
Using Resolution and
Cutting Planes for

Verification of Nonlinear
Bit-Vector Properties

Paul Beame, Vincent Liew [CAV 2017, JACM 2020]

Vincent Liew, Paul Beame, Jo Devriendt, Jan Elffers,
Jakob Nordström [FMCAD 2020]

Bit-Vector Verification of Hardware/Software

Step 1: Model
◦ int x,y ↦ 32-bit vectors �, �.

◦ Directly model int operators using:

◦ Arithmetic operations: +, -, ×,%, <, >

◦ Bit-level operations: &, ^, ⊕, ∘, <<, >>

◦ Write bit-vector formula 	 asserting code does not follow specification

Step 2: Solve
◦ Send formula 	 to bit-vector solver to prove UNSAT

◦ Formula 	 UNSAT → Program follows specification

Code: Specification:

� = � ∨ � = � ∧ (� ≤ �) ∧ (� ≤ �)
Inputs: �, � Output: �

bit-level operations arithmetic

operation

Challenge: Nonlinear arithmetic

Empirically, great success if all arithmetic is linear but…

Major problems with non-linear arithmetic

No bit-vector solver is close to working well in general at verifying:

◦ Hardware implementations that involve multiplier circuits

◦ Though significant recent progress on multiplier circuits in isolation
[Kaufmann et al., 2017-2019]

◦ Software involving multiplication operations

Bit-Vector Verification of Hardware/Software

Hardware:
◦ Directly model circuits using Boolean logic and gate variables

Software:
◦ Directly model operations in bit-vector language

◦ Apply theories to simplify/prove via pre-processing (e.g. un-interpreted
functions, arithmetic identities)

Core of the challenge: Mix of Boolean logic and arithmetic

◦ If no direct solution, “bit-blast/flatten” formulas to convert arithmetic to
fixed bit-width, at least 32/64 bits

◦ Replace arithmetic operations using gate variables and constraints for
circuits that evaluate them

◦ Send resulting formula to SAT Solver.

Length 1:
◦ Use full adder circuit

◦ Conservation of weight: ����� + ���� = �� + �� + ���

Length �:
◦ Chain full adders to form ripple-carry adder circuit

���� = �� ⊕ �� ⊕ ���

���� = ���(��, ��, ���)

��

�� �

���

��

(� + �)�(� + �) (� + �)�

�!

�!

(� + �)!(� + �)"

Circuits for � + �
��

�����
����

����

�!��� ��
�!��� ��

×

�� �� ��� ��� !�� "�� #Outputs

Tableau

����� ������

��� � � ���

����� ������

�!��

�!�

�!��

���!� �!���!�!�!

�� $�� %

• Stack ripple-carry adders to make

array multiplier

Example Circuits for � × �

& �� �≠ �� �
�

�� ��

Example: Verifying array multiplier commutativity

Fix input bitwidth �.

Construct bit-blasted SAT formula encoding �� ≠ �� with array multipliers

()

Number of bits Seconds to show

�� ≠ �� unsat

5 0.01

6 0.2

7 0.5

8 11

9 43

10 743

11 Timeout

MULT MULT

� �� �

(��) (��)

• SAT formula: 100s-1000s of variables

• SAT solvers cannot solve this with

16-bit-vectors for any multiplier circuit
[Biere, 2016].

Commutativity is hard for CDCL SAT solvers

MiniSAT times

Linear arithmetic

Nonlinear arithmetic

Easy to check:
� + � = � + � (Commutativity)

(� + �) + (= � + (� + () (Associativity)

� ⋅ = � (Multiplicative Identity)

Hard to check
� ⋅ � = � ⋅ � (Commutativity)

� � + (= �� + �((Distributivity)

� ⋅ � ⋅ (= � ⋅ � ⋅ ((Associativity)

Fundamental barrier? Or feasible with better SAT-solving?

Arithmetic identities as indicators of complexity

Conjecture: CDCL SAT solvers take exponential time to

decide nonlinear arithmetic because resolution proofs require
exponential size.

• [Biere SAT’16] [Slobodova SAT’16] [Tomb SAT’16] [Kalla FMCAD’15]

Is resolution proof complexity a fundamental obstacle?

= == == == == =

& �� �≠ �� �
�

�� ��

Example: Verifying array multiplier commutativity

Start: branch to find first disagreeing output bit (�� branches)

Issue: output sensitive to all previous tableau entries
so obvious proof is exponential

()

≠ ≠= == == == == =
�� � = �� � = �

= == == == == =

& �� �≠ �� �
�

�� ��

Example: Verifying array multiplier commutativity

Key Idea 1: The critical strip of the prior *+, � columns suffices for UNSAT

()

≠ ≠= == == == == =
�� � = �� � = �

*+, � *+, �

= == =

& �� �≠ �� �
�

�� ��

Example: Verifying array multiplier commutativity

()

≠ ≠= =
�� � = �� � = �

*+, � *+, �

Key Idea 1: The critical strip of the prior *+, � columns suffices for UNSAT

= == =

& �� �≠ �� �
�

�� ��

Example: Verifying array multiplier commutativity

()

≠ ≠= =
�� � = �� � = �

*+, � *+, �

Key Idea 1: The critical strip of the prior *+, � columns suffices for UNSAT

Internal bits are the same

just in different order

Carry-in bits may be

completely different

but difference ≤ �

• Key Idea 2: Each critical strip has poly-size regular
resolution refutations

• Why?
• Follows from -(*+, �) pathwidth

• Resolution size at most exponential
in pathwidth. [Dechter 1996]

Example: Verifying array multiplier commutativity

�� ��
≠ ≠

*+, � *+, �

= == == =

Theorem: For array, diagonal and Booth multipliers, there are
polynomial size resolution proofs for any degree 2 identity.
[B, Liew CAV 2017, JACM 2020]

-.(�$)
-.(�$)
-.(� �)

� ⋅ � = � ⋅ �
� ⋅ � + (= � ⋅ � + � ⋅ (
� ⋅ + � = �� + �

Identity Proof size for bitwidth �

Result: Polynomial-size resolution proofs

Compare with circuit size -(��)

Polynomial size → practical CDCL SAT solving?

Solvers:
◦ Don’t find these proofs even given the

division into strips

◦ With the most extreme hand-holding
(force-fed order, etc.) can’t get any
closer empirically than a factor of �

◦ -.(�$) proofs seem too large in any
case.

◦ Target: 32 and 64 bits.

Number

of bits

Strips

�� ≠ ��
Full

�� ≠ ��

5 0.01 0.01

6 0.1 0.2

7 0.7 0.5

8 3 11

9 26 43

10 146 743

11 1055 Timeout

12 5676 Timeout

MiniSAT: Strips vs Full

Stronger proof system?

Stronger proof systems?

Truth Tables

DPLL Nullstellensatz

Resolution

Cutting Planes

Frege

AC0-Frege

Ext-Frege

SoS

Res(k)
Polynomial Calculus

Stronger proof systems?

Resolution

Cutting Planes

Polynomial Calculus

Beyond resolution: polynomial calculus

Polynomial Calculus (PC):

• Each line is a polynomial equation / = �
• Addition rule: / = �, /� = � → / + /� = �
• Multiplication rule: / = � → /0 = � for any polynomial 0

Models steps of Groebner basis reduction (GBR) algorithms

◦ Checks if spec polynomial / = � implied by polynomials / = �, /� = �, …

Polynomial calculus stronger than resolution ⇒ GBR more efficient than SAT?

• No for most non-algebraic problems.

• Yes for certain algebraic problems.

• [Sayed et al., 2016]: Verified 128-bit integer multipliers.

• [Kaufmann et al., 2017-2019]: Verified 1024-bit integer multipliers

Proof size in polynomial calculus

• [Kaufmann et al., 2019]: - �� length PC proof of word-level commutativity

• Idea generalizes to - �� length PC proofs of any word-level ring identity.

[Liew, B, Devriendt, Elffers, Nordström, FMCAD 2020]

Theorem: Polynomial calculus requires

a proof of size at least 3�/"5 to derive

any bit-equality �� 6 = �� 6.

A Roadblock for Polynomial Calculus

• Each line 8 is Boolean linear inequality ∑:��� ≥ <
• Linear combination (non-negative):

• Division:

Cutting Planes Proofs:

∑�:��� ≥ <
∑:��� ≥ <

�⌈ ⌉

Beyond resolution: cutting planes

(?, @ ≥ �)8 , 8� → ?8 + @8�

◦ Underlying proof system for the best pseudo-Boolean solvers

Cutting planes can extract bit-equalities!

Cutting planes can derive all � bit-equalities in - � steps!

Say we derive word-level equality �� = ��:

Two linear inequalities

� RoundingSat

(Pseudo-Boolean)

32 .002

64 .009

128 .04

256 .2

� Sat4j-Res

(SAT)

NaPS

(SAT)

16 3 2

20 81 39

24 TO 208

28 Error

And small cutting planes proofs at the word-level!

Theorem: There are - �� length cutting planes proofs for word-level
2-colorable ring identities. [Liew, et. al., FMCAD 2020]

2-colorable includes:

• �� = �� (commutativity)

• � + � (= �(+ �((distributivity)

• � + � A + (= A� + �A + �A + (� (double distributivity)

• � � + (+ A(= �� + � + A ((distribute then factor)

Key idea: we can do nonlinear reasoning within a linear proof system

by using only a little nonlinearity at a time!

Corollary: There are - �� length cutting planes proofs for bit-level
2-colorable ring identities. [Liew, et. al., FMCAD 2020]

A nonlinear format for cutting planes proofs

(6, �)-Cutting planes:

Up to 6 terms of degree � or less

(e.g. monomial, or 8 �� … ��)

Linear inequality:

∑:��� ≥ <
(6, �)-nonlinear inequality:

� + �� + ⋯ + �6 + ∑:��� ≥ <

• Linear combination rule:

Result must be (6, �)-nonlinear

• Division rule:

Generalizes immediately

• Multiply by variable rule:

• Linear combination rule:

• Division rule:

Cutting Planes:

#�� + A ≥ <
#��(+ A(− <(≥ �

8 , 8� → ?8 + @8�

∑�:��� ≥ <
∑:��� ≥ <

�⌈ ⌉
Result must be (6, �)-nonlinear

Result: Simulating (6, ��-Cutting planes

Theorem: A (6, ��-cutting planes proof of � lines can be simulated by a

standard cutting planes proof of at most 6 + " �6 ⋅ � lines.

[Liew, et. al., FMCAD 2020]

Simulation: Boolean 6, � -nonlinear inequality ↔ �6 linear inequalities.

E.g. 6 = , � �: ��� ≥ �� ≥
�� ≥

�, ,

�, � , �

�, ,

�, � , �

Simulating (6, �)-Cutting planes

We give - �� length (6, �)-cutting planes proofs with 6, � constant

Constant factor overhead simulation → - �� proof in standard cutting planes

Application: small proofs of 2-colorable identities

Theorem: A (6, �)-cutting planes proof of � lines can be simulated by a

standard cutting planes proof of at most 6 + " �6 ⋅ � lines.

[Liew, et. al., FMCAD 2020]

• Pseudo-Boolean (PB) solvers Sat4j and RoundingSat

• Sat4j: Saturation-based, fast at proving word-level equalities

• RoundingSat: Division-based, fast at extracting bit-level equalities.

• Combination: 256-bit commutativity for bit-level!

• 256-bit multiplier equivalence checking (e.g. array = diagonal)

• Requires value-based not clausal representation of 1-bit adders

• But cannot yet handle more complicated identities such as distributivity.

Finding cutting planes proofs via pB solvers

Number of

bits

Array

�� = ��
Array =

Diagonal

32 21 15

64 43 34

128 117 91

256 419 338

Sat4j + RoundingSat

• Can represent full adder with equation:

• Two inequalities instead of 14 clauses.

• Can represent addition � + � without a circuit:

• Even further, can represent multiplication �� without a circuit!

Another approach to bit-blasting

��
�����

����

����

The usual pseudo-Boolean advantage:

����� + ���� = �� + �� + ���

-le��,E = ���E

�� Tableau constraints Tableau sum constraint

∑��FE��,E = ∑�� �� �

∑���� + ∑���� = ∑�� � + � �

Even better pseudo-Boolean advantage:

i.e. ��−��,E ≥ �; �� −��,E ≥ �; ��,E − �� − �E ≥ −

• With algebraic representation of multiplication, RoundingSat can
outperform bit-vector solvers on crafted bit-vector inequalities.

• Inequalities mix multiplication and bit-wise operations.

Beating bit-vector solvers

bits RoundingSat Boolector Z3

20 0.8 10 15

24 0.3 117 1154

28 0.5 TO TO

32 0.6 TO TO

6(≥ �&6 (

Constant Bit-wise AND

Example:

Future directions

Pseudo-Boolean bit-vector solving

• Use preprocessing like CDCL/Bit-vector solvers

• Replace final SAT solver with PB solver.

• Algebraic bit-blasting

• Can we get good performance on industrial benchmarks with
multiplication?

Improve cutting planes solving

• Pseudo-Boolean solving still young.

• Could not solve more complicated 2-colorable identities.

• Crucial SAT solving improvements found over the last 25 years.

• Can we get analogous improvements for pseudo-Boolean solvers?

