Safe Human-Interactive Control via Shielding

Jeevana Priya Inala¹, Yecheng Jason Ma²,

Osbert Bastani², Xin Zhang³, Armando Solar-Lezama¹

1 MIT 2 University of Pennsylvania 3 Peking University

Human-Robot Interaction

- Robots are increasingly being deployed in settings where they must interact with humans
 - Both **cooperative** and **non-cooperative** (not necessarily zero-sum!)

Park et al. Intention-Aware Motion Planning Using Learning Based Human Motion Prediction. RSS 2017

Human-Robot Interaction

- **Key question:** How to model the human?
- General solution: Two-player dynamic game

Human-Robot Interaction

(Actual) human and robot negotiate who passes first at an intersection

Roadmap

- Problem formulation
- Background on human interactive control
- Background on shielding
- Our algorithm
- Theoretical guarantees
- Experiments

Roadmap

Problem formulation

- Background on human interactive control
- Background on shielding
- Our algorithm
- Theoretical guarantees
- Experiments

Game Theoretical Formulation

- Two-player dynamic game
 - Dynamics $x_{t+1} = f(x_t, u_{R,t}, u_{H,t})$
 - Agent $\delta \in \{R, H\}$ has utility

$$J_{\delta}(x;\vec{u}_R,\vec{u}_H) = \sum_{t=1}^{I} r_{\delta}(x_t,u_{\delta,t})$$

 \boldsymbol{T}

Human strategy

• Nash equilibrium action sequence

Control Problem

Robot control

• Construct a robot controller $u_{R,t} = \pi_R(x_t)$

Goal reaching

- Goal region $\mathcal{X}_{\mathrm{goal}}$
- Reach $x_t \in \mathcal{X}_{\text{goal}}$ for some t
- Safety
 - Safe region \mathcal{X}_{safe}
 - Ensure $x_t \in \mathcal{X}_{safe}$ for all $t \in \{1, ..., T\}$

Challenges

- Challenge 1: Computational complexity
 - Hard to compute Nash equilibrium strategies
- Challenge 2: Unknown human reward function
 - Human reward function r_H is unknown

Roadmap

- Problem formulation
- Background on human interactive control
- Background on shielding
- Our algorithm
- Theoretical guarantees
- Experiments

Prior Work (Sadigh et al. 2016)

- Challenge 1: Computational complexity
 - Re-formulate as Stackelberg game
- Challenge 2: Unknown human reward function
 - Use inverse reinforcement learning to infer human reward function

Computational Complexity

Stackelberg Game

- Agents play sequentially (not simultaneously)
- Dynamics $x_{t+1} = f_H(f_R(x_t, u_{R,t}), u_{H,t})$

Solution strategy

- Finite state, finite horizon
- Then, we can use backward induction:

$$u_{R,t}^{*}(x) = \arg \max_{u_{R}} \left\{ r_{R}(x) + J_{R,t+1}^{*} \left(f_{H} \left(f_{R}(x, u_{R}), u_{H,t}^{*} \left(f_{R}(x, u_{R}) \right) \right) \right) \right\}$$
$$J_{R,t}^{*}(x) = \max_{u_{R}} \left\{ r_{R}(x) + J_{R,t+1}^{*} \left(f_{H} \left(f_{R}(x, u_{R}), u_{H,t}^{*} \left(f_{R}(x, u_{R}) \right) \right) \right) \right\}$$

- Here, $u_{R,t}^*(x)$ is the optimal policy and $J_{R,t}^*(x)$ is the value function
- Computes a subgame-perfect Nash equilibrium

Solution strategy

- Finite state, finite horizon
- Then, we can use backward induction:

$$u_{H,t}^{*}(x) = \arg \max_{u_{H}} \left\{ r_{H}(x) + J_{H,t+1}^{*} \left(f_{R} \left(f_{H}(x, u_{H}), u_{R,t+1}^{*} \left(f_{H}(x, u_{H}) \right) \right) \right) \right\}$$
$$J_{H,t}^{*}(x) = \max_{u_{H}} \left\{ r_{H}(x) + J_{H,t+1}^{*} \left(f_{R} \left(f_{H}(x, u_{H}), u_{R,t+1}^{*} \left(f_{H}(x, u_{H}) \right) \right) \right) \right\}$$

- Here, $u_{H,t}^*(x)$ is the optimal policy and $J_{H,t}^*(x)$ is the value function
- Computes a subgame-perfect Nash equilibrium

Solution strategy

- Continuous state, finite horizon (MPC)
- Optimize $u_{R,t}^*$ using gradient descent
- Compute derivative of arg-max using implicit differentiation

Human Reward Function

Inverse Reinforcement Learning

• Given demonstrations of the human's behavior, choose the reward function that best "describes" the human behavior:

 $\hat{r}_H = \arg \max_r L(\pi(r); D)$

• Here, $\pi(r)$ is the optimal policy if the reward function is r, D is the observed dataset of human state-action pairs, and L is a loss function

Human Reward Function Inference

- Gather demonstrations of human behavior
- Use off-the-shelf inverse reinforcement learning algorithms to estimate r_H

Shortcomings

• Challenge 1: Computational complexity

- Formulate as Stackelberg game
- Susceptible to local minima, so not guaranteed to be a Nash equilibrium
- Challenge 2: Unknown human reward function
 - Use inverse reinforcement learning to infer human reward function
 - No guarantee that inferred reward function is correct

Our Goal

Design a robot controller that

- Guarantees safety
- Best attempt to reach goal (but no guarantees)

Assumptions

- Necessary to make some assumptions about human reward function
- Goal is to minimize the required assumptions

Roadmap

- Problem formulation
- Background on human interactive control
- Background on shielding
- Our algorithm
- Theoretical guarantees
- Experiments

Shielding

• Untrustworthy Policy $\widehat{\pi}$

- Achieves good performance
- May be unsafe
- Backup Policy $\pi_{
 m backup}$
 - May perform poorly
 - Can safely bring the system to a stop from $x \in \mathcal{X}_{rec} \subseteq \mathcal{X}_{safe}$
 - Say *x* is **recoverable**

Strategy

- **Safety:** Override $\hat{\pi}$ using π_{backup} to guarantee safety
- Goal-reaching: Minimally override $\hat{\pi}$ to ensure performance (no guarantees)

Recoverability

We have $x \in \mathcal{X}_{rec}$ if π_{backup} safely brings the robot to a stop (v = 0)

Shielding Algorithm

- Algorithm
 - Use $\hat{\pi}$ if $\hat{x}_{t+1} = f(x_t, \hat{\pi}(x_t)) \in \mathcal{X}_{rec}$
 - Use π_{backup} otherwise
- Theorem: This algorithm maintains the invariant

$$x_t \in \mathcal{X}_{\mathrm{rec}} \Rightarrow x_{t+1} \in \mathcal{X}_{\mathrm{rec}}$$

- Proof
 - Case 1: It uses $\hat{\pi}$; then, the result follows by the condition
 - Case 2: It uses π_{backup} ; then, it follows since $x_t \in \mathcal{X}_{\text{rec}}$ implies that using π_{backup} is safe, so $x_{t+1} = f(x_t, \pi_{\text{backup}}(x_t))$ must also be recoverable

Model Predictive Shielding

- Challenge: X_{rec} is often hard to compute in closed form
- Key idea: We can check $x \in \mathcal{X}_{rec}$ using model-based simulation

Checking Recoverability

Simulation to see if $\hat{x}_{t+1} \in \mathcal{X}_{rec}$

Checking Recoverability

Simulation to see if $\hat{x}_{t+1} \in \mathcal{X}_{rec}$

Model Predictive Shielding

Roadmap

- Problem formulation
- Background on human interactive control
- Background on shielding

• Our algorithm

- Theoretical guarantees
- Experiments

Our Approach

High-level strategy

- Do not try to compute a Nash Equilibrium solution
- Instead, act conservatively with respect to rational human

• Key idea

- Assume human prioritizes safety
- We only need to prove that the human **can** maintain safety
- Then, rationality implies that the human **does** maintain safety

Simplified Human Model

Simplified Stackelberg Game

• Assume that human plays conservatively with respect to possible future robot actions $\vec{u}_R \subseteq \hat{U}_R$:

$$\vec{u}_{R}^{*} = \arg \max_{\vec{u}_{R}} J_{R} \left(x; \vec{u}_{R}, \vec{u}_{H}^{*} (\vec{u}_{R,1}) \right)$$
$$\vec{u}_{H}^{*} (u_{R,1}) = \arg \max_{\vec{u}_{H}} \min_{\vec{u}_{R,2:T}} J_{H} (x; u_{R,1} \circ \vec{u}_{R,2:T}, \vec{u}_{H})$$

- Intuition: Reduces problem to 1-step Stackelberg game
- Justification: Human cannot anticipate exactly what the robot is going to do, so they must act conservatively

Assumptions on Human Objective

- Human policy: $\vec{u}_H^*(u_{R,1}) = \arg \max_{\vec{u}_H} \min_{\vec{u}_{R,2:T}} J_H(x; u_{R,1} \circ \vec{u}_{R,2:T}, \vec{u}_H)$
- Assumption 1: Human rewards for unsafety
 - We have $r_H(x_t, u_{H,t}) = -\infty$ if $x_t \notin \mathcal{X}_{safe}$
- Assumption 2: Human predicted robot backup action
 - We are given a **robot backup action** \hat{u}_R that the robot can use to come to a stop
 - The human acts conservatively with respect to this action
- Assumption 3: Human backup actions
 - We are given human backup actions $\hat{\mathcal{U}}_H$ that the human can use to come to a stop
 - If the human's objective value is $-\infty$, then they use some action $u_H \in \hat{\mathcal{U}}_H$

Assumptions on Human Objective

Algorithm Overview

- Human model
 - $\vec{u}_H^* = \arg \max_{\vec{u}_H} \min_{\vec{u}_{R,2:T}} J_H(x; u_{R,1} \circ \vec{u}_{R,2:T}, \vec{u}_H)$

Recoverability

- Say x is **recoverable** if using \hat{u}_R from x safely brings the system to a stop
- Depends on the unknown human policy
- Algorithm
 - Say x is **recoverable** if the system safely comes to a stop for $\vec{u}_{R,2:T} = \vec{\hat{u}}_R$ and for all $\vec{u}_H \subseteq \hat{\mathcal{U}}_H$

Algorithm Overview

- Human model
 - $\vec{u}_H^* = \arg \max_{\vec{u}_H} \min_{\vec{u}_{R,2:T}} J_H(x; u_{R,1} \circ \vec{u}_{R,2:T}, \vec{u}_H)$

• Recoverability

- Say x is **recoverable** if using \hat{u}_R from x safely brings the system to a stop
- Depends on the unknown human policy
- Algorithm
 - Say x is **recoverable** if the system safely comes to a stop for $\vec{u}_{R,2:T} = \vec{\hat{u}}_R$ and for all $\vec{u}_H \subseteq \hat{\mathcal{U}}_H$
 - The human may not take such a \vec{u}_H , but then they take an action \vec{u}'_H that is **better** than \vec{u}_H

Algorithm

- Step 1: Compute the human backup region that the human can reach using $u_H \in \hat{U}_H$
 - It is **not a reachable set**; the human may drive outside of it
- Step 2: Compute the robot backup trajectory that the robot takes using $\hat{\pi}$ for one step followed by \hat{u}_R
- Step 3: Use $\hat{\pi}$ if these do not overlap, and \hat{u}_R otherwise

Algorithm

- Step 1: Compute the human backup region that the human can reach using $u_H \in \hat{U}_H$
 - It is **not a reachable set**; the human may drive outside of it
- Step 2: Compute the robot backup trajectory that the robot takes using $\hat{\pi}$ for one step followed by \hat{u}_R
- Step 3: Use $\hat{\pi}$ if these do not overlap, and \hat{u}_R otherwise

Step 1 & 2: Robot/Human Backup Regions

• Goal

• Compute reachable set under robot backup action \hat{u}_R and human backup actions $\hat{\mathcal{U}}_H$

Algorithm

• Given $F_{\delta}: 2^{\mathcal{X}} \times 2^{\mathcal{U}_{\delta}} \to 2^{\mathcal{X}}$ for $\delta \in \{R, H\}$ s.t.

 $\{f_{\delta}(x,u) \mid x \in X, u \in U\} \subseteq F_{\delta}(X,U)$

• Compute

$$X_{2} = F_{H}(F_{R}(\{x\},\{\hat{\pi}(x)\}),\hat{\mathcal{U}}_{H}))$$

$$X_{t+1} = F_{H}(F_{R}(X_{t},\{\hat{\mathcal{U}}_{R}\}),\hat{\mathcal{U}}_{H})$$

Step 1 & 2: Robot/Human Backup Regions

• Goal

• Compute reachable set under robot backup action \hat{u}_R and human backup actions $\hat{\mathcal{U}}_H$

Algorithm

• Given $F_{\delta}: 2^{\mathcal{X}} \times 2^{\mathcal{U}_{\delta}} \to 2^{\mathcal{X}}$ for $\delta \in \{R, H\}$ s.t.

 $\{f_{\delta}(x,u) \mid x \in X, u \in U\} \subseteq F_{\delta}(X,U)$

• Compute

$$X_{2} = F_{H}(F_{R}(\{x\},\{\hat{\pi}(x)\}),\hat{\mathcal{U}}_{H}))$$

$$X_{t+1} = F_{H}(F_{R}(X_{t},\{\hat{\mathcal{U}}_{R}\}),\hat{\mathcal{U}}_{H})$$

Step 1 & 2: Robot/Human Backup Regions

• Goal

• Compute reachable set under robot backup action \hat{u}_R and human backup actions $\hat{\mathcal{U}}_H$

Algorithm

• Given $F_{\delta}: 2^{\mathcal{X}} \times 2^{\mathcal{U}_{\delta}} \to 2^{\mathcal{X}}$ for $\delta \in \{R, H\}$ s.t.

 $\{f_{\delta}(x,u) \mid x \in X, u \in U\} \subseteq F_{\delta}(X,U)$

• Compute

$$X_{2} = F_{H}(F_{R}(\{x\},\{\hat{\pi}(x)\}),\hat{\mathcal{U}}_{H}))$$

$$X_{t+1} = F_{H}(F_{R}(X_{t},\{\hat{\mathcal{U}}_{R}\}),\hat{\mathcal{U}}_{H})$$

Step 3: Robot/Human Backup Regions

• Goal

- Check safety
- Check if the system comes to a stop

Algorithm

- Check $X_t \subseteq \mathcal{X}_{safe}$ (for all t)
- Check $X_T \subseteq \mathcal{X}_{eq}$

Step 3: Robot/Human Backup Regions

• Goal

- Check safety
- Check if the system comes to a stop

Algorithm

- Check $X_t \subseteq \mathcal{X}_{safe}$ (for all t)
- Check $X_T \subseteq \mathcal{X}_{eq}$

Roadmap

- Problem formulation
- Background on human interactive control
- Background on shielding
- Our algorithm
- Theoretical guarantees
- Experiments

Theoretical Guarantee

Assumptions

- Our model of human behavior holds
- Assumptions 1, 2, & 3
- The human and robot are at rest at x_1 (i.e., $x_1 \in \mathcal{X}_{eq}$)

Theorem

• Our algorithm ensures $x_t \in \mathcal{X}_{safe}$ for all t

• Proof

- Prove by induction that $x_t \in \mathcal{X}_{rec} \subseteq \mathcal{X}_{safe}$
- Case 1: Robot uses $\hat{\pi}$
- Case 2: Robot uses $\pi_{\text{backup}}(x) = \hat{u}_R$

Case 1: Robot uses $\hat{\pi}$

Human model

- $\vec{u}_H^*(\vec{u}_{R,2:T}) = \arg \max_{\vec{u}_H} \tilde{J}_H(x; u_{R,1}, \vec{u}_H)$
- $\tilde{J}_H(x; u_{R,1}, \vec{u}_H) = \min_{\vec{u}_{R,2:T}} J_H(x; u_{R,1} \circ \vec{u}_{R,2:T}, \vec{u}_H)$
- **Proof that** $x_t \in \mathcal{X}_{rec} \Rightarrow x_{t+1} \in \mathcal{X}_{rec}$
 - Since the robot uses $\hat{\pi}$, the human backup region and the robot backup trajectory do not overlap
 - If $\tilde{J}_H(x; u_{R,1}, \vec{u}_H) > -\infty$, then the human action is safe for $\vec{u}_{R,2:T}$ (Assumption 1), which includes \vec{u}_R (Assumption 2)

Case 1: Robot uses $\hat{\pi}$

Human model

- $\vec{u}_H^*(\vec{u}_{R,2:T}) = \arg \max_{\vec{u}_H} \tilde{J}_H(x; u_{R,1}, \vec{u}_H)$
- $\tilde{J}_H(x; u_{R,1}, \vec{u}_H) = \min_{\vec{u}_{R,2:T}} J_H(x; u_{R,1} \circ \vec{u}_{R,2:T}, \vec{u}_H)$
- **Proof that** $x_t \in \mathcal{X}_{rec} \Rightarrow x_{t+1} \in \mathcal{X}_{rec}$
 - Since the robot uses $\hat{\pi}$, the human backup region and the robot backup trajectory do not overlap
 - If $\tilde{J}_H(x; u_{R,1}, \vec{u}_H) > -\infty$, then the human action is safe for $\vec{u}_{R,2:T}$ (Assumption 1), which includes \vec{u}_R (Assumption 2)
 - If $\tilde{J}_H(x; u_{R,1}, \vec{u}_H) = -\infty$, then the human takes an action $u_{H,1} \in \hat{\mathcal{U}}_H$ (Assumption 3), which is safe

Case 2: Robot uses π_{backup}

- **Proof that** $x_t \in \mathcal{X}_{rec} \Rightarrow x_{t+1} \in \mathcal{X}_{rec}$
 - The human backup region and the robot backup trajectory may overlap
 - However, by definition of $x_t \in \mathcal{X}_{rec}$, using π_{backup} from x_t safely brings the system to a stop
 - Since we used π_{backup} , the same must be true of x_{t+1}

Roadmap

- Problem formulation
- Background on human interactive control
- Background on shielding
- Our algorithm
- Theoretical guarantees
- Experiments

Experimental Setup

Environment

- Cars with bicycle dynamics
- Control input is acceleration and steering angle
- Several different driving tasks

• Robot

- Our approach (MPS) + Aggressive controller that drives straight to goal
- Model predictive control (MPC) baseline

• Humans

- Simulated humans (social forces model)
- Real humans interacting with the simulation via keyboard

MPS Parameters

- Robot backup action \widehat{u}_R
 - Brake at a given deceleration $a = -a_R$
 - Steering angle $\phi = 0$
- Human backup actions \widehat{U}_H
 - Brake at a deceleration $a \in [-a_H, -a'_H]$
 - Steering angle $\phi \in [-\phi_H, \phi_H]$

Our Approach + Simulated Humans

Shielded aggressive controller cuts in front of the human leveraging the fact that a responsible human driver will slightly brake

Our Approach + Simulated Humans

The robot triggers the shield to brake and allow the human to pass safely

Our Approach + Real Humans

Shielded aggressive controller cuts in front of the human leveraging the fact that a responsible human driver will slightly brake

Our Approach + Real Humans

The robot triggers the shield to brake and allow the human to pass safely

MPC + Simulated Humans

MPC control takes **longer** than the shielded aggressive control

Our Approach + Real Humans with an Accident

The human acted aggressively and collided with the stationary robot

No Stopping in Intersection

Old shielded controller **without** the no-stop-at-intersection constraint stops at the intersection, which leads to congestion

No Stopping in Intersection

New shielded controller **with** the no-stop-at-intersection constraint stops **before** the intersection

Pull-Over Backup Action

Instead of stopping in the middle of the highway, the robot pulls over to the next lane as a backup policy

Conclusion

Safe human-interactive control

- Game theoretic model of human behavior
- Model predictive shielding + abstract interpretation to ensure safety