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Two Views of the World

Work on distributed computing and on cryptography has assumed
> agents are either “good” or “bad”
» good agents follow the protocol
» bad agents do all they can to subvert it

Motivation: the system designer writes a protocol, but some
computers might be flaky, and not do what they're supposed to.
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Two Views of the World

Work on distributed computing and on cryptography has assumed
> agents are either “good” or “bad”
» good agents follow the protocol
» bad agents do all they can to subvert it
Motivation: the system designer writes a protocol, but some
computers might be flaky, and not do what they're supposed to.
Game theory assumes
> all agents are rational
> they try to maximize their utility

Both views make sense in different contexts; we want to combine
them.
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Thread 1: Fault Tolerance

Byzantine Agreement is a paradigmatic problem in distributed
computing:

There are n soldiers; up to ¢t may be faulty.

» n and ¢ are common knowledge
Each soldier starts with an initial preference (1-attack; O-retreat).
Want an algorithm that (if followed by all the nonfaulty soldiers)
guarantees:

> All nonfaulty soldiers do the same thing at the same time.

> If all the soldiers are nonfaulty and their initial preferences are

identical, that is what they do.



Byzantine Agreement: Results

Typical results:

>

With Byzantine failures (soldiers can lie and cheat),
agreement is possible iff 3t < n.

With crash failures, agreement is always possible.

With Byzantine failures and cryptography (messages can be
signed with unforgeable signatures), agreement is always
possible.

Agreement (when possible) reachable in ¢ + 1 rounds.

t + 1 rounds required, even if no soldiers are actually faulty, all
start with the same initial preference, and only crash failures
possible.

Byzantine agreement is a game between two teams of unknown
composition.
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Thread 2: Multiparty Computation

Multiparty computation [Yao '82; Goldreich-Micali-Wigderson '87]:
a paradigmatic problem of cryptography.

» Each agent has a secret input.

» Goal: to compute some function of that input, without
revealing any information other than the function’s output.

» Just as if a trusted mediator had computed the function

Example: secret input is salary, the function computes highest
salary.

There are protocols for multiparty computation, assuming that less
than 1/2 or 1/3 (depending on underlying assumptions) of the
agents are bad.
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Mediators

Consider an auction where people do not want to bid publicly
» public bidding reveals useful information

» don't want to do this in bidding for, e.g., oil drilling rights

If there were a mediator (trusted third party), we'd be all set ...
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Mediators

Consider an auction where people do not want to bid publicly

» public bidding reveals useful information

» don't want to do this in bidding for, e.g., oil drilling rights
If there were a mediator (trusted third party), we'd be all set ...

» Byzantine agreement can be solved easily with a mediator if
n > 2t:
» Each player tells the mediator his preference.
» The mediator chooses the majority preference.
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Thread 3: Implementing Mediators

Implementing mediators is a paradigmatic problem in game theory
[Forges 1988/90, Myerson 1986, ...]:

» If a Nash equilibrium (NE) can be achieved with the help of a
mediator, can it be achieved using cheap talk (i.e., with
players just talking to each other)?

» This is almost identical to multiparty communication except:

» empbhasis is on rational players rather than faulty players
> no concerns about privacy

» But the solutions provide it

The rest of this talk: combining the threads ...



k-Resilient Equilibria

NE tolerates deviations by one player.

> It's consistent with NE that 2 players could do better by
deviating.
An equilibrium is k-resilient if no group of size k can gain by
deviating (in a coordinated way).
Example: n > 1 players must play either 0 or 1.
> if everyone plays 0, everyone gets 1
> if exactly two players play 1, they get 2; the rest get 0.
> otherwise; everyone gets 0.

Everyone playing 0 is a NE, but not 2-resilient.
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Nash equilibrium = 1-resilient equilibrium.
In general, k-resilient equilibria do not exist if k£ > 1.
Aumann [1959] already considers resilient equilibria.

But resilience does not give us all the robustness we need in
large systems.
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“Irrational” Players

Some agents don't seem to respond to incentives, perhaps because
> their utilities are not what we thought they were
> they are irrational
> they have faulty computers

Apparently “irrational” behavior is not uncommon:

» People share on Gnutella and Kazaa, seed on BitTorrent
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Example:

Consider a group of n bargaining agents.
> If they all stay and bargain, then all get 2.
» Anyone who goes home gets 1.
» Anyone who stays gets 0 if not everyone stays.

Everyone staying is a k-resilient Nash equilibrium for all k£ < n, but
not immune to one “irrational” player going home.

» People certainly take such possibilities into account!
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Immunity

A protocol is t-immune if the payoffs of “good” agents are not
affected by the actions of up to t other agents.

» The t agents are like the faulty agents in Byzantine
agreement.
A (k,t)-robust protocol tolerates coalitions of size k and is
t-immune.
» Nash equilibrium = (1,0)-robustness
> In general, (k,t)-robust equilibria don't exist
» they can be obtained with the help of mediators

Can a (k,t)-robust equilibrium obtained with a mediator be
implemented using cheap talk?

12 /21



Typical Results: Upper Bounds

Theorem 1: Suppose that o is a (k,t)-robust protocol using a
mediator. There is a (k,t)-robust implementation of o using cheap
talk

(a) If 3(k +t) < n even if exact utilities are not known;
» protocol runs in bounded time
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mediator. There is a (k,t)-robust implementation of o using cheap
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(a) If 3(k +t) < n even if exact utilities are not known;

» protocol runs in bounded time
(b) If 2k + 3t < n and there is a punishment strategy

» protocol is randomized, has finite expected running time
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(d) If K+t < n, 1-way functions exist, and there is a punishment
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The assumptions being made here are all standard assumptions in
the distributed computing community.
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Typical Results: Upper Bounds

Theorem 1: Suppose that o is a (k,t)-robust protocol using a
mediator. There is a (k,t)-robust implementation of o using cheap

talk

(a) If 3(k +t) < n even if exact utilities are not known;
» protocol runs in bounded time

(b) If 2k + 3t < n and there is a punishment strategy
» protocol is randomized, has finite expected running time

(c) If 2k+2t < n and there is a broadcast channel, with an € error

(d) If K+t < n, 1-way functions exist, and there is a punishment

strategy, with an € error
The assumptions being made here are all standard assumptions in

the distributed computing community.
Key idea: reduce to secret sharing + multiparty computation.

13/21



Matching Lower Bounds

Theorem 2:

(a) If 3(k+t) > n, 3 a (k,t)-robust strategy using a mediator
that cannot be implemented without a mediator without
knowing the utilities/without a punishment strategy/in
bounded time.
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Matching Lower Bounds

Theorem 2:

(a) If 3(k+1t) > n, 3 a (k,t)-robust strategy using a mediator
that cannot be implemented without a mediator without
knowing the utilities/without a punishment strategy/in
bounded time.

(b) If 2k + 3t > n, 3 a (k,t)-robust strategy with a mediator that
cannot be simulated without a mediator, even if there is a
punishment strategy and utilities are known.

(c) H2k+2t>n ...

(d) k+t>n...

Some proofs exploit techniques used in lower bound proofs for

Byzantine agreement.
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Lower Bounds on Running Time

Theorem 3: If 2k + 2¢ > n, then

(a) there is a game I with a (k, t)-robust strategy with a
mediator that cannot be implemented by any deterministic
cheap talk strategy.
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Lower Bounds on Running Time

Theorem 3: If 2k + 2¢ > n, then

(a) there is a game I with a (k, t)-robust strategy with a
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Lower Bounds on Running Time

Theorem 3: If 2k + 2¢ > n, then

()

(b)

there is a game T" with a (k, t)-robust strategy with a
mediator that cannot be implemented by any deterministic
cheap talk strategy.

for all b, there is a game I'y with a (k, t)-robust strategy with
a mediator that cannot be implemented using cheap talk with
expected running time < b.

there is a game I' with a (k, t)-robust strategy with a
mediator such that for all ¢, there exists b. such that we
cannot implement the mediator with € error with a cheap-talk
strategy that runs in < b, steps.
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Asynchronous Systems

All these results assume that systems are synchronous.

» Players communicate with each other, and then all make a
decision in the same round.

» But why should end of cheap talk be common knowledge?

» Asynchrony is a common feature is many real-world
applications
» Markets are asynchronous!
» Blockchain assumes partial synchrony

16
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Implementation in Asynchronous Systems

What does it mean to implement a mediator in asynchronous
systems?
> Issue: the outcome might depend on the scheduler

» What order players are scheduled in

» How long messages take to arrive
We want it to be the case that, for each scheduler in the mediator
game, there is a scheduler that implements the same outcome in
the communication game, and vice versa.
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Implementation in Asynchronous Systems

What does it mean to implement a mediator in asynchronous
systems?
> Issue: the outcome might depend on the scheduler

» What order players are scheduled in

» How long messages take to arrive
We want it to be the case that, for each scheduler in the mediator
game, there is a scheduler that implements the same outcome in
the communication game, and vice versa.

Theorem 4: Suppose that o is a (k,t)-robust protocol using a
mediator. There is a (k,t)-robust implementation of o using cheap
talk

(a) If 4(k 4+ t) < n even if exact utilities are not known;
(b) If 3k + 4t < n and there is a punishment strategy.
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Related Work

Lots of related work on implementation in both CS and game
theory:

» work of Forges + Barany [~1990] gives Theorem 1(a) with
k=1

» work on secure multiparty [BGW88,CCD88] computation
gives Theorem 1(a) for all (k,t)!
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Related Work

Lots of related work on implementation in both CS and game
theory:

>

work of Forges + Barany [=1990] gives Theorem 1(a) with
k=1

work on secure multiparty [BGW88,CCD88| computation
gives Theorem 1(a) for all (k,t)!

Ben-Porath ('03): Theorem 1(b) with £ =1 (no crypto,
known utilities, but does sequential equilibrium)

Heller ('05): extends B-P to all k; proves matching lower
bound

Theorem 3(a) shows that B-P's strategy is incorrect (because
bounded); Heller's has problems too

» B-P has a correction using verifiability, an unimplementable
assumption
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More Related Work

» Lysanskaya-Triandopoulos: Theorem 1(c) for k =1

» Rabin/Ben-Or’s work essentially gives Theorem 1(c) for all
(k1)

» Urbano-Vila ('04) and Dodis-Halevi-Rabin ('00) get Theorem
1d)ifk=1,n=2

» Theorem 3(a) shows UV's strategy is incorrect

» Izmalkov, Micali, Lepinski; Lepinski, Micali, Shelat ('05) prove
stronger implementation results, but require strong primitives
(envelopes and ballot-boxes) that cannot be implemented over
broadcast channels
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Conclusions

> Issues of coalitions and fault-tolerance are critical in
distributed computing, game theory, and cryptography.

» By combining ideas from all three areas we can gain new
insights, and prove interesting new results.
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Conclusions

> Issues of coalitions and fault-tolerance are critical in
distributed computing, game theory, and cryptography.

» By combining ideas from all three areas we can gain new
insights, and prove interesting new results.

Some implications for distributed computing/cryptography:
> We should consider rational players as well as Byzantine
players
» This could lead to new protocols (indeed, it already has)
» We may also want to consider obedient/altruistic players

> In real life, people are often willing to follow instructions,
provided they don't get too badly hurt
» Protocol/mechanism designers should take advantage of that!
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Implications for Game Theory

» Equilibrium notions should be more robust, and take fault
tolerance into account

» Cryptographic techniques can be helpful in achieving
equilibrium
Other ideas from distributed computing/crypography may be
relevant:
» Resource-bounded equilibria

» Synchrony vs. asynchrony
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