Homework for "Solving Polynomials"

Jonathan D. Hauenstein

1. Use the resultant (eliminate x) to count the number of real solutions for the following systems:

•
$$f(x,y) = \begin{bmatrix} 2xy + 3x + 4y - 1 \\ y^2 + 5x + 2y - 3 \end{bmatrix};$$

• $f(x,y) = \begin{bmatrix} 5y^2 - 2xy + 3x + 4y - 1 \\ y^2 + 5x + 2y - 3 \end{bmatrix}$

(For a cubic polynomial $g(z) = az^3 + bz^2 + cz + d$, one option is the use the cubic discriminant $\Delta = b^2c^2 - 4ac^3 - 4b^3d - 27a^2d^2 + 18abcd.$

Recall that g = 0 has three real solutions if $\Delta > 0$ and one real solution if $\Delta < 0$.)

2. Compute the 2-homogeneous Bézout count for eigenvalue-eigenvector problem, i.e., for $A \in \mathbb{C}^{n \times n}$:

$$f(x,\lambda) = Ax - \lambda x$$

where $x \in \mathbb{P}^{n-1}$ and $\lambda \in \mathbb{C}$.

3. Describe the irreducible components of the 2×2 adjacent minors of a 3×3 matrix. That is, for

$$A = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{bmatrix},$$

we want to solve the system

$$f(x_1, \dots, x_9) = \begin{bmatrix} x_1 x_5 - x_2 x_4 \\ x_2 x_6 - x_3 x_5 \\ x_4 x_8 - x_5 x_7 \\ x_5 x_9 - x_6 x_8 \end{bmatrix}.$$

(These are the four minors dependent on x_5 .)

- 4. Compare linear and quadratic convergence by performing 5 Newton iterations with $x_0 = 2$ for
 - $f(x) = (x-1)^2;$
 - $f(x) = x^2 1$.
- 5. Test the divergence of Newton's method for Griewank-Osborne's system

$$f(x,y) = \left[\begin{array}{c} 29/16 \cdot x^3 - 2xy\\ y - x^2 \end{array}\right]$$

by starting at several points of your choice in $\mathbb{C}^2 \setminus \{x = 0\}$.