Homework for "Solving Polynomials"
 Jonathan D. Hauenstein

1. Use the resultant (eliminate x) to count the number of real solutions for the following systems:

- $f(x, y)=\left[\begin{array}{c}2 x y+3 x+4 y-1 \\ y^{2}+5 x+2 y-3\end{array}\right] ;$
- $f(x, y)=\left[\begin{array}{c}5 y^{2}-2 x y+3 x+4 y-1 \\ y^{2}+5 x+2 y-3\end{array}\right]$.
(For a cubic polynomial $g(z)=a z^{3}+b z^{2}+c z+d$, one option is the use the cubic discriminant

$$
\Delta=b^{2} c^{2}-4 a c^{3}-4 b^{3} d-27 a^{2} d^{2}+18 a b c d
$$

Recall that $g=0$ has three real solutions if $\Delta>0$ and one real solution if $\Delta<0$.)
2. Compute the 2-homogeneous Bézout count for eigenvalue-eigenvector problem, i.e., for $A \in \mathbb{C}^{n \times n}$:

$$
f(x, \lambda)=A x-\lambda x
$$

where $x \in \mathbb{P}^{n-1}$ and $\lambda \in \mathbb{C}$.
3. Describe the irreducible components of the 2×2 adjacent minors of a 3×3 matrix. That is, for

$$
A=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
x_{4} & x_{5} & x_{6} \\
x_{7} & x_{8} & x_{9}
\end{array}\right]
$$

we want to solve the system

$$
f\left(x_{1}, \ldots, x_{9}\right)=\left[\begin{array}{l}
x_{1} x_{5}-x_{2} x_{4} \\
x_{2} x_{6}-x_{3} x_{5} \\
x_{4} x_{8}-x_{5} x_{7} \\
x_{5} x_{9}-x_{6} x_{8}
\end{array}\right]
$$

(These are the four minors dependent on x_{5}.)
4. Compare linear and quadratic convergence by performing 5 Newton iterations with $x_{0}=2$ for

- $f(x)=(x-1)^{2}$;
- $f(x)=x^{2}-1$.

5. Test the divergence of Newton's method for Griewank-Osborne's system

$$
f(x, y)=\left[\begin{array}{c}
29 / 16 \cdot x^{3}-2 x y \\
y-x^{2}
\end{array}\right]
$$

by starting at several points of your choice in $\mathbb{C}^{2} \backslash\{x=0\}$.

