, Sastry, Seshia, Dragan, Planning for Autonomous Cars that Leverage Effects on Human Actions. RSS, 2016.

Stackelberg Game

Sadigh, Sastry, Seshia, Dragan, Planning for Autonomous Cars that Leverage Effects on Human Actions. RSS, 2016.

Stackelberg Game

Sadigh, Sastry, Seshia, Dragan, Planning for Autonomous Cars that Leverage Effects on Human Actions. RSS, 2016.

Stackelberg Game

Sadigh, Sastry, Seshia, Dragan, Planning for Autonomous Cars that Leverage Effects on Human Actions. RSS, 2016.

Stackelberg Game

• Solution strategy
• Finite state, finite horizon
• Then, we can use backward induction:

𝑢$,!∗ 𝑥 = arg max/! 𝑟$ 𝑥 + 𝐽$,!"#∗ 𝑓& 𝑓$ 𝑥, 𝑢$, 𝑢&,!∗ 𝑓$ 𝑥, 𝑢$

𝐽$,!∗ 𝑥 = max/! 𝑟$ 𝑥 + 𝐽$,!"#∗ 𝑓& 𝑓$ 𝑥, 𝑢$, 𝑢&,!∗ 𝑓$ 𝑥, 𝑢$

• Here, 𝑢$,!∗ 𝑥 is the optimal policy and 𝐽$,!∗ 𝑥 is the value function
• Computes a subgame-perfect Nash equilibrium

Sadigh, Sastry, Seshia, Dragan, Planning for Autonomous Cars that Leverage Effects on Human Actions. RSS, 2016.

Stackelberg Game

• Solution strategy
• Finite state, finite horizon
• Then, we can use backward induction:

𝑢&,!∗ 𝑥 = arg max/" 𝑟& 𝑥 + 𝐽&,!"#∗ 𝑓$ 𝑓& 𝑥, 𝑢& , 𝑢$,!"#∗ 𝑓& 𝑥, 𝑢&

𝐽&,!∗ 𝑥 = max/" 𝑟& 𝑥 + 𝐽&,!"#∗ 𝑓$ 𝑓& 𝑥, 𝑢& , 𝑢$,!"#∗ 𝑓& 𝑥, 𝑢&

• Here, 𝑢&,!∗ 𝑥 is the optimal policy and 𝐽&,!∗ 𝑥 is the value function
• Computes a subgame-perfect Nash equilibrium

Sadigh, Sastry, Seshia, Dragan, Planning for Autonomous Cars that Leverage Effects on Human Actions. RSS, 2016.

Stackelberg Game

• Solution strategy
• Continuous state, finite horizon (MPC)
• Optimize 𝑢$,!∗ using gradient descent
• Compute derivative of arg-max using implicit differentiation

Sadigh, Sastry, Seshia, Dragan, Planning for Autonomous Cars that Leverage Effects on Human Actions. RSS, 2016.

Human Reward Function

• Inverse Reinforcement Learning
• Given demonstrations of the human’s behavior, choose the reward function

that best “describes” the human behavior:

�̂�# = arg max) 𝐿 𝜋 𝑟 ; 𝐷

• Here, 𝜋 𝑟 is the optimal policy if the reward function is 𝑟, 𝐷 is the observed
dataset of human state-action pairs, and 𝐿 is a loss function

• Human Reward Function Inference
• Gather demonstrations of human behavior
• Use off-the-shelf inverse reinforcement learning algorithms to estimate 𝑟&

Sadigh, Sastry, Seshia, Dragan, Planning for Autonomous Cars that Leverage Effects on Human Actions. RSS, 2016.

Shortcomings

• Challenge 1: Computational complexity
• Formulate as Stackelberg game
• Susceptible to local minima, so not guaranteed to be a Nash equilibrium

• Challenge 2: Unknown human reward function
• Use inverse reinforcement learning to infer human reward function
• No guarantee that inferred reward function is correct

Sadigh, Sastry, Seshia, Dragan, Planning for Autonomous Cars that Leverage Effects on Human Actions. RSS, 2016.

Our Goal

• Design a robot controller that
• Guarantees safety
• Best attempt to reach goal (but no guarantees)

• Assumptions
• Necessary to make some assumptions about human reward function
• Goal is to minimize the required assumptions

Roadmap

• Problem formulation
• Background on human interactive control
• Background on shielding
• Our algorithm
• Theoretical guarantees
• Experiments

Shielding

• Untrustworthy Policy 2𝝅
• Achieves good performance
• May be unsafe

• Backup Policy 𝝅𝐛𝐚𝐜𝐤𝐮𝐩
• May perform poorly
• Can safely bring the system to a stop from 𝑥 ∈ 𝒳0-1 ⊆ 𝒳+),-
• Say 𝑥 is recoverable

• Strategy
• Safety: Override =𝜋 using 𝜋2)1345 to guarantee safety
• Goal-reaching: Minimally override =𝜋 to ensure performance (no guarantees)

Obstacle

Recoverability

𝜋!"#$%&

𝜋!"#$%&

𝑣 = 0

We have 𝑥 ∈ 𝒳!"# if 𝜋$%#&'(safely brings the robot to a stop (𝑣 = 0)

𝑥

Shielding Algorithm

• Algorithm
• Use =𝜋 if =𝑥!"# = 𝑓 𝑥!, =𝜋 𝑥! ∈ 𝒳0-1
• Use 𝜋2)1345 otherwise

• Theorem: This algorithm maintains the invariant

𝑥$ ∈ 𝒳456 ⇒ 𝑥$7& ∈ 𝒳456

• Proof
• Case 1: It uses =𝜋; then, the result follows by the condition
• Case 2: It uses 𝜋2)1345; then, it follows since 𝑥! ∈ 𝒳0-1 implies that using
𝜋2)1345 is safe, so 𝑥!"# = 𝑓 𝑥!, 𝜋2)1345 𝑥! must also be recoverable

Model Predictive Shielding

• Challenge: 𝒳456 is often hard to compute in closed form

• Key idea: We can check 𝑥 ∈ 𝒳456 using model-based simulation

Li & Bastani 2020, Bastani 2021

Obstacle

Simulation to see if (𝑥)*+ ∈ 𝒳!"#

Checking Recoverability

7𝜋

𝜋!"#$%&

𝜋!"#$%&

𝑣 = 0

𝑥!

8𝑥!"#

=𝑥!"# ∈ 𝒳0-1

Obstacle

Checking Recoverability

7𝜋

𝜋!"#$%&

Simulation to see if (𝑥)*+ ∈ 𝒳!"#

𝑥!

8𝑥!"#

=𝑥!"# ∉ 𝒳0-1

if !𝑥)*+ ∈ 𝒳,-. then use !𝜋

if !𝑥)*+ ∉ 𝒳,-. then use 𝜋/0.123

Model Predictive Shielding

Roadmap

• Problem formulation
• Background on human interactive control
• Background on shielding
• Our algorithm
• Theoretical guarantees
• Experiments

Our Approach

• High-level strategy
• Do not try to compute a Nash Equilibrium solution
• Instead, act conservatively with respect to rational human

• Key idea
• Assume human prioritizes safety
• We only need to prove that the human can maintain safety
• Then, rationality implies that the human does maintain safety

Simplified Human Model

• Simplified Stackelberg Game
• Assume that human plays conservatively with respect to possible future robot

actions 𝑢$ ⊆ ?𝒰$:

𝑢"∗ = arg max:! 𝐽" 𝑥; 𝑢" , 𝑢#∗ 𝑢",&

𝑢#∗ 𝑢",& = arg max:"min:!,$:& 𝐽# 𝑥; 𝑢",& ∘ 𝑢",;:' , 𝑢#

• Intuition: Reduces problem to 1-step Stackelberg game
• Justification: Human cannot anticipate exactly what the robot is going

to do, so they must act conservatively

Assumptions on Human Objective

• Human policy: 𝑢#∗ 𝑢",& = arg max:"min:!,$:& 𝐽# 𝑥; 𝑢",& ∘ 𝑢",;:' , 𝑢#

• Assumption 1: Human rewards for unsafety
• We have 𝑟& 𝑥!, 𝑢&,! = −∞ if 𝑥! ∉ 𝒳+),-

• Assumption 2: Human predicted robot backup action
• We are given a robot backup action =𝑢$ that the robot can use to come to a stop
• The human acts conservatively with respect to this action

• Assumption 3: Human backup actions
• We are given human backup actions ?𝒰& that the human can use to come to a stop
• If the human’s objective value is −∞, then they use some action 𝑢& ∈ ?𝒰&

Assumptions on Human Objective

:𝒰#

<𝑢"

Algorithm Overview

• Human model
• 𝑢&∗ = arg max/" min/!,$:& 𝐽& 𝑥; 𝑢$,# ∘ 𝑢$,8::, 𝑢&

• Recoverability
• Say 𝑥 is recoverable if using =𝑢$ from 𝑥 safely brings

the system to a stop
• Depends on the unknown human policy

• Algorithm
• Say 𝑥 is recoverable if the system safely comes to a

stop for 𝑢$,8:: = =𝑢$ and for all 𝑢& ⊆ ?𝒰&

Algorithm Overview

• Human model
• 𝑢&∗ = arg max/" min/!,$:& 𝐽& 𝑥; 𝑢$,# ∘ 𝑢$,8::, 𝑢&

• Recoverability
• Say 𝑥 is recoverable if using =𝑢$ from 𝑥 safely brings

the system to a stop
• Depends on the unknown human policy

• Algorithm
• Say 𝑥 is recoverable if the system safely comes to a

stop for 𝑢$,8:: = =𝑢$ and for all 𝑢& ⊆ ?𝒰&
• The human may not take such a 𝑢&, but then they

take an action 𝑢&; that is better than 𝑢&

Algorithm

• Step 1: Compute the human
backup region that the human can
reach using 𝑢# ∈ :𝒰#
• It is not a reachable set; the human

may drive outside of it

• Step 2: Compute the robot backup
trajectory that the robot takes
using <𝜋 for one step followed by <𝑢"

• Step 3: Use <𝜋 if these do not
overlap, and <𝑢" otherwise

Algorithm

• Step 1: Compute the human
backup region that the human can
reach using 𝑢# ∈ :𝒰#
• It is not a reachable set; the human

may drive outside of it

• Step 2: Compute the robot backup
trajectory that the robot takes
using <𝜋 for one step followed by <𝑢"

• Step 3: Use <𝜋 if these do not
overlap, and <𝑢" otherwise

Step 1 & 2: Robot/Human Backup Regions

• Goal
• Compute reachable set under robot backup

action =𝑢$ and human backup actions ?𝒰&

• Algorithm
• Given 𝐹<: 2𝒳×2𝒰' → 2𝒳 for 𝛿 ∈ 𝑅,𝐻 s.t.

𝑓! 𝑥, 𝑢 𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈 ⊆ 𝐹! 𝑋,𝑈

• Compute

𝑋; = 𝐹# 𝐹" 𝑥 , <𝜋 𝑥 , :𝒰#
𝑋$7& = 𝐹# 𝐹" 𝑋$, <𝑢" , :𝒰#

<𝜋

:𝒰#

Step 1 & 2: Robot/Human Backup Regions

• Goal
• Compute reachable set under robot backup

action =𝑢$ and human backup actions ?𝒰&

• Algorithm
• Given 𝐹<: 2𝒳×2𝒰' → 2𝒳 for 𝛿 ∈ 𝑅,𝐻 s.t.

𝑓! 𝑥, 𝑢 𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈 ⊆ 𝐹! 𝑋,𝑈

• Compute

𝑋; = 𝐹# 𝐹" 𝑥 , <𝜋 𝑥 , :𝒰#
𝑋$7& = 𝐹# 𝐹" 𝑋$, <𝑢" , :𝒰#

<𝑢"

:𝒰#

:𝒰#

<𝜋

Step 1 & 2: Robot/Human Backup Regions

• Goal
• Compute reachable set under robot backup

action =𝑢$ and human backup actions ?𝒰&

• Algorithm
• Given 𝐹<: 2𝒳×2𝒰' → 2𝒳 for 𝛿 ∈ 𝑅,𝐻 s.t.

𝑓! 𝑥, 𝑢 𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈 ⊆ 𝐹! 𝑋,𝑈

• Compute

𝑋; = 𝐹# 𝐹" 𝑥 , <𝜋 𝑥 , :𝒰#
𝑋$7& = 𝐹# 𝐹" 𝑋$, <𝑢" , :𝒰#

<𝑢" <𝑢"

:𝒰#

:𝒰#

:𝒰#

<𝜋

Step 3: Robot/Human Backup Regions

• Goal
• Check safety
• Check if the system comes to a stop

• Algorithm
• Check 𝑋! ⊆ 𝒳+),- (for all 𝑡)
• Check 𝑋: ⊆ 𝒳-?

Step 3: Robot/Human Backup Regions

• Goal
• Check safety
• Check if the system comes to a stop

• Algorithm
• Check 𝑋! ⊆ 𝒳+),- (for all 𝑡)
• Check 𝑋: ⊆ 𝒳-?

Roadmap

• Problem formulation
• Background on human interactive control
• Background on shielding
• Our algorithm
• Theoretical guarantees
• Experiments

Theoretical Guarantee

• Assumptions
• Our model of human behavior holds
• Assumptions 1, 2, & 3
• The human and robot are at rest at 𝑥# (i.e., 𝑥# ∈ 𝒳-?)

• Theorem
• Our algorithm ensures 𝑥! ∈ 𝒳+),- for all 𝑡

• Proof
• Prove by induction that 𝑥! ∈ 𝒳0-1 ⊆ 𝒳+),-
• Case 1: Robot uses =𝜋
• Case 2: Robot uses 𝜋2)1345 𝑥 = =𝑢$

Case 1: Robot uses !𝜋

• Human model
• 𝑢&∗ 𝑢$,8:: = arg max/" M𝐽& 𝑥; 𝑢$,#, 𝑢&
• M𝐽& 𝑥; 𝑢$,#, 𝑢& = min/!,$:& 𝐽& 𝑥; 𝑢$,# ∘ 𝑢$,8::, 𝑢&

• Proof that 𝑥$ ∈ 𝒳456 ⇒ 𝑥$7& ∈ 𝒳456
• Since the robot uses =𝜋, the human backup region and the

robot backup trajectory do not overlap
• If M𝐽& 𝑥; 𝑢$,#, 𝑢& > −∞, then the human action is safe for
𝑢$,8:: (Assumption 1), which includes =𝑢$ (Assumption 2)

Case 1: Robot uses !𝜋

• Human model
• 𝑢&∗ 𝑢$,8:: = arg max/" M𝐽& 𝑥; 𝑢$,#, 𝑢&
• M𝐽& 𝑥; 𝑢$,#, 𝑢& = min/!,$:& 𝐽& 𝑥; 𝑢$,# ∘ 𝑢$,8::, 𝑢&

• Proof that 𝑥$ ∈ 𝒳456 ⇒ 𝑥$7& ∈ 𝒳456
• Since the robot uses =𝜋, the human backup region and the

robot backup trajectory do not overlap
• If M𝐽& 𝑥; 𝑢$,#, 𝑢& > −∞, then the human action is safe for
𝑢$,8:: (Assumption 1), which includes =𝑢$ (Assumption 2)
• If M𝐽& 𝑥; 𝑢$,#, 𝑢& = −∞, then the human takes an action
𝑢&,# ∈ ?𝒰& (Assumption 3), which is safe

Case 2: Robot uses 𝜋/0.123
• Proof that 𝑥$ ∈ 𝒳456 ⇒ 𝑥$7& ∈ 𝒳456
• The human backup region and the robot backup trajectory

may overlap
• However, by definition of 𝑥! ∈ 𝒳0-1, using 𝜋2)1345 from 𝑥!

safely brings the system to a stop
• Since we used 𝜋2)1345, the same must be true of 𝑥!"#

Roadmap

• Problem formulation
• Background on human interactive control
• Background on shielding
• Our algorithm
• Theoretical guarantees
• Experiments

Experimental Setup

• Environment
• Cars with bicycle dynamics
• Control input is acceleration and steering angle
• Several different driving tasks

• Robot
• Our approach (MPS) + Aggressive controller that drives straight to goal
• Model predictive control (MPC) baseline

• Humans
• Simulated humans (social forces model)
• Real humans interacting with the simulation via keyboard

MPS Parameters

• Robot backup action 2𝒖𝑹
• Brake at a given deceleration 𝑎 = −𝑎$
• Steering angle 𝜙 = 0

• Human backup actions C𝓤𝑯
• Brake at a deceleration 𝑎 ∈ −𝑎&, −𝑎&;

• Steering angle 𝜙 ∈ −𝜙&, 𝜙&

Shielded aggressive controller cuts in front of the human leveraging
the fact that a responsible human driver will slightly brake

robot

human

Our Approach + Simulated Humans

The robot triggers the shield to brake and allow the human to pass safely

Our Approach + Simulated Humans

robot

human

Shielded aggressive controller cuts in front of the human leveraging
the fact that a responsible human driver will slightly brake

Our Approach + Real Humans

robot

human

The robot triggers the shield to brake and allow the human to pass safely

Our Approach + Real Humans

MPC + Simulated Humans

MPC control takes longer than the shielded aggressive control

robot

human

The human acted aggressively and collided with the stationary robot

robot

human

Our Approach + Real Humans with an Accident

No Stopping in Intersection

robot

human

Old shielded controller without the no-stop-at-intersection constraint
stops at the intersection, which leads to congestion

No Stopping in Intersection

New shielded controller with the no-stop-at-intersection constraint
stops before the intersection

robot

human

Pull-Over Backup Action

robot

human

Instead of stopping in the middle of the highway, the robot pulls over to
the next lane as a backup policy

Conclusion

• Safe human-interactive control
• Game theoretic model of human behavior
• Model predictive shielding + abstract interpretation to ensure safety

