Using Resolution and Cutting Planes for Verification of Nonlinear Bit-Vector Properties

Paul Beame, Vincent Liew [CAV 2017, JACM 2020]

Vincent Liew, Paul Beame, Jo Devriendt, Jan Elffers, Jakob Nordström [FMCAD 2020]

Bit-Vector Verification of Hardware/Software

Code:

Specification:

$$
\begin{gathered}
{[(s=x) \vee(s=y)] \wedge(s \leq x) \wedge(s \leq y)} \\
\text { Inputs: } x, y \quad \text { Output: } s
\end{gathered}
$$

Step 1: Model

- int $\mathbf{x}, \boldsymbol{y} \mapsto 32$-bit vectors $\boldsymbol{x}, \boldsymbol{y}$.
- Directly model int operators using:
- Arithmetic operations: $+,-, \times, \%,<,>$
- Bit-level operations: \&, $\wedge, \oplus, \circ, \ll, \gg$
- Write bit-vector formula $\boldsymbol{\phi}$ asserting code does not follow specification

Step 2: Solve

- Send formula ϕ to bit-vector solver to prove UNSAT
- Formula ϕ UNSAT \rightarrow Program follows specification

Challenge: Nonlinear arithmetic

Empirically, great success if all arithmetic is linear but...

Major problems with non-linear arithmetic

No bit-vector solver is close to working well in general at verifying:

- Hardware implementations that involve multiplier circuits
- Though significant recent progress on multiplier circuits in isolation [Kaufmann et al., 2017-2019]
- Software involving multiplication operations

Bit-Vector Verification of Hardware/Software

Hardware:

- Directly model circuits using Boolean logic and gate variables

Software:

- Directly model operations in bit-vector language
- Apply theories to simplify/prove via pre-processing (e.g. un-interpreted functions, arithmetic identities)

Core of the challenge: Mix of Boolean logic and arithmetic

- If no direct solution, "bit-blast/flatten" formulas to convert arithmetic to fixed bit-width, at least 32/64 bits
- Replace arithmetic operations using gate variables and constraints for circuits that evaluate them
- Send resulting formula to SAT Solver.

Circuits for $x+y$

Length 1:

- Use full adder circuit

$$
\begin{aligned}
\boldsymbol{c}_{\text {out }} & =\operatorname{MAJ}\left(\boldsymbol{x}_{\mathbf{0}}, y_{0}, \boldsymbol{c}_{\text {in }}\right) \\
\boldsymbol{d}_{\text {out }} & =x_{\mathbf{0}} \oplus \boldsymbol{y}_{\mathbf{0}} \oplus \boldsymbol{c}_{\text {in }}
\end{aligned}
$$

- Conservation of weight: $2 c_{\text {out }}+d_{\text {out }}=x_{0}+y_{0}+c_{\text {in }}$

Length \boldsymbol{n} :

- Chain full adders to form ripple-carry adder circuit

Example Circuits for $x \times y$

- Stack ripple-carry adders to make array multiplier

$$
\begin{aligned}
& x_{3} x_{2} x_{1} x_{0} \\
& y_{3} y_{2} y_{1} y_{0}
\end{aligned}
$$

Example: Verifying array multiplier commutativity

Fix input bitwidth \boldsymbol{n}.
Construct bit-blasted SAT formula encoding $x y \neq y x$ with array multipliers

Commutativity is hard for CDCL SAT solvers

Number of bits	Seconds to show $x y \neq y x$ unsat
5	0.01
6	0.2
7	0.5
8	11
9	43
10	743
11	Timeout

MiniSAT times

Arithmetic identities as indicators of complexity

Linear arithmetic

$$
\begin{array}{ll}
\text { Easy to check: } \\
x+y=y+x & \text { (Commutativity) } \\
(x+y)+z=x+(y+z) & \text { (Associativity) } \\
x \cdot 1=x & \text { (Multiplicative Identity) }
\end{array}
$$

Nonlinear arithmetic

```
Hard to check
    x}\cdot\boldsymbol{y}=\boldsymbol{y}\cdot\boldsymbol{x}\quad\mathrm{ (Commutativity)
    x(y+z)=xy+xz (Distributivity)
    (x\cdoty)\cdotz=x}\cdot(y\cdotz)\quad\mathrm{ (Associativity)
```

Fundamental barrier? Or feasible with better SAT-solving?

Is resolution proof complexity a fundamental obstacle?

Conjecture: CDCL SAT solvers take exponential time to decide nonlinear arithmetic because resolution proofs require exponential size.

- [Biere SAT'16] [Slobodova SAT'16] [Tomb SAT'16] [Kalla FMCAD'15]

Example: Verifying array multiplier commutativity

Start: branch to find first disagreeing output bit ($2 n$ branches)
Issue: output sensitive to all previous tableau entries so obvious proof is exponential

Example: Verifying array multiplier commutativity

Key Idea 1: The critical strip of the prior $\log n$ columns suffices for UNSAT

Example: Verifying array multiplier commutativity

Key Idea 1: The critical strip of the prior $\log n$ columns suffices for UNSAT

Example: Verifying array multiplier commutativity

Key Idea 1: The critical strip of the prior $\log n$ columns suffices for UNSAT

Example: Verifying array multiplier commutativity

- Key Idea 2: Each critical strip has poly-size regular resolution refutations

- Why?
- Follows from $O(\log n)$ pathwidth
- Resolution size at most exponential in pathwidth. [Dechter 1996]

】(x)

$\downarrow^{(x)}$

Result: Polynomial-size resolution proofs

Theorem: For array, diagonal and Booth multipliers, there are polynomial size resolution proofs for any degree 2 identity. [B, Liew CAV 2017, JACM 2020]

Identity	Proof size for bitwidth n
$x \cdot y=y \cdot x$	$\widetilde{O}\left(n^{6}\right)$
$x \cdot(y+z)=x \cdot y+x \cdot z$	$\widetilde{O}\left(n^{6}\right)$
$x \cdot(1+x)=x^{2}+x$	$\widetilde{O}\left(n^{10}\right)$

Compare with circuit size $O\left(n^{2}\right)$

Polynomial size \rightarrow practical CDCL SAT solving?

Solvers:

- Don't find these proofs even given the division into strips
- With the most extreme hand-holding (force-fed order, etc.) can't get any closer empirically than a factor of \sqrt{n}
- $\widetilde{\boldsymbol{O}}\left(n^{6}\right)$ proofs seem too large in any case.
- Target: 32 and 64 bits.

Stronger proof system?

Number of bits	Strips $x y \neq y x$	Full $x y \neq y x$
5	0.01	0.01
6	0.1	0.2
7	0.7	0.5
8	3	11
9	26	43
10	146	743
11	1055	Timeout
12	5676	Timeout

MiniSAT: Strips vs Full

Stronger proof systems?

Stronger proof systems?

Beyond resolution: polynomial calculus

Polynomial Calculus (PC):

- Each line is a polynomial equation $\boldsymbol{p}=\mathbf{0}$
- Addition rule: $p_{1}=0, p_{2}=0 \rightarrow p_{1}+p_{2}=0$
- Multiplication rule: $p=0 \rightarrow p q=0$ for any polynomial q

Models steps of Groebner basis reduction (GBR) algorithms

- Checks if spec polynomial $\boldsymbol{p}=\mathbf{0}$ implied by polynomials $p_{1}=0, p_{2}=0, \ldots$

Polynomial calculus stronger than resolution \Rightarrow GBR more efficient than SAT?

- No for most non-algebraic problems.
- Yes for certain algebraic problems.
- [Sayed et al., 2016]: Verified 128-bit integer multipliers.
- [Kaufmann et al., 2017-2019]: Verified 1024-bit integer multipliers

Proof size in polynomial calculus

- [Kaufmann et al., 2019]: $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ length PC proof of word-level commutativity

$$
\sum_{i=0}^{n-1} 2^{i}(x y)_{i}=\sum_{i=0}^{n-1} 2^{i}(y x)_{i}
$$

- Idea generalizes to $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ length PC proofs of any word-level ring identity.

A Roadblock for Polynomial Calculus

[Liew, B, Devriendt, Elffers, Nordström, FMCAD 2020]

Beyond resolution: cutting planes

Cutting Planes Proofs:

- Each line l is Boolean linear inequality $\sum a_{i} x_{i} \geq b$
- Linear combination (non-negative):

$$
l_{1}, l_{2} \rightarrow \alpha l_{1}+\beta l_{2} \quad(\alpha, \beta \geq 0)
$$

- Division:

$$
\frac{\sum c a_{i} x_{i} \geq b}{\sum a_{i} x_{i} \geq\left\lceil\frac{b}{c}\right\rceil}
$$

- Underlying proof system for the best pseudo-Boolean solvers

Cutting planes can extract bit-equalities!

Say we derive word-level equality $x y=y x$:

$$
\sum_{i=0}^{n-1} 2^{i}(x y)_{i}=\sum_{i=0}^{n-1} 2^{i}(y x)_{i}
$$

Two linear inequalities
Cutting planes can derive all \boldsymbol{n} bit-equalities in $\boldsymbol{O}(\boldsymbol{n})$ steps!

n	RoundingSat (Pseudo-Boolean)
32	.002
64	.009
128	.04
256	.2

n	Sat4j-Res (SAT)	NaPS (SAT)
16	3	2
20	81	39
24	TO	208
28		Error

And small cutting planes proofs at the word-level!

Theorem: There are $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ length cutting planes proofs for word-level
2-colorable ring identities. [Liew, et. al., FMCAD 2020]

2-colorable includes:

- $x y=y x \quad$ (commutativity)
- $(x+y) z=x z+y z \quad$ (distributivity)
- $(x+y)(w+z)=w x+y w+x w+z x \quad$ (double distributivity)
- $x(y+z)+w z=x y+(x+w) z \quad$ (distribute then factor)

Corollary: There are $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ length cutting planes proofs for bit-level 2-colorable ring identities. [Liew, et. al., FMCAD 2020]

Key idea: we can do nonlinear reasoning within a linear proof system by using only a little nonlinearity at a time!

A nonlinear format for cutting planes proofs

Cutting Planes:

Linear inequality:
$\sum a_{i} x_{i} \geq b$

- Linear combination rule:

$$
l_{1}, l_{2} \rightarrow \alpha l_{1}+\beta l_{2}
$$

- Division rule:

$$
\frac{\sum c a_{i} x_{i} \geq b}{\sum a_{i} x_{i} \geq\left\lceil\frac{b}{c}\right\rceil}
$$

(k, d)-Cutting planes:

(k, \boldsymbol{d})-nonlinear inequality:
$t_{1}+t_{2}+\cdots+t_{k}+\sum a_{i} x_{i} \geq b$

Up to \boldsymbol{k} terms of degree \boldsymbol{d} or less
(e.g. monomial, or $l_{1} x_{2} \ldots x_{d}$)

- Linear combination rule:

Result must be ($\boldsymbol{k}, \boldsymbol{d}$)-nonlinear

- Division rule:

Generalizes immediately

- Multiply by variable rule:

$$
\begin{gathered}
5 x y+w \geq b \\
\\
5 x y z+w z-b z \geq 0
\end{gathered}
$$

Result must be ($\boldsymbol{k}, \boldsymbol{d}$)-nonlinear

Result: Simulating (k, d)-Cutting planes

Theorem: A $(\boldsymbol{k}, \boldsymbol{d})$-cutting planes proof of \boldsymbol{s} lines can be simulated by a standard cutting planes proof of at most $(\boldsymbol{k}+4) \boldsymbol{d}^{k} \cdot \boldsymbol{s}$ lines.
[Liew, et. al., FMCAD 2020]

Simulation: Boolean $(\boldsymbol{k}, \boldsymbol{d})$-nonlinear inequality $\leftrightarrow \boldsymbol{d}^{k}$ linear inequalities.
E.g. $k=1, d=2$:

$$
2 x y \geq 1 \quad \begin{aligned}
& 2 x \geq 1 \\
& 2 y \geq 1
\end{aligned}
$$

Simulating (k, d)-Cutting planes

Theorem: A $(\boldsymbol{k}, \boldsymbol{d})$-cutting planes proof of \boldsymbol{s} lines can be simulated by a standard cutting planes proof of at most $(\boldsymbol{k}+4) \boldsymbol{d}^{k} \cdot \boldsymbol{s}$ lines.
[Liew, et. al., FMCAD 2020]

Application: small proofs of 2-colorable identities

We give $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ length $(\boldsymbol{k}, \boldsymbol{d})$-cutting planes proofs with $\boldsymbol{k}, \boldsymbol{d}$ constant
Constant factor overhead simulation $\rightarrow \boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ proof in standard cutting planes

Finding cutting planes proofs via pB solvers

- Pseudo-Boolean (PB) solvers Sat4j and RoundingSat
- Sat4j: Saturation-based, fast at proving word-level equalities
- RoundingSat: Division-based, fast at extracting bit-level equalities.
- Combination: 256-bit commutativity for bit-level!
- 256-bit multiplier equivalence checking (e.g. array = diagonal)
- Requires value-based not clausal representation of 1-bit adders
- But cannot yet handle more complicated identities such as distributivity.

Number of bits	Array $x y=y x$	Array $=$ Diagonal
32	21	15
64	43	34
128		117
256		419
		31

Another approach to bit-blasting

The usual pseudo-Boolean advantage:

- Can represent full adder with equation:

$$
2 c_{o u t}+d_{o u t}=x_{0}+y_{0}+c_{i n}
$$

- Two inequalities instead of 14 clauses.

Even better pseudo-Boolean advantage:

- Can represent addition $\boldsymbol{x}+\boldsymbol{y}$ without a circuit:

$$
\sum 2^{i} x_{i}+\sum 2^{i} y_{i}=\sum 2^{i}(x+y)_{i}
$$

- Even further, can represent multiplication $x y$ without a circuit!

$$
\begin{array}{cc}
n^{2} \text { Tableau constraints } & \text { Tableau sum constraint } \\
t_{i, j}=x_{i} y_{j} & \sum 2^{i+j} t_{i, j}=\sum 2^{i}(x y)_{i}
\end{array}
$$

i.e. $x_{i}-t_{i, j} \geq 0 ; y_{i}-t_{i, j} \geq 0 ; t_{i, j}-x_{i}-y_{j} \geq-1$

Beating bit-vector solvers

- With algebraic representation of multiplication, RoundingSat can outperform bit-vector solvers on crafted bit-vector inequalities.
- Inequalities mix multiplication and bit-wise operations.

Examp		$x \& k) z$ it-wise AND	
bits	RoundingSat	Boolector	73
20	0.8	10	15
24	0.3	117	1154
28	0.5	TO	TO
32	0.6	T0	T0

Future directions

Pseudo-Boolean bit-vector solving

- Use preprocessing like CDCL/Bit-vector solvers
- Replace final SAT solver with PB solver.
- Algebraic bit-blasting
- Can we get good performance on industrial benchmarks with multiplication?

Improve cutting planes solving

- Pseudo-Boolean solving still young.
- Could not solve more complicated 2-colorable identities.
- Crucial SAT solving improvements found over the last 25 years.
- Can we get analogous improvements for pseudo-Boolean solvers?

