Using Resolution and Cutting Planes for Verification of Nonlinear Bit-Vector Properties

Paul Beame, Vincent Liew [CAV 2017, JACM 2020]

Vincent Liew, Paul Beame, Jo Devriendt, Jan Elffers, Jakob Nordström [FMCAD 2020]

Bit-Vector Verification of Hardware/Software

Step 1: Model

- int $\mathbf{x}, \mathbf{y} \mapsto 32$ -bit vectors \mathbf{x}, \mathbf{y} .
- Directly model **int** operators using:
 - Arithmetic operations: +, -, ×,%, <, >
 - Bit-level operations: &, ^, ⊕, ∘, <<, >>
- $^{\circ}$ Write bit-vector formula ϕ asserting code does **not** follow specification

Step 2: Solve

- $^\circ$ Send formula $oldsymbol{\phi}$ to **bit-vector solver** to prove UNSAT
 - Formula ϕ UNSAT \rightarrow Program follows specification

Challenge: Nonlinear arithmetic

Empirically, great success if all arithmetic is linear but...

Major problems with non-linear arithmetic

No bit-vector solver is close to working well in general at verifying:

• Hardware implementations that involve multiplier circuits

- Though significant recent progress on multiplier circuits in isolation [Kaufmann et al., 2017-2019]
- Software involving multiplication operations

Bit-Vector Verification of Hardware/Software

Hardware:

• Directly model circuits using Boolean logic and gate variables

Software:

- Directly model operations in bit-vector language
- Apply theories to simplify/prove via pre-processing (e.g. un-interpreted functions, arithmetic identities)

Core of the challenge: Mix of Boolean logic and arithmetic

- If no direct solution, "bit-blast/flatten" formulas to convert arithmetic to fixed bit-width, at least 32/64 bits
 - Replace arithmetic operations using gate variables and constraints for circuits that evaluate them
- Send resulting formula to SAT Solver.

Circuits for x + y

Length 1:

• Use *full adder* circuit $c_{out} = MAJ(x_0, y_0, c_{in})$ $d_{out} = x_0 \oplus y_0 \oplus c_{in}$

• Conservation of weight: $2c_{out} + d_{out} = x_0 + y_0 + c_{in}$

Length *n*:

• Chain full adders to form *ripple-carry adder* circuit

Example Circuits for $x \times y$

Fix input bitwidth *n*.

Construct bit-blasted SAT formula encoding $xy \neq yx$ with array multipliers

Commutativity is hard for CDCL SAT solvers

- SAT formula: 100s-1000s of variables
- SAT solvers cannot solve this with 16-bit-vectors for any multiplier circuit [Biere, 2016].

Number of bits	Seconds to show $xy \neq yx$ unsat
5	0.01
6	0.2
7	0.5
8	11
9	43
10	743
11	Timeout

MiniSAT times

Arithmetic identities as indicators of complexity

Linear arithmetic

Easy to check:(Commutativity)x + y = y + x(Commutativity)(x + y) + z = x + (y + z)(Associativity) $x \cdot 1 = x$ (Multiplicative Identity)

Nonlinear arithmetic

Hard to check $x \cdot y = y \cdot x$ (Commutativity)x(y+z) = xy + xz(Distributivity) $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ (Associativity)

Fundamental barrier? Or feasible with better SAT-solving?

Is resolution proof complexity a fundamental obstacle?

Conjecture: CDCL SAT solvers take **exponential time** to decide nonlinear arithmetic because resolution proofs require **exponential size**.

• [Biere SAT'16] [Slobodova SAT'16] [Tomb SAT'16] [Kalla FMCAD'15]

Start: branch to find first disagreeing output bit (2n branches)

Issue: output sensitive to all previous tableau entries so obvious proof is exponential

Key Idea 1: The *critical strip* of the prior log *n* columns suffices for UNSAT

Key Idea 1: The *critical strip* of the prior log *n* columns suffices for UNSAT

Key Idea 1: The *critical strip* of the prior log *n* columns suffices for UNSAT

- Key Idea 2: Each critical strip has poly-size regular resolution refutations
- Why?
 - Follows from **O**(log **n**) pathwidth
 - Resolution size at most exponential in pathwidth. [Dechter 1996]

Result: Polynomial-size resolution proofs

Theorem: For array, diagonal and Booth multipliers, there are polynomial size resolution proofs for any degree 2 identity. [B, Liew CAV 2017, JACM 2020]

Identity	Proof size for bitwidth <i>n</i>
$x \cdot y = y \cdot x$	$\widetilde{\boldsymbol{0}}(\boldsymbol{n^6})$
$x \cdot (y + z) = x \cdot y + x \cdot z$	$\widetilde{\boldsymbol{O}}(\boldsymbol{n^6})$
$x \cdot (1+x) = x^2 + x$	$\widetilde{\boldsymbol{O}}(\boldsymbol{n^{10}})$

Compare with circuit size $O(n^2)$

Polynomial size \rightarrow practical CDCL SAT solving?

Solvers:

- Don't find these proofs even given the division into strips
- With the most extreme hand-holding (force-fed order, etc.) can't get any closer empirically than a factor of \sqrt{n}
- *Õ*(*n*⁶) proofs seem too large in any case.
- Target: **32** and **64** bits.

Stronger proof system?

Number of bits	Strips $xy \neq yx$	Full <i>xy ≠ yx</i>
5	0.01	0.01
6	0.1	0.2
7	0.7	0.5
8	3	11
9	26	43
10	146	743
11	1055	Timeout
12	5676	Timeout

MiniSAT: Strips vs Full

Stronger proof systems?

Stronger proof systems?

Beyond resolution: polynomial calculus

Polynomial Calculus (PC):

- Each line is a polynomial equation p = 0
- Addition rule: $p_1 = 0$, $p_2 = 0 \rightarrow p_1 + p_2 = 0$
- Multiplication rule: $p = 0 \rightarrow pq = 0$ for any polynomial q

Models steps of Groebner basis reduction (GBR) algorithms

• Checks if spec polynomial p = 0 implied by polynomials $p_1 = 0$, $p_2 = 0$, ...

Polynomial calculus stronger than resolution \Rightarrow GBR more efficient than SAT?

- No for most **non-algebraic** problems.
- Yes for certain algebraic problems.
 - [Sayed et al., 2016]: Verified 128-bit integer multipliers.
 - [Kaufmann et al., 2017-2019]: Verified 1024-bit integer multipliers

Proof size in polynomial calculus

• [Kaufmann et al., 2019]: $O(n^2)$ length PC proof of *word-level* commutativity

• Idea generalizes to $O(n^2)$ length PC proofs of any word-level ring identity.

A Roadblock for Polynomial Calculus

[Liew, B, Devriendt, Elffers, Nordström, FMCAD 2020]

Beyond resolution: cutting planes

Cutting Planes Proofs:

- Each line *l* is Boolean linear inequality $\sum a_i x_i \ge b$
- Linear combination (non-negative):

 $l_1, l_2 \to \alpha l_1 + \beta l_2 \qquad (\alpha, \beta \ge 0)$

• Division: $\frac{\sum ca_i x_i \ge b}{\sum a_i x_i \ge \left\lceil \frac{b}{c} \right\rceil}$

• Underlying proof system for the best *pseudo-Boolean solvers*

Cutting planes can extract bit-equalities!

Say we derive word-level equality xy = yx:

Two linear inequalities

Cutting planes can derive *all* n bit-equalities in O(n) steps!

n	RoundingSat (Pseudo-Boolean)
32	.002
64	.009
128	.04
256	.2

n	Sat4j-Res (SAT)	NaPS (SAT)
16	3	2
20	81	39
24	то	208
28		Error

And small cutting planes proofs at the word-level!

Theorem: There are $O(n^2)$ length cutting planes proofs for word-level 2-colorable ring identities. [Liew, et. al., FMCAD 2020]

2-colorable includes:

- xy = yx (commutativity)
- (x + y)z = xz + yz (distributivity)
- (x + y)(w + z) = wx + yw + xw + zx (double distributivity)
- x(y+z) + wz = xy + (x+w)z (distribute then factor)

Corollary: There are $O(n^2)$ length cutting planes proofs for **bit-level** 2-colorable ring identities. [Liew, et. al., FMCAD 2020]

Key idea: we can do *nonlinear* reasoning within a *linear* proof system by using only a little nonlinearity at a time!

A nonlinear format for cutting planes proofs

Result: Simulating (k, d)-Cutting planes

Theorem: A (k, d)-cutting planes proof of s lines can be simulated by a standard cutting planes proof of at most $(k + 4)d^k \cdot s$ lines.

[Liew, et. al., FMCAD 2020]

Simulation: Boolean (k, d)-nonlinear inequality $\leftrightarrow d^k$ linear inequalities.

Simulating (k, d)-Cutting planes

Theorem: A (k, d)-cutting planes proof of s lines can be simulated by a standard cutting planes proof of at most $(k + 4)d^k \cdot s$ lines.

[Liew, et. al., FMCAD 2020]

Application: small proofs of 2-colorable identities

We give $O(n^2)$ length (k, d)-cutting planes proofs with k, d constant

Constant factor overhead simulation $\rightarrow O(n^2)$ proof in standard cutting planes

Finding cutting planes proofs via pB solvers

- Pseudo-Boolean (PB) solvers Sat4j and RoundingSat
 - **Sat4j**: Saturation-based, fast at proving word-level equalities
 - **RoundingSat**: Division-based, fast at extracting bit-level equalities.
- **Combination**: 256-bit commutativity for **bit-level**!
- 256-bit multiplier equivalence checking (e.g. array = diagonal)
- Requires value-based not clausal representation of 1-bit adders
- But cannot yet handle more complicated identities such as distributivity.

Number of bits	Array xy = yx	Array = Diagonal
32	21	15
64	43	34
128	117	91
256	419	338

Sat4j + RoundingSat

Another approach to bit-blasting

The usual pseudo-Boolean advantage:

• Can represent full adder with equation:

$$2c_{out} + d_{out} = x_0 + y_0 + c_{in}$$

• Two inequalities instead of 14 clauses.

Even better pseudo-Boolean advantage:

• Can represent addition x + y without a circuit:

$$\sum 2^{i} x_{i} + \sum 2^{i} y_{i} = \sum 2^{i} (x + y)_{i}$$

n ² Tableau constraints	Tableau sum constraint
$t_{i,j} = x_i y_j$	$\sum 2^{i+j} t_{i,j} = \sum 2^i (xy)_i$

i.e. $x_i - t_{i,j} \ge 0$; $y_i - t_{i,j} \ge 0$; $t_{i,j} - x_i - y_j \ge -1$

Beating bit-vector solvers

- With **algebraic representation** of multiplication, **RoundingSat** can outperform bit-vector solvers on crafted bit-vector inequalities.
- Inequalities mix multiplication and bit-wise operations.

Future directions

Pseudo-Boolean bit-vector solving

- Use preprocessing like CDCL/Bit-vector solvers
- Replace final SAT solver with PB solver.
- Algebraic bit-blasting
- Can we get good performance on industrial benchmarks with multiplication?

Improve cutting planes solving

- Pseudo-Boolean solving still young.
 - Could not solve more complicated 2-colorable identities.
- Crucial SAT solving improvements found over the last 25 years.
- Can we get analogous improvements for pseudo-Boolean solvers?