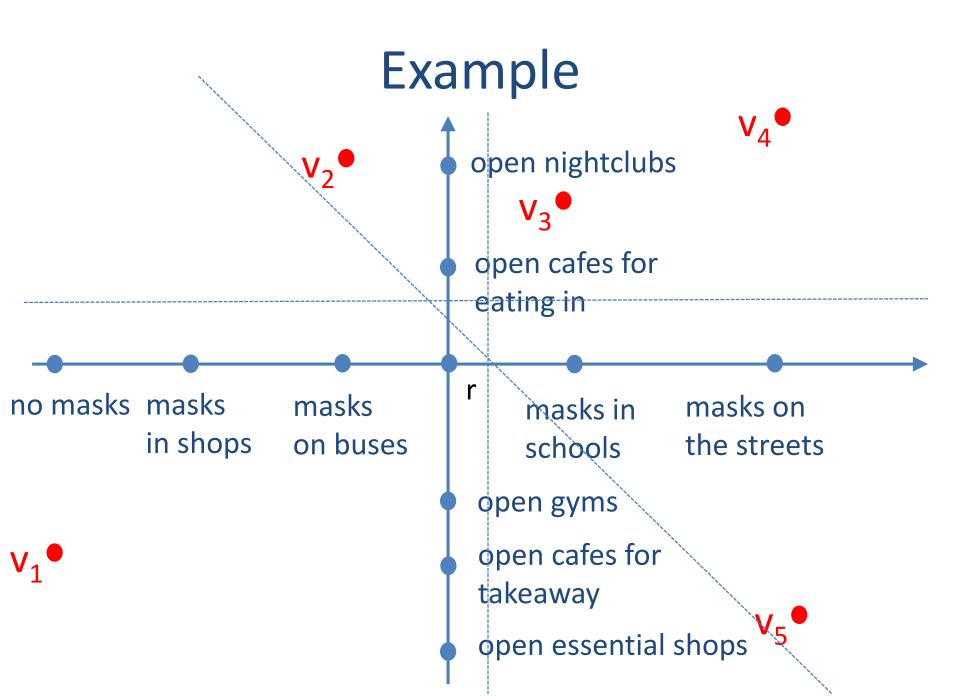
United for Change: Deliberative Coalition Formation to Change the Status Quo


> Edith Elkind University of Oxford joint work with Davide Grossi (Groningen), Udi Shapiro (Weizmann), Nimrod Talmon (Ben Gurion)

Spatial Coalition Formation

- Traditional setup:
 - agents = political parties
 - parties have/adopt positions
 in a multidimensional proposal space
 - parties aim to form a winning coalition to govern
 - a coalition is typically associated with a position in the issue space
- Significant literature:
 - starting from Hotelling'29, see survey by de Vries'99, subsequent work e.g., by Rusinowska, de Swart and co-authors

This Work

- Proposal space: a metric space
 - e.g., can be a finite or infinite subset of R^d
- Each agent has an ideal point (her opinion)
- Special point: the status quo (r)
 - goal: majority-supported change from the status quo
- Agents seek change and are open to compromise
 - approval preferences

Coalition Formation Dynamics

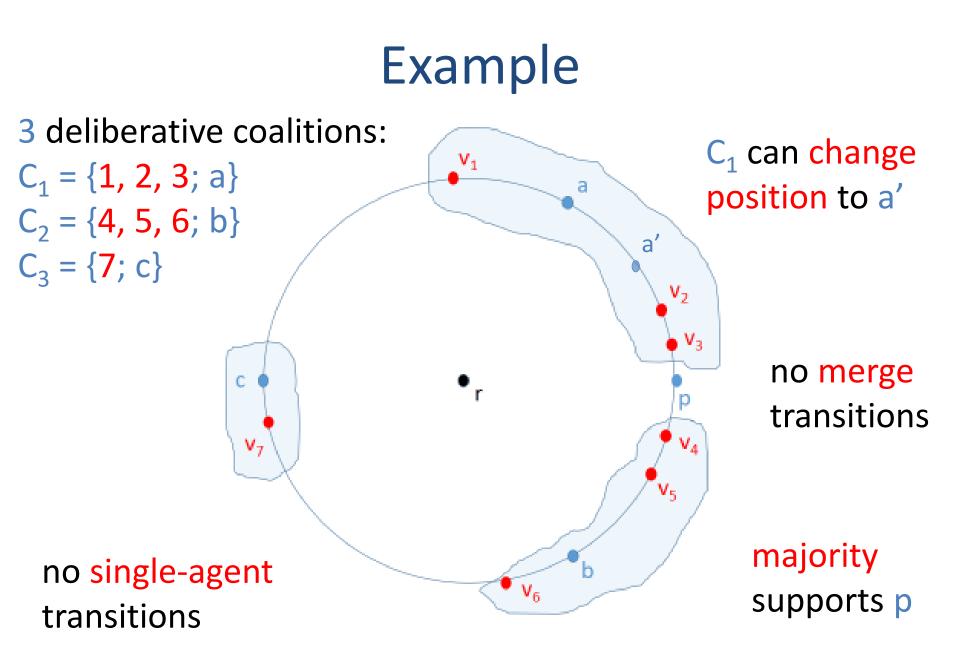
- Deliberative coalition (C, p) = set of agents + position
 all agents in C prefer p to the status quo
- Coalition structure: partition of agents into deliberative coalitions: (C, p), (C', p'), ...
- Types of transitions:
 - single-agent deviations, position changes, merges, merges with some agents left behind
 - each transition involves a limited # of coalitions
- Agents favour larger coalitions
 - a transition is only feasible if it leads to formation of a larger coalition
 - but they do not distinguish among approved proposals

• Research question:

which types of transitions guarantee emergence of a coalition around one of the most supported outcomes?

- the answer may depend on the metric space

• Can we converge after polynomially many transitions?


Transitions

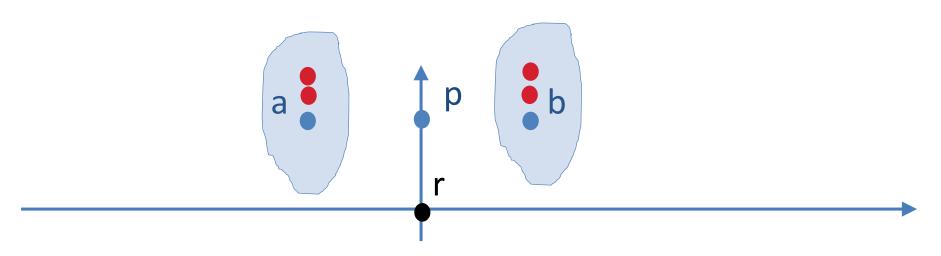
- Single-agent transitions:
 ..., (C, p), (C', p'), ... → ..., (C+a, p), (C'-a, p'), ...
 permissible iff |C| ≥ |C'|, a approves p
- Follow transitions:
 ..., (C, p), (C', p'), ... → ..., (C U C', p), ...

permissible if all members of C' approve p

- Merge transitions:
 ..., (C, p), (C', p'), ... → ..., (C U C', p*), ...
 permissible if all members of C U C' approve p*
- Compromise transitions:

..., (C, p), (C', p'), ... \rightarrow ..., (C\C_p*, p), (C'\C'_p*, p'), (C_p* U C'_p*, p*), ... – permissible if C_p* U C'_p* approve p*, $|C_{p}* U C'_{p}*| > |C|, |C'|$

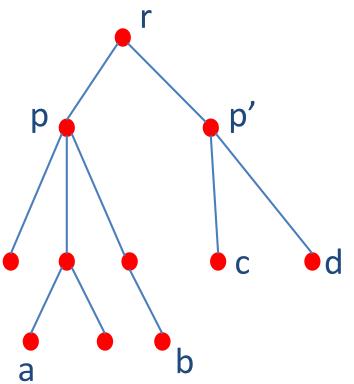
Warm-Up: Convergence in 1D


 Observation: in R, single-agent transitions may fail to succeed

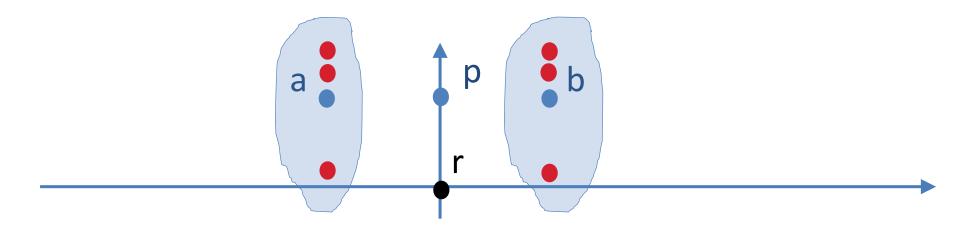
 a
 r
 b

- <u>Theorem</u>: in **R**, follow transitions converge
 - no coalition spans 0
 - if there are two "positive" coalitions (C, p), (C', p') with p < p', then C' can follow C
 - so if no transitions are available,
 we have <2 coalitions (one +ve, one -ve)

Beyond One Dimension?


 <u>Observation</u>: in R², single-agent and follow transitions may fail to succeed

Do Merges Help?

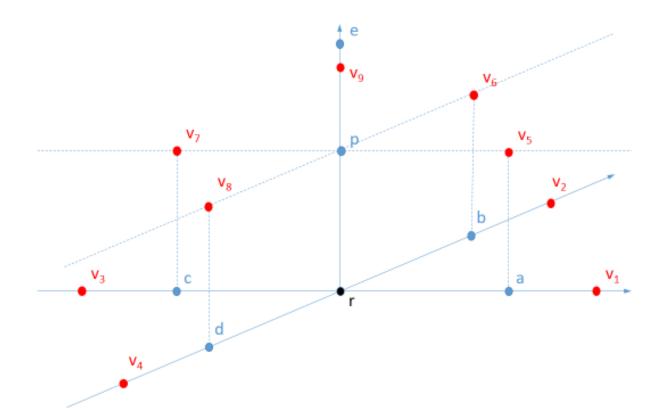

- <u>Theorem</u>: if the metric space is a tree, merge transitions succeed
- Proof:

 if there is a "good"
 outcome, one of
 root's children
 is "good"

But Not In General?

 <u>Observation</u>: in R², single-agent, follow, and merge transitions may fail to succeed

Do Compromises Help?


a

a

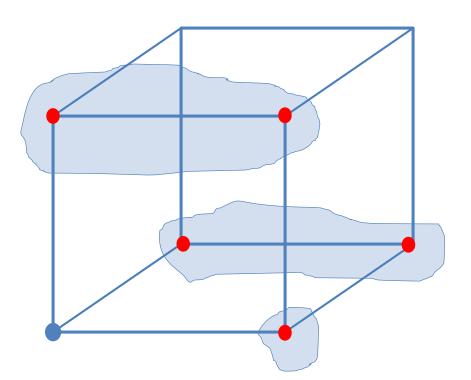
- <u>Theorem</u>: if the proposal space is R^d, then compromise transitions succeed
- Proof idea:
 - 2 coalitions can always compromise
 - if 3 coalitions are left, either
 - someone can join the largest coalition, or
 - two coalitions can merge

When Compromises Fail...

- The theorem holds if the proposal space is a dense subset of R^d
- ... but not if it is an arbitrary subset of R^d

Speed of convergence (1/2)

- <u>Claim</u>: any sequence of single-agent, merge and follow transitions terminates in O(n²) steps (where n is the number of agents)
- Proof:
 - given a coalition structure $(C_1, p_1), ..., (C_k, p_k),$ consider Z = $|C_1|^2 + ... + |C_k|^2$
 - quadratic potential function
 - Z takes values between 0 and n^2
 - every transition increases Z


Speed of Convergence (2/2)

- <u>Observation</u>: a compromise transition may fail to increase Z
- <u>Theorem</u>: every sequence of compromise transitions terminates after at most nⁿ steps

 a lexicographic potential function
- <u>Observation</u>: in R^d there is a sequence of compromise transitions that converges in at most n² steps
 - if there are 3 coalitions,
 there is a merge or single-agent transition

d-Hypercube

- Metric space: {0, 1}^d with Hamming distance
 r = (0, 0, ..., 0)
- For d = 3 compromises may fail

Beyond 2-Compromises?

- Suppose we allow compromises involving t coalitions (t > 2)
- What is the smallest value of t that guarantees success in the d-hypercube?
- $t^*(d) \le 2^d 1$
- For d = 3, we have t*(d) = 3
- For d = 4, we have t*(d) = 5
- Lower bound: $t^*(d) \ge d$ Open problem:
- Upper bound: $t^*(d) \le 2^{d-1} + (d+1)/2$ close the gap

Further Open Questions

- Are there "simple" transitions that ensure convergence when proposal space is a subset of R^d?
- How "rich" should a space be for compromise transitions to succeed?
- Is there an explicit sequence of compromise transitions that is exponentially long?