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Human-Robot Interaction

• Robots are increasingly being deployed in settings where they must 
interact with humans
• Both cooperative and non-cooperative (not necessarily zero-sum!)

Park et al. Intention-Aware Motion Planning Using 
Learning Based Human Motion Prediction. RSS 2017



Human-Robot Interaction

• Key question: How to model the human?

• General solution: Two-player dynamic game



robot

human

Human-Robot Interaction

(Actual) human and robot negotiate who passes first at an intersection
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Game Theoretical Formulation

• Two-player dynamic game
• Dynamics 𝑥!"# = 𝑓 𝑥!, 𝑢$,!, 𝑢&,!
• Agent 𝛿 ∈ {𝑅,𝐻} has utility

𝐽! 𝑥; 𝑢" , 𝑢# ='
$%&

'

𝑟! 𝑥$ , 𝑢!,$

• Human strategy
• Nash equilibrium action sequence



Control Problem

• Robot control
• Construct a robot controller 𝑢$,! = 𝜋$ 𝑥!

• Goal reaching
• Goal region 𝒳'()*
• Reach 𝑥! ∈ 𝒳'()* for some 𝑡

• Safety
• Safe region 𝒳+),-
• Ensure 𝑥! ∈ 𝒳+),- for all 𝑡 ∈ 1,… , 𝑇



Challenges

• Challenge 1: Computational complexity
• Hard to compute Nash equilibrium strategies

• Challenge 2: Unknown human reward function
• Human reward function 𝑟& is unknown



Roadmap

• Problem formulation
• Background on human interactive control
• Background on shielding
• Our algorithm
• Theoretical guarantees
• Experiments



Prior Work (Sadigh et al. 2016)

• Challenge 1: Computational complexity
• Re-formulate as Stackelberg game

• Challenge 2: Unknown human reward function
• Use inverse reinforcement learning to infer human reward function

Sadigh, Sastry, Seshia, Dragan, Planning for Autonomous Cars that Leverage Effects on Human Actions. RSS, 2016.



Computational Complexity

• Stackelberg Game
• Agents play sequentially (not simultaneously)
• Dynamics 𝑥!"# = 𝑓& 𝑓$ 𝑥!, 𝑢$,! , 𝑢&,!

Sadigh, Sastry, Seshia, Dragan, Planning for Autonomous Cars that Leverage Effects on Human Actions. RSS, 2016.
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Stackelberg Game

• Solution strategy
• Finite state, finite horizon
• Then, we can use backward induction:

𝑢$,!∗ 𝑥 = arg max/! 𝑟$ 𝑥 + 𝐽$,!"#∗ 𝑓& 𝑓$ 𝑥, 𝑢$ , 𝑢&,!∗ 𝑓$ 𝑥, 𝑢$

𝐽$,!∗ 𝑥 = max/! 𝑟$ 𝑥 + 𝐽$,!"#∗ 𝑓& 𝑓$ 𝑥, 𝑢$ , 𝑢&,!∗ 𝑓$ 𝑥, 𝑢$

• Here, 𝑢$,!∗ 𝑥 is the optimal policy and 𝐽$,!∗ 𝑥 is the value function
• Computes a subgame-perfect Nash equilibrium

Sadigh, Sastry, Seshia, Dragan, Planning for Autonomous Cars that Leverage Effects on Human Actions. RSS, 2016.
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Stackelberg Game

• Solution strategy
• Continuous state, finite horizon (MPC)
• Optimize 𝑢$,!∗ using gradient descent
• Compute derivative of arg-max using implicit differentiation

Sadigh, Sastry, Seshia, Dragan, Planning for Autonomous Cars that Leverage Effects on Human Actions. RSS, 2016.



Human Reward Function

• Inverse Reinforcement Learning
• Given demonstrations of the human’s behavior, choose the reward function 

that best “describes” the human behavior:

�̂�# = arg max) 𝐿 𝜋 𝑟 ; 𝐷

• Here, 𝜋 𝑟 is the optimal policy if the reward function is 𝑟, 𝐷 is the observed 
dataset of human state-action pairs, and 𝐿 is a loss function

• Human Reward Function Inference
• Gather demonstrations of human behavior
• Use off-the-shelf inverse reinforcement learning algorithms to estimate 𝑟&

Sadigh, Sastry, Seshia, Dragan, Planning for Autonomous Cars that Leverage Effects on Human Actions. RSS, 2016.



Shortcomings

• Challenge 1: Computational complexity
• Formulate as Stackelberg game
• Susceptible to local minima, so not guaranteed to be a Nash equilibrium

• Challenge 2: Unknown human reward function
• Use inverse reinforcement learning to infer human reward function
• No guarantee that inferred reward function is correct

Sadigh, Sastry, Seshia, Dragan, Planning for Autonomous Cars that Leverage Effects on Human Actions. RSS, 2016.



Our Goal

• Design a robot controller that
• Guarantees safety
• Best attempt to reach goal (but no guarantees)

• Assumptions
• Necessary to make some assumptions about human reward function
• Goal is to minimize the required assumptions
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Shielding

• Untrustworthy Policy 2𝝅
• Achieves good performance
• May be unsafe

• Backup Policy 𝝅𝐛𝐚𝐜𝐤𝐮𝐩
• May perform poorly
• Can safely bring the system to a stop from 𝑥 ∈ 𝒳0-1 ⊆ 𝒳+),-
• Say 𝑥 is recoverable

• Strategy
• Safety: Override =𝜋 using 𝜋2)1345 to guarantee safety
• Goal-reaching: Minimally override =𝜋 to ensure performance (no guarantees)



Obstacle

Recoverability

𝜋!"#$%&

𝜋!"#$%&

𝑣 = 0

We have 𝑥 ∈ 𝒳!"# if 𝜋$%#&'( safely brings the robot to a stop (𝑣 = 0)

𝑥



Shielding Algorithm

• Algorithm
• Use =𝜋 if =𝑥!"# = 𝑓 𝑥!, =𝜋 𝑥! ∈ 𝒳0-1
• Use 𝜋2)1345 otherwise

• Theorem: This algorithm maintains the invariant

𝑥$ ∈ 𝒳456 ⇒ 𝑥$7& ∈ 𝒳456

• Proof
• Case 1: It uses =𝜋; then, the result follows by the condition
• Case 2: It uses 𝜋2)1345; then, it follows since 𝑥! ∈ 𝒳0-1 implies that using 
𝜋2)1345 is safe, so 𝑥!"# = 𝑓 𝑥!, 𝜋2)1345 𝑥! must also be recoverable



Model Predictive Shielding

• Challenge: 𝒳456 is often hard to compute in closed form

• Key idea: We can check 𝑥 ∈ 𝒳456 using model-based simulation

Li & Bastani 2020, Bastani 2021



Obstacle

Simulation to see if (𝑥)*+ ∈ 𝒳!"#

Checking Recoverability

7𝜋

𝜋!"#$%&

𝜋!"#$%&

𝑣 = 0

𝑥!

8𝑥!"#

=𝑥!"# ∈ 𝒳0-1



Obstacle

Checking Recoverability

7𝜋

𝜋!"#$%&

Simulation to see if (𝑥)*+ ∈ 𝒳!"#

𝑥!

8𝑥!"#

=𝑥!"# ∉ 𝒳0-1



if !𝑥)*+ ∈ 𝒳,-. then use !𝜋

if !𝑥)*+ ∉ 𝒳,-. then use 𝜋/0.123

Model Predictive Shielding
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Our Approach

• High-level strategy
• Do not try to compute a Nash Equilibrium solution
• Instead, act conservatively with respect to rational human

• Key idea
• Assume human prioritizes safety
• We only need to prove that the human can maintain safety
• Then, rationality implies that the human does maintain safety



Simplified Human Model

• Simplified Stackelberg Game
• Assume that human plays conservatively with respect to possible future robot 

actions 𝑢$ ⊆ ?𝒰$:

𝑢"∗ = arg max:! 𝐽" 𝑥; 𝑢" , 𝑢#∗ 𝑢",&

𝑢#∗ 𝑢",& = arg max:"min:!,$:& 𝐽# 𝑥; 𝑢",& ∘ 𝑢",;:' , 𝑢#

• Intuition: Reduces problem to 1-step Stackelberg game
• Justification: Human cannot anticipate exactly what the robot is going 

to do, so they must act conservatively



Assumptions on Human Objective

• Human policy: 𝑢#∗ 𝑢",& = arg max:"min:!,$:& 𝐽# 𝑥; 𝑢",& ∘ 𝑢",;:' , 𝑢#

• Assumption 1: Human rewards for unsafety
• We have 𝑟& 𝑥!, 𝑢&,! = −∞ if 𝑥! ∉ 𝒳+),-

• Assumption 2: Human predicted robot backup action
• We are given a robot backup action =𝑢$ that the robot can use to come to a stop
• The human acts conservatively with respect to this action

• Assumption 3: Human backup actions
• We are given human backup actions ?𝒰& that the human can use to come to a stop
• If the human’s objective value is −∞, then they use some action 𝑢& ∈ ?𝒰&



Assumptions on Human Objective

:𝒰#

<𝑢"



Algorithm Overview

• Human model
• 𝑢&∗ = arg max/" min/!,$:& 𝐽& 𝑥; 𝑢$,# ∘ 𝑢$,8::, 𝑢&

• Recoverability
• Say 𝑥 is recoverable if using =𝑢$ from 𝑥 safely brings 

the system to a stop
• Depends on the unknown human policy

• Algorithm
• Say 𝑥 is recoverable if the system safely comes to a 

stop for 𝑢$,8:: = =𝑢$ and for all 𝑢& ⊆ ?𝒰&
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• Recoverability
• Say 𝑥 is recoverable if using =𝑢$ from 𝑥 safely brings 

the system to a stop
• Depends on the unknown human policy

• Algorithm
• Say 𝑥 is recoverable if the system safely comes to a 

stop for 𝑢$,8:: = =𝑢$ and for all 𝑢& ⊆ ?𝒰&
• The human may not take such a 𝑢&, but then they 

take an action 𝑢&; that is better than 𝑢&



Algorithm

• Step 1: Compute the human 
backup region that the human can 
reach using 𝑢# ∈ :𝒰#
• It is not a reachable set; the human 

may drive outside of it

• Step 2: Compute the robot backup 
trajectory that the robot takes 
using <𝜋 for one step followed by <𝑢"

• Step 3: Use <𝜋 if these do not 
overlap, and <𝑢" otherwise
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Step 1 & 2: Robot/Human Backup Regions

• Goal
• Compute reachable set under robot backup 

action =𝑢$ and human backup actions ?𝒰&

• Algorithm
• Given 𝐹<: 2𝒳×2𝒰' → 2𝒳 for 𝛿 ∈ 𝑅,𝐻 s.t.

𝑓! 𝑥, 𝑢 𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈 ⊆ 𝐹! 𝑋,𝑈

• Compute

𝑋; = 𝐹# 𝐹" 𝑥 , <𝜋 𝑥 , :𝒰#
𝑋$7& = 𝐹# 𝐹" 𝑋$ , <𝑢" , :𝒰#

<𝜋

:𝒰#
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Step 3: Robot/Human Backup Regions

• Goal
• Check safety
• Check if the system comes to a stop

• Algorithm
• Check 𝑋! ⊆ 𝒳+),- (for all 𝑡) 
• Check 𝑋: ⊆ 𝒳-?
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Theoretical Guarantee

• Assumptions
• Our model of human behavior holds
• Assumptions 1, 2, & 3
• The human and robot are at rest at 𝑥# (i.e., 𝑥# ∈ 𝒳-?)

• Theorem
• Our algorithm ensures 𝑥! ∈ 𝒳+),- for all 𝑡

• Proof
• Prove by induction that 𝑥! ∈ 𝒳0-1 ⊆ 𝒳+),-
• Case 1: Robot uses =𝜋
• Case 2: Robot uses 𝜋2)1345 𝑥 = =𝑢$



Case 1: Robot uses !𝜋

• Human model
• 𝑢&∗ 𝑢$,8:: = arg max/" M𝐽& 𝑥; 𝑢$,#, 𝑢&
• M𝐽& 𝑥; 𝑢$,#, 𝑢& = min/!,$:& 𝐽& 𝑥; 𝑢$,# ∘ 𝑢$,8::, 𝑢&

• Proof that 𝑥$ ∈ 𝒳456 ⇒ 𝑥$7& ∈ 𝒳456
• Since the robot uses =𝜋, the human backup region and the 

robot backup trajectory do not overlap
• If M𝐽& 𝑥; 𝑢$,#, 𝑢& > −∞, then the human action is safe for 
𝑢$,8:: (Assumption 1), which includes =𝑢$ (Assumption 2)



Case 1: Robot uses !𝜋

• Human model
• 𝑢&∗ 𝑢$,8:: = arg max/" M𝐽& 𝑥; 𝑢$,#, 𝑢&
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• Since the robot uses =𝜋, the human backup region and the 

robot backup trajectory do not overlap
• If M𝐽& 𝑥; 𝑢$,#, 𝑢& > −∞, then the human action is safe for 
𝑢$,8:: (Assumption 1), which includes =𝑢$ (Assumption 2)
• If M𝐽& 𝑥; 𝑢$,#, 𝑢& = −∞, then the human takes an action 
𝑢&,# ∈ ?𝒰& (Assumption 3), which is safe



Case 2: Robot uses 𝜋/0.123
• Proof that 𝑥$ ∈ 𝒳456 ⇒ 𝑥$7& ∈ 𝒳456
• The human backup region and the robot backup trajectory 

may overlap
• However, by definition of 𝑥! ∈ 𝒳0-1, using 𝜋2)1345 from 𝑥!

safely brings the system to a stop
• Since we used 𝜋2)1345, the same must be true of 𝑥!"#
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Experimental Setup

• Environment
• Cars with bicycle dynamics
• Control input is acceleration and steering angle
• Several different driving tasks

• Robot
• Our approach (MPS) + Aggressive controller that drives straight to goal
• Model predictive control (MPC) baseline

• Humans
• Simulated humans (social forces model)
• Real humans interacting with the simulation via keyboard



MPS Parameters

• Robot backup action 2𝒖𝑹
• Brake at a given deceleration 𝑎 = −𝑎$
• Steering angle 𝜙 = 0

• Human backup actions C𝓤𝑯
• Brake at a deceleration 𝑎 ∈ −𝑎&, −𝑎&;

• Steering angle 𝜙 ∈ −𝜙&, 𝜙&



Shielded aggressive controller cuts in front of the human leveraging 
the fact that a responsible human driver will slightly brake

robot

human

Our Approach + Simulated Humans



The robot triggers the shield to brake and allow the human to pass safely 

Our Approach + Simulated Humans
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Shielded aggressive controller cuts in front of the human leveraging 
the fact that a responsible human driver will slightly brake

Our Approach + Real Humans



robot

human

The robot triggers the shield to brake and allow the human to pass safely 

Our Approach + Real Humans



MPC + Simulated Humans

MPC control takes longer than the shielded aggressive control 

robot

human



The human acted aggressively and collided with the stationary robot

robot

human

Our Approach + Real Humans with an Accident



No Stopping in Intersection

robot

human

Old shielded controller without the no-stop-at-intersection constraint 
stops at the intersection, which leads to congestion 



No Stopping in Intersection

New shielded controller with the no-stop-at-intersection constraint 
stops before the intersection 

robot

human



Pull-Over Backup Action

robot

human

Instead of stopping in the middle of the highway, the robot pulls over to 
the next lane as a backup policy



Conclusion

• Safe human-interactive control
• Game theoretic model of human behavior
• Model predictive shielding + abstract interpretation to ensure safety


