
Distributed Computing Meets Game Theory:
Fault Tolerance and Implementation with Cheap Talk

Joe Halpern
Cornell University

Includes joint work with Ittai Abraham, Danny Dolev, Ivan
Geffner, Rica Gonen

1 / 21



Two Views of the World

Work on distributed computing and on cryptography has assumed

I agents are either “good” or “bad”

I good agents follow the protocol

I bad agents do all they can to subvert it

Motivation: the system designer writes a protocol, but some
computers might be flaky, and not do what they’re supposed to.

Game theory assumes

I all agents are rational

I they try to maximize their utility

Both views make sense in different contexts; we want to combine
them.

2 / 21



Two Views of the World

Work on distributed computing and on cryptography has assumed

I agents are either “good” or “bad”

I good agents follow the protocol

I bad agents do all they can to subvert it

Motivation: the system designer writes a protocol, but some
computers might be flaky, and not do what they’re supposed to.

Game theory assumes

I all agents are rational

I they try to maximize their utility

Both views make sense in different contexts; we want to combine
them.

2 / 21



Two Views of the World

Work on distributed computing and on cryptography has assumed

I agents are either “good” or “bad”

I good agents follow the protocol

I bad agents do all they can to subvert it

Motivation: the system designer writes a protocol, but some
computers might be flaky, and not do what they’re supposed to.

Game theory assumes

I all agents are rational

I they try to maximize their utility

Both views make sense in different contexts; we want to combine
them.

2 / 21



Thread 1: Fault Tolerance

Byzantine Agreement is a paradigmatic problem in distributed
computing:

There are n soldiers; up to t may be faulty.

I n and t are common knowledge

Each soldier starts with an initial preference (1–attack; 0–retreat).
Want an algorithm that (if followed by all the nonfaulty soldiers)
guarantees:

I All nonfaulty soldiers do the same thing at the same time.

I If all the soldiers are nonfaulty and their initial preferences are
identical, that is what they do.

3 / 21



Byzantine Agreement: Results

Typical results:

I With Byzantine failures (soldiers can lie and cheat),
agreement is possible iff 3t < n.

I With crash failures, agreement is always possible.

I With Byzantine failures and cryptography (messages can be
signed with unforgeable signatures), agreement is always
possible.

I Agreement (when possible) reachable in t+ 1 rounds.

I t+ 1 rounds required, even if no soldiers are actually faulty, all
start with the same initial preference, and only crash failures
possible.

Byzantine agreement is a game between two teams of unknown
composition.

4 / 21



Thread 2: Multiparty Computation

Multiparty computation [Yao ’82; Goldreich-Micali-Wigderson ’87]:
a paradigmatic problem of cryptography.

I Each agent has a secret input.
I Goal: to compute some function of that input, without

revealing any information other than the function’s output.
I Just as if a trusted mediator had computed the function

Example: secret input is salary, the function computes highest
salary.

There are protocols for multiparty computation, assuming that less
than 1/2 or 1/3 (depending on underlying assumptions) of the
agents are bad.

5 / 21



Mediators

Consider an auction where people do not want to bid publicly

I public bidding reveals useful information

I don’t want to do this in bidding for, e.g., oil drilling rights

If there were a mediator (trusted third party), we’d be all set . . .

I Byzantine agreement can be solved easily with a mediator if
n > 2t:

I Each player tells the mediator his preference.
I The mediator chooses the majority preference.

6 / 21



Mediators

Consider an auction where people do not want to bid publicly

I public bidding reveals useful information

I don’t want to do this in bidding for, e.g., oil drilling rights

If there were a mediator (trusted third party), we’d be all set . . .

I Byzantine agreement can be solved easily with a mediator if
n > 2t:

I Each player tells the mediator his preference.
I The mediator chooses the majority preference.

6 / 21



Thread 3: Implementing Mediators

Implementing mediators is a paradigmatic problem in game theory
[Forges 1988/90, Myerson 1986, . . . ]:

I If a Nash equilibrium (NE) can be achieved with the help of a
mediator, can it be achieved using cheap talk (i.e., with
players just talking to each other)?

I This is almost identical to multiparty communication except:
I emphasis is on rational players rather than faulty players
I no concerns about privacy

I But the solutions provide it

The rest of this talk: combining the threads . . .

7 / 21



k-Resilient Equilibria

NE tolerates deviations by one player.

I It’s consistent with NE that 2 players could do better by
deviating.

An equilibrium is k-resilient if no group of size k can gain by
deviating (in a coordinated way).

Example: n > 1 players must play either 0 or 1.

I if everyone plays 0, everyone gets 1

I if exactly two players play 1, they get 2; the rest get 0.

I otherwise; everyone gets 0.

Everyone playing 0 is a NE, but not 2-resilient.

8 / 21



I Nash equilibrium = 1-resilient equilibrium.

I In general, k-resilient equilibria do not exist if k > 1.

I Aumann [1959] already considers resilient equilibria.

I But resilience does not give us all the robustness we need in
large systems.

9 / 21



“Irrational” Players

Some agents don’t seem to respond to incentives, perhaps because

I their utilities are not what we thought they were

I they are irrational

I they have faulty computers

Apparently “irrational” behavior is not uncommon:

I People share on Gnutella and Kazaa, seed on BitTorrent

10 / 21



Example:

Consider a group of n bargaining agents.

I If they all stay and bargain, then all get 2.

I Anyone who goes home gets 1.

I Anyone who stays gets 0 if not everyone stays.

Everyone staying is a k-resilient Nash equilibrium for all k < n, but
not immune to one “irrational” player going home.

I People certainly take such possibilities into account!

11 / 21



Immunity

A protocol is t-immune if the payoffs of “good” agents are not
affected by the actions of up to t other agents.

I The t agents are like the faulty agents in Byzantine
agreement.

A (k, t)-robust protocol tolerates coalitions of size k and is
t-immune.

I Nash equilibrium = (1,0)-robustness
I In general, (k, t)-robust equilibria don’t exist

I they can be obtained with the help of mediators

Can a (k, t)-robust equilibrium obtained with a mediator be
implemented using cheap talk?

12 / 21



Typical Results: Upper Bounds

Theorem 1: Suppose that σ is a (k, t)-robust protocol using a
mediator. There is a (k, t)-robust implementation of σ using cheap
talk

(a) If 3(k + t) < n even if exact utilities are not known;
I protocol runs in bounded time

(b) If 2k + 3t < n and there is a punishment strategy
I protocol is randomized, has finite expected running time

(c) If 2k+ 2t < n and there is a broadcast channel, with an ε error

(d) If k + t < n, 1-way functions exist, and there is a punishment
strategy, with an ε error

The assumptions being made here are all standard assumptions in
the distributed computing community.
Key idea: reduce to secret sharing + multiparty computation.

13 / 21



Typical Results: Upper Bounds

Theorem 1: Suppose that σ is a (k, t)-robust protocol using a
mediator. There is a (k, t)-robust implementation of σ using cheap
talk

(a) If 3(k + t) < n even if exact utilities are not known;
I protocol runs in bounded time

(b) If 2k + 3t < n and there is a punishment strategy
I protocol is randomized, has finite expected running time

(c) If 2k+ 2t < n and there is a broadcast channel, with an ε error

(d) If k + t < n, 1-way functions exist, and there is a punishment
strategy, with an ε error

The assumptions being made here are all standard assumptions in
the distributed computing community.
Key idea: reduce to secret sharing + multiparty computation.

13 / 21



Typical Results: Upper Bounds

Theorem 1: Suppose that σ is a (k, t)-robust protocol using a
mediator. There is a (k, t)-robust implementation of σ using cheap
talk

(a) If 3(k + t) < n even if exact utilities are not known;
I protocol runs in bounded time

(b) If 2k + 3t < n and there is a punishment strategy
I protocol is randomized, has finite expected running time

(c) If 2k+ 2t < n and there is a broadcast channel, with an ε error

(d) If k + t < n, 1-way functions exist, and there is a punishment
strategy, with an ε error

The assumptions being made here are all standard assumptions in
the distributed computing community.
Key idea: reduce to secret sharing + multiparty computation.

13 / 21



Typical Results: Upper Bounds

Theorem 1: Suppose that σ is a (k, t)-robust protocol using a
mediator. There is a (k, t)-robust implementation of σ using cheap
talk

(a) If 3(k + t) < n even if exact utilities are not known;
I protocol runs in bounded time

(b) If 2k + 3t < n and there is a punishment strategy
I protocol is randomized, has finite expected running time

(c) If 2k+ 2t < n and there is a broadcast channel, with an ε error

(d) If k + t < n, 1-way functions exist, and there is a punishment
strategy, with an ε error

The assumptions being made here are all standard assumptions in
the distributed computing community.

Key idea: reduce to secret sharing + multiparty computation.

13 / 21



Typical Results: Upper Bounds

Theorem 1: Suppose that σ is a (k, t)-robust protocol using a
mediator. There is a (k, t)-robust implementation of σ using cheap
talk

(a) If 3(k + t) < n even if exact utilities are not known;
I protocol runs in bounded time

(b) If 2k + 3t < n and there is a punishment strategy
I protocol is randomized, has finite expected running time

(c) If 2k+ 2t < n and there is a broadcast channel, with an ε error

(d) If k + t < n, 1-way functions exist, and there is a punishment
strategy, with an ε error

The assumptions being made here are all standard assumptions in
the distributed computing community.
Key idea: reduce to secret sharing + multiparty computation.

13 / 21



Matching Lower Bounds

Theorem 2:

(a) If 3(k + t) ≥ n, ∃ a (k, t)-robust strategy using a mediator
that cannot be implemented without a mediator without
knowing the utilities/without a punishment strategy/in
bounded time.

(b) If 2k + 3t ≥ n, ∃ a (k, t)-robust strategy with a mediator that
cannot be simulated without a mediator, even if there is a
punishment strategy and utilities are known.

(c) If 2k + 2t ≥ n . . .

(d) k + t ≥ n . . .

Some proofs exploit techniques used in lower bound proofs for
Byzantine agreement.

14 / 21



Matching Lower Bounds

Theorem 2:

(a) If 3(k + t) ≥ n, ∃ a (k, t)-robust strategy using a mediator
that cannot be implemented without a mediator without
knowing the utilities/without a punishment strategy/in
bounded time.

(b) If 2k + 3t ≥ n, ∃ a (k, t)-robust strategy with a mediator that
cannot be simulated without a mediator, even if there is a
punishment strategy and utilities are known.

(c) If 2k + 2t ≥ n . . .

(d) k + t ≥ n . . .

Some proofs exploit techniques used in lower bound proofs for
Byzantine agreement.

14 / 21



Matching Lower Bounds

Theorem 2:

(a) If 3(k + t) ≥ n, ∃ a (k, t)-robust strategy using a mediator
that cannot be implemented without a mediator without
knowing the utilities/without a punishment strategy/in
bounded time.

(b) If 2k + 3t ≥ n, ∃ a (k, t)-robust strategy with a mediator that
cannot be simulated without a mediator, even if there is a
punishment strategy and utilities are known.

(c) If 2k + 2t ≥ n . . .

(d) k + t ≥ n . . .

Some proofs exploit techniques used in lower bound proofs for
Byzantine agreement.

14 / 21



Matching Lower Bounds

Theorem 2:

(a) If 3(k + t) ≥ n, ∃ a (k, t)-robust strategy using a mediator
that cannot be implemented without a mediator without
knowing the utilities/without a punishment strategy/in
bounded time.

(b) If 2k + 3t ≥ n, ∃ a (k, t)-robust strategy with a mediator that
cannot be simulated without a mediator, even if there is a
punishment strategy and utilities are known.

(c) If 2k + 2t ≥ n . . .

(d) k + t ≥ n . . .

Some proofs exploit techniques used in lower bound proofs for
Byzantine agreement.

14 / 21



Lower Bounds on Running Time

Theorem 3: If 2k + 2t ≥ n, then

(a) there is a game Γ with a (k, t)-robust strategy with a
mediator that cannot be implemented by any deterministic
cheap talk strategy.

(b) for all b, there is a game Γb with a (k, t)-robust strategy with
a mediator that cannot be implemented using cheap talk with
expected running time ≤ b.

(c) there is a game Γ with a (k, t)-robust strategy with a
mediator such that for all ε, there exists bε such that we
cannot implement the mediator with ε error with a cheap-talk
strategy that runs in ≤ bε steps.

15 / 21



Lower Bounds on Running Time

Theorem 3: If 2k + 2t ≥ n, then

(a) there is a game Γ with a (k, t)-robust strategy with a
mediator that cannot be implemented by any deterministic
cheap talk strategy.

(b) for all b, there is a game Γb with a (k, t)-robust strategy with
a mediator that cannot be implemented using cheap talk with
expected running time ≤ b.

(c) there is a game Γ with a (k, t)-robust strategy with a
mediator such that for all ε, there exists bε such that we
cannot implement the mediator with ε error with a cheap-talk
strategy that runs in ≤ bε steps.

15 / 21



Lower Bounds on Running Time

Theorem 3: If 2k + 2t ≥ n, then

(a) there is a game Γ with a (k, t)-robust strategy with a
mediator that cannot be implemented by any deterministic
cheap talk strategy.

(b) for all b, there is a game Γb with a (k, t)-robust strategy with
a mediator that cannot be implemented using cheap talk with
expected running time ≤ b.

(c) there is a game Γ with a (k, t)-robust strategy with a
mediator such that for all ε, there exists bε such that we
cannot implement the mediator with ε error with a cheap-talk
strategy that runs in ≤ bε steps.

15 / 21



Asynchronous Systems

All these results assume that systems are synchronous.

I Players communicate with each other, and then all make a
decision in the same round.

I But why should end of cheap talk be common knowledge?
I Asynchrony is a common feature is many real-world

applications
I Markets are asynchronous!
I Blockchain assumes partial synchrony

16 / 21



Implementation in Asynchronous Systems

What does it mean to implement a mediator in asynchronous
systems?

I Issue: the outcome might depend on the scheduler
I What order players are scheduled in
I How long messages take to arrive

We want it to be the case that, for each scheduler in the mediator
game, there is a scheduler that implements the same outcome in
the communication game, and vice versa.

Theorem 4: Suppose that σ is a (k, t)-robust protocol using a
mediator. There is a (k, t)-robust implementation of σ using cheap
talk

(a) If 4(k + t) < n even if exact utilities are not known;

(b) If 3k + 4t < n and there is a punishment strategy.

17 / 21



Implementation in Asynchronous Systems

What does it mean to implement a mediator in asynchronous
systems?

I Issue: the outcome might depend on the scheduler
I What order players are scheduled in
I How long messages take to arrive

We want it to be the case that, for each scheduler in the mediator
game, there is a scheduler that implements the same outcome in
the communication game, and vice versa.

Theorem 4: Suppose that σ is a (k, t)-robust protocol using a
mediator. There is a (k, t)-robust implementation of σ using cheap
talk

(a) If 4(k + t) < n even if exact utilities are not known;

(b) If 3k + 4t < n and there is a punishment strategy.

17 / 21



Related Work

Lots of related work on implementation in both CS and game
theory:

I work of Forges + Barany [≈1990] gives Theorem 1(a) with
k = 1

I work on secure multiparty [BGW88,CCD88] computation
gives Theorem 1(a) for all (k, t)!

I Ben-Porath (’03): Theorem 1(b) with k = 1 (no crypto,
known utilities, but does sequential equilibrium)

I Heller (’05): extends B-P to all k; proves matching lower
bound

I Theorem 3(a) shows that B-P’s strategy is incorrect (because
bounded); Heller’s has problems too

I B-P has a correction using verifiability, an unimplementable
assumption

18 / 21



Related Work

Lots of related work on implementation in both CS and game
theory:

I work of Forges + Barany [≈1990] gives Theorem 1(a) with
k = 1

I work on secure multiparty [BGW88,CCD88] computation
gives Theorem 1(a) for all (k, t)!

I Ben-Porath (’03): Theorem 1(b) with k = 1 (no crypto,
known utilities, but does sequential equilibrium)

I Heller (’05): extends B-P to all k; proves matching lower
bound

I Theorem 3(a) shows that B-P’s strategy is incorrect (because
bounded); Heller’s has problems too

I B-P has a correction using verifiability, an unimplementable
assumption

18 / 21



More Related Work

I Lysanskaya-Triandopoulos: Theorem 1(c) for k = 1

I Rabin/Ben-Or’s work essentially gives Theorem 1(c) for all
(k, t)

I Urbano-Vila (’04) and Dodis-Halevi-Rabin (’00) get Theorem
1(d) if k = 1, n = 2

I Theorem 3(a) shows UV’s strategy is incorrect

I Izmalkov, Micali, Lepinski; Lepinski, Micali, Shelat (’05) prove
stronger implementation results, but require strong primitives
(envelopes and ballot-boxes) that cannot be implemented over
broadcast channels

19 / 21



Conclusions

I Issues of coalitions and fault-tolerance are critical in
distributed computing, game theory, and cryptography.

I By combining ideas from all three areas we can gain new
insights, and prove interesting new results.

Some implications for distributed computing/cryptography:
I We should consider rational players as well as Byzantine

players
I This could lead to new protocols (indeed, it already has)

I We may also want to consider obedient/altruistic players
I In real life, people are often willing to follow instructions,

provided they don’t get too badly hurt
I Protocol/mechanism designers should take advantage of that!

20 / 21



Conclusions

I Issues of coalitions and fault-tolerance are critical in
distributed computing, game theory, and cryptography.

I By combining ideas from all three areas we can gain new
insights, and prove interesting new results.

Some implications for distributed computing/cryptography:
I We should consider rational players as well as Byzantine

players
I This could lead to new protocols (indeed, it already has)

I We may also want to consider obedient/altruistic players
I In real life, people are often willing to follow instructions,

provided they don’t get too badly hurt
I Protocol/mechanism designers should take advantage of that!

20 / 21



Conclusions

I Issues of coalitions and fault-tolerance are critical in
distributed computing, game theory, and cryptography.

I By combining ideas from all three areas we can gain new
insights, and prove interesting new results.

Some implications for distributed computing/cryptography:
I We should consider rational players as well as Byzantine

players
I This could lead to new protocols (indeed, it already has)

I We may also want to consider obedient/altruistic players
I In real life, people are often willing to follow instructions,

provided they don’t get too badly hurt
I Protocol/mechanism designers should take advantage of that!

20 / 21



Implications for Game Theory

I Equilibrium notions should be more robust, and take fault
tolerance into account

I Cryptographic techniques can be helpful in achieving
equilibrium

Other ideas from distributed computing/crypography may be
relevant:

I Resource-bounded equilibria

I Synchrony vs. asynchrony

21 / 21


