
Simons Institute Bootcamp 2021

Verification and Control of Partially
Observable Probabilistic Systems

Gethin Norman
University of Glasgow

Outline – Probabilistic Systems

Part 0: Introduction to probabilistic systems and model checking

Part 1: Discrete-time Markov chains (DTMCs)
− paths and probabilities for DTMCs
− probabilistic reachability and expected reachability
− extension to LTL and automata based properties

Part 2: Markov decision processes (MDPs)
− paths, strategies and probabilities for MDPs
− probabilistic reachability for MDPs
− extension to LTL and automata based properties

Part 3: Partially observable probabilistic systems
− including a recap of the background

Motivation

Guaranteeing the correctness of complex systems one needs to take
into account quantitative aspects

Modelling of probabilistic phenomena
− e.g. failure rates for physical components or uncertainty arising from

unreliable sensing of a continuous environment

Timing characteristics
− e.g. time-outs or delays in communication or security protocols

A further complication: such systems often require nondeterminism
− behaviour depends on inputs or instructions from some external entity

such as a controller or scheduler
− and for modelling concurrency and abstraction

Motivation

Automated verification techniques have been successfully used to
analyse quantitative properties of such systems

Models:
− Markov decision processes (MDPs) assuming a discrete model of time
− probabilistic timed automata (PTAs) assuming a dense model of time

Two dual problems:
− verification of some formally specified property for all possible

resolutions of nondeterminism or find optimal (min/max) value
− synthesis of a controller/strategy (i.e. means to resolve nondeterminism)

under which a property is guaranteed or value is optimised

Motivation

An important consideration is the extent to which the system’s state
is observable to the entity controlling it

Examples:

− when verifying a security protocol is secure under all potential attacks,
essential to model the fact that certain data is not visible to the attacker

− a controller for a robot can only make decisions based on information
that can be physically observed (i.e. through its sensors)

− when routing packets, a scheduler often cannot use channel state
information as it is unavailable due to the delays and costs associated
with channel probing

Motivation

Partially observable MDPs (POMDPs) are a natural way to extend MDPs
in order to tackle this problem in the discrete time case

However the analysis of POMDPs is considerably more difficult
− key problems are undecidable

The use of POMDPs is common in fields such as AI and planning
− but focus is on discounted and finite horizon problems

Limited progress in the development of practical techniques for
formal verification or exploration of their applicability

Overview

Techniques for the verification and control of partially observable,
probabilistic systems under both discrete and dense models of time

Approximate analysis of a finite-state POMDP
− the result is a pair of lower and upper bounds on the property of interest

• minimum/maximum reachability probability or expected reward
• as well as the synthesis of a ‘optimal’ controller/strategy

− if the results are not precise enough, we can refine and repeat

Extend to partially observable probabilistic timed automata (POPTAs)
− extends PTAs with notion of partial observability (from POMDPs)
− semantics of a POPTA is an (uncountable) infinite-state POMDP
− develop a digital clocks discretisation for POPTAs
− reduces the analysis of a POPTA to a finite-state POMDP

Outline

MDPs

POMDPs

PTAs

POPTAs

Implementation and experimental results

Conclusions

Markov decision processes

Model nondeterministic as well as probabilistic behaviour

An MDP is a tuple M =(S,s0,A,P,R) where
− S is a state space and s0 an initial state
− A is an action alphabet
− P:(S×A)➝Dist(S) is a (partial) transition probability relation

• in state s, action a is available (can be performed) if P(s,a) is defined
− R:(S×A)➝ℝ is a reward function

s1s0
0.7 0.3

1a,2

b,
1.3

c,2.8

a,0

a,0

s2

s3

0.5

0.5

1

1

Markov decision processes

In state s nondeterministic choice over available actions
− i.e. actions a for which P(s,a) is defined

If action a is chosen, then from s in the next discrete time step
− there is a transition to state t with probability P(s,a)(t)
− reward R(s,a) is accumulate

s1s0
0.7 0.3

1a,2

b,
1.3

c,2.8

a,0

a,0

s2

s3

0.5

0.5

1

1

MDPs – Paths and strategies

A path of an MDP is a sequence
π = s0 s1 s2

− such that P(si,ai) is defined and P(si,ai)(si+1)>0 for all i≥0
− a path resolves both the probabilistic and nondeterministic choices
− represents an execution of the system

A strategy (aka. 'scheduler', 'controller' or 'adversary') of an MDP
− is a resolution of the nondeterminism only
− given a finite path (history), strategy chooses the next action to perform

Under a strategy the behaviour of an MDP is fully probabilistic
− i.e. is a DTMC
− can therefore reason about the probabilities of events over paths

a0 a1 a2

MDPs – Optimal reachability values

Probabilistic and expected reachability are the fundamental concepts
in quantitative verification

− probability of reaching target T (set of states) under a strategy σ
− expected reward accumulated before reaching target T under a strategy σ
− consider optimal (minimum or maximum) value over all strategies
− fundamental in the analysis of general temporal logic properties including

• until, globally and more general LTL and automata-based properties
• expected time/step bounded cumulative and instant reward properties

Efficient algorithms (and tool support) exists
− e.g. using value iteration for the computation
− computes both the optimal value and an optimal strategy

• deterministic memoryless strategies are sufficient

Much more detail in the video lectures for parts 1 and 2

MDPs – Value iteration

Given function V:S➝ℝ, value iteration for expected reachability with
target T, corresponds to repeatedly performing for each state s

0 if s∈T

opta∈A{ R(s,a) + ∑t∈S P(s,a)(t)⋅V(t) } otherwise

where opt is either min or max

V(s) =

MDPs – Value iteration

Given function V:S➝ℝ, value iteration for expected reachability with
target T, corresponds to repeatedly performing for each state s

0 if s∈T

opta∈A{ R(s,a) + ∑t∈S P(s,a)(t)⋅V(t) } otherwise

where opt is either min or max

V(s) =

have reached the target, therefore reward
accumulated before reaching the target is 0

MDPs – Value iteration

Given function V:S➝ℝ, value iteration for expected reachability with
target T, corresponds to repeatedly performing for each state s

0 if s∈T

opta∈A{ R(s,a) + ∑t∈S P(s,a)(t)⋅V(t) } otherwise

where opt is either min or max

V(s) =

not reached target

MDPs – Value iteration

Given function V:S➝ℝ, value iteration for expected reachability with
target T, corresponds to repeatedly performing for each state s

0 if s∈T

opta∈A{ R(s,a) + ∑t∈S P(s,a)(t)⋅V(t) } otherwise

where opt is either min or max

V(s) =

reward accumulated
performing action a

in state s

MDPs – Value iteration

Given function V:S➝ℝ, value iteration for expected reachability with
target T, corresponds to repeatedly performing for each state s

0 if s∈T

opta∈A{ R(s,a) + ∑t∈S P(s,a)(t)⋅V(t) } otherwise

where opt is either min or max

V(s) =

the probability of making a transition
to t after performing a in state s

multiplied by the expected reward of
reaching the target from t

reward accumulated
performing action a

in state s

MDPs – Value iteration

Given function V:S➝ℝ, value iteration for expected reachability with
target T, corresponds to repeatedly performing for each state s

0 if s∈T

opta∈A{ R(s,a) + ∑t∈S P(s,a)(t)⋅V(t) } otherwise

where opt is either min or max

V(s) =

sum over all states t

the probability of making a transition
to t after performing a in state s

multiplied by the expected reward of
reaching the target from t

reward accumulated
performing action a

in state s

MDPs – Value iteration

Given function V:S➝ℝ, value iteration for expected reachability with
target T, corresponds to repeatedly performing for each state s

0 if s∈T

opta∈A{ R(s,a) + ∑t∈S P(s,a)(t)⋅V(t) } otherwise

where opt is either min or max

V(s) =

optimal value over all
possible action a

sum over all states t

the probability of making a transition
to t after performing a in state s

multiplied by the expected reward of
reaching the target from t

reward accumulated
performing action a

in state s

MDPs – Value iteration

Given function V:S➝ℝ, value iteration for expected reachability with
target T, corresponds to repeatedly performing for each state s

0 if s∈T

opta∈A{ R(s,a) + ∑t∈S P(s,a)(t)⋅V(t) } otherwise

where opt is either min or max
− under certain restrictions, repeatedly computing these values will

converge to the optimal expected reachability values for all states

The case of probabilistic reachability is very similar (see the videos)

V(s) =

Outline

MDPs

POMDPs

PTAs

POPTAs

Implementation and experimental results

Conclusions

POMDPs extend MDPs by restricting the extent to which their current
state can be observed

− several different definitions of observability in the literature

A POMDP is a tuple M=(S,s0,A,P,R,O,obs) where:
− (S,s0,A,P,R) is an MDP
− O is a finite set of observations
− obs:S➝O is a function labelling of states with observations

Requirement: for observationally equivalent states, the same actions
are available

− i.e. for states s and s′ such that obs(s)=obs(s′)
− if the available actions were different, then a strategy could differentiate

the states, and therefore they would not be observationally equivalent

Partially observable Markov decision processes

POMDPs

Notions of paths and strategies for MDPs transfer directly to POMDPs
However, for a POMDP we restrict to observation-based strategies

− must make the same choices for observationally equivalent paths

Formally for paths

π = s0 s1 s2 ... sn

π′= s0 s1 s2 ... sn

− if obs(si)=obs(si) and ai=ai for all i, then any strategy σ of the
POMDP must choose the same action after the paths π and π′

Optimal strategies for probabilistic and expected reachability are now
history dependent (deterministic strategies are still sufficient)

a0 a1 a2 an-1

a0 a1 a2 an-1′ ′ ′ ′
′

′

′ ′′

′

POMDP – Maze example

Robot placed uniformly at random
in a maze and tries to reach target

− based on [McCallum 1993]
− target is location 13
− four actions a robot can perform

• north, south, east and west
− the robot cannot see its current

location, only surrounding walls
• e.g. the locations labelled 5-10

yield the same observation
− strategy choices based only on walls it can sees (and seen previously)

Optimal expected number steps to reach the target is 5.23
− for the fully observable model (i.e. MDP) the optimal expected number

of steps equals 4.00

6

1 2 3 4

5 6 7

8 10

0

9

11 13 12

For POMDPs, determining optimal reachability probabilities and
expected rewards is undecidable, making exact solution intractable

A useful construction for a POMDP M is that of its belief MDP B(M)
− B(M) is a (fully observable) MDP
− has the same optimal probabilistic and expected reachability values
− cost of reducing a POMDP to an MDP: continuous (uncountable) state space

• states are ‘beliefs’ (probability distributions over the state space of M)

POMDPs – Optimal reachability values

we may not know which observationally-equivalent state we are in,
however we can determine the likelihood, based on the behaviour of

the POMDP, actions performed and what we have observed

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

probability of observing o
from s when performing a

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

probability of observing o
from s when performing a

probability of being in s
when performing a

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

probability of observing o
from s when performing a

probability of being in s
when performing a

sum over all states s
we can be in when

performing a

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

sum over all states s
we can be in when

performing a
probability of observing o
from s when performing a

probability of being in s
when performing a

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

− the belief reached from b after performing a and observing o, denoted
ba,o, is such that for any t∈S

Σs∈S P(s,a)(t)⋅b(s)

P[o|a,b]ba,o(t) =

0 otherwise

if obs(t)=o

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

− the belief reached from b after performing a and observing o, denoted
ba,o, is such that for any t∈S

ba,o(t) =

0 otherwise

if obs(t)=o
Σs∈S P(s,a)(t)⋅b(s)

P[o|a,b]

probability we believe
we are in state t

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

− the belief reached from b after performing a and observing o, denoted
ba,o, is such that for any t∈S

ba,o(t) =

0 otherwise

if obs(t)=o

observed o so must reach a state for which o is observed

Σs∈S P(s,a)(t)⋅b(s)

P[o|a,b]

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

− the belief reached from b after performing a and observing o, denoted
ba,o, is such that for any t∈S

probability of being in s
when performing a

ba,o(t) =

0 otherwise

if obs(t)=o
Σs∈S P(s,a)(t)⋅b(s)

P[o|a,b]

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

− the belief reached from b after performing a and observing o, denoted
ba,o, is such that for any t∈S

probability of reaching t
from s when performing a

probability of being in s
when performing a

ba,o(t) =

0 otherwise

if obs(t)=o
Σs∈S P(s,a)(t)⋅b(s)

P[o|a,b]

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

− the belief reached from b after performing a and observing o, denoted
ba,o, is such that for any t∈S

probability of reaching t
from s when performing a

probability of being in s
when performing a

ba,o(t) =

0 otherwise

if obs(t)=o

sum over all states s
we can be in when

performing a

∑s∈S P(s,a)(t)⋅b(s)

P[o|a,b]

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

− the belief reached from b after performing a and observing o, denoted
ba,o, is such that for any t∈S

ba,o(t) =

0 otherwise

if obs(t)=o

probability of reaching t from belief b when performing a

∑s∈S P(s,a)(t)⋅b(s)

P[o|a,b]

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

− the belief reached from b after performing a and observing o, denoted
ba,o, is such that for any t∈S

ba,o(t) =

0 otherwise

if obs(t)=o

probability of observing o from belief b when performing a

probability of reaching t from belief b when performing a

Σs∈S P(s,a)(t)⋅b(s)

P[o|a,b]

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

− the belief reached from b after performing a and observing o, denoted
ba,o, is such that for any t∈S

ba,o(t) =

0 otherwise

if obs(t)=o

probability of reaching t from belief b when performing a and observing o
probability of observing o from belief b when performing a

∑s∈S P(s,a)(t)⋅b(s)

P[o|a,b]

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

− the belief reached from b after performing a and observing o, denoted
ba,o, is such that for any t∈S

ba,o(t) =

0 otherwise

if obs(t)=o

probability of reaching t from belief b when performing a, conditioned on observing o

∑s∈S P(s,a)(t)⋅b(s)

P[o|a,b]

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

− the belief reached from b after performing a and observing o, denoted
ba,o, is such that for any t∈S

− reward accumulated after performing action a in belief b

R(b,a) = Σs∈S R(s,a)⋅b(s)

ba,o(t) =

0 otherwise

if obs(t)=o
Σs∈S P(s,a)(t)⋅b(s)

P[o|a,b]

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

− the belief reached from b after performing a and observing o, denoted
ba,p, is such that for any t∈S

− reward accumulated after performing action a in belief b

R(b,a) = Σs∈S R(s,a)⋅b(s)

probability of being in s
ba,o(t) =

0 otherwise

if obs(t)=o
Σs∈S P(s,a)(t)⋅b(s)

P[o|a,b]

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

− the belief reached from b after performing a and observing o, denoted
ba,o, is such that for any t∈S

− reward accumulated after performing action a in belief b

R(b,a) = Σs∈S R(s,a)⋅b(s)

ba,o(t) =

0 otherwise

if obs(t)=o

probability of being in s

Σs∈S P(s,a)(t)⋅b(s)

P[o|a,b]reward accumulated when
performing action a in state s

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

− the belief reached from b after performing a and observing o, denoted
ba,o, is such that for any t∈S

− reward accumulated after performing action a in belief b

R(b,a) = Σs∈S R(s,a)⋅b(s)

ba,o(t) =

0 otherwise

if obs(t)=o

probability of being in s
sum over all states s
we can be in when

performing a

Σs∈S P(s,a)(t)⋅b(s)

P[o|a,b]reward accumulated when
performing action a in state s

POMDPs - Belief MDP

Consider belief MDP B(M) of POMDP M=(S,s0,A,P,R,O,obs)

For belief b (distribution over S), observation o and action a we have
− probability of observing o after performing action a in belief b

P[o|a,b] = ∑s∈S b(s)⋅(∑t∈S∧obs(t)=o P(s,a)(t))

− the belief reached from b after performing a and observing o, denoted
ba,o, is such that for any t∈S

− reward accumulated after performing action a in belief b

R(b,a) = Σs∈S R(s,a)⋅b(s)

ba,o(t) =

0 otherwise

if obs(t)=o
Σs∈S P(s,a)(t)⋅b(s)

P[o|a,b]
probability of being in s

sum over all states s
we can be in when

performing a
reward accumulated when

performing action a in state s

POMDPs – Belief MDP

Recall for MDP and state s value iteration corresponds to performing

V(s) = opta∈A { R(s,a) + ∑t∈S P(s,a)(t)⋅V(t) }

For a belief b value iteration on B(M) corresponds to performing

V(b) = opta∈A { R(b,a) + ∑o∈O P[o|a,b]⋅V(ba,o) }

POMDPs – Belief MDP

Recall for MDP and state s value iteration corresponds to performing

V(s) = opta∈A { R(s,a) + ∑t∈S P(s,a)(t)⋅V(t) }

For a belief b value iteration on B(M) corresponds to performing

V(b) = opta∈A { R(b,a) + ∑o∈O P[o|a,b]⋅V(ba,o) }

− now update based on what we observe as opposed to the
successor states using:

POMDPs – Belief MDP

Recall for MDP and state s value iteration corresponds to performing

V(s) = opta∈A { R(s,a) + ∑t∈S P(s,a)(t)⋅V(t) }

For a belief b value iteration on B(M) corresponds to performing

V(b) = opta∈A { R(b,a) + ∑o∈O P[o|a,b]⋅V(ba,o) }

− now update based on what we observe as opposed to the
successor states using:
• R(b,a) reward accumulated after performing action a in belief b

POMDPs – Belief MDP

Recall for MDP and state s value iteration corresponds to performing

V(s) = opta∈A { R(s,a) + ∑t∈S P(s,a)(t)⋅V(t) }

For a belief b value iteration on B(M) corresponds to performing

V(b) = opta∈A { R(b,a) + ∑o∈O P[o|a,b]⋅V(ba,o) }

− now update based on what we observe as opposed to the
successor states using:
• R(b,a) reward accumulated after performing action a in belief b
• P[o|a,b] probability of observing o after performing action a in belief b

POMDPs – Belief MDP

Recall for MDP and state s value iteration corresponds to performing

V(s) = opta∈A { R(s,a) + ∑t∈S P(s,a)(t)⋅V(t) }

For a belief b value iteration on B(M) corresponds to performing

V(b) = opta∈A { R(b,a) + ∑o∈O P[o|a,b]⋅V(ba,o) }

− now update based on what we observe as opposed to the
successor states using:
• R(b,a) reward accumulated after performing action a in belief b
• P[o|a,b] probability of observing o after performing action a in belief b
• ba,o the belief reached from b after performing a and observing o

POMDPs – Grid based methods

The set of beliefs, the set of distributions Dist(S), is the state space
− therefore the state space is uncountable

Need to resort to an approximate solution of the belief MDP
− grid based methods: computes (approximates) values for a finite set of

representative beliefs G = {g1,…,gN} whose convex hull is Dist(S)

Requires interpolation
− given arbitrary belief (distribution) b find real constants γ1,…,γN such that

b = γ1⋅g1 + ... + γN⋅gN
• constants exist as we require the convex hull of G to be Dist(S)

Will discuss a concrete implementation later
− i.e. how to come up with representative beliefs

POMDPs – Grid based methods

Approximate solution: value iteration over the grid G = {g1,…,gN}

For a grid point gi value iteration on B(M) corresponds to performing

V(gi) = opta∈A { R(gi,a) + ∑o∈O P[o|a,g]⋅V(ga,o) }

− as we have seen, we can compute R(gi,a), P[o|a,gi] and ga,o for each
o and a and there are only finitely many observations and actions

− however, no reason for ga,o to be a grid point so value V(ga,o) is unknown
• ga,o the belief reached from gi after performing a and observing o
• unless o is a target observation in which case V(ga,o)=0

i

i

i i

i

POMDPs – Grid based methods

Approximate solution: value iteration over the grid G = {g1,…,gN}

For a grid point gi value iteration on B(M) corresponds to performing

V(gi) = opta∈A { R(gi,a) + ∑o∈O P[o|a,g]⋅V(ga,o) }

− as we have seen, we can compute R(gi,a), P[o|a,gi] and ga,o for each
o and a and there are only finitely many observations and actions

− however, no reason for ga,o to be a grid point so value V(ga,o) is unknown
− by construction of the grid points there exists constants γ1,…,γN such that

ga,o = γ1⋅g1 +... + γN⋅gN
− we therefore instead approximate V(ga,o) with γ1⋅V(g1) + ... + γN⋅V(gN)

i

i

i

i i

i

i

POMDPs – Grid based methods

After performing value iteration which has been proved with converge
− i.e. finding values V(g1),…,V(gN)

We can then synthesise an ‘optimal’ finite-memory strategy σopt
− the choices of this strategy are built by stepping through the belief MDP
− for the current belief, choosing action that achieves the ‘optimal’ value
− for any belief b the ‘optimal’ action is given by

σopt(b) = argopta∈A { R(b,a) + ∑o∈OP[o|a,b]⋅(γ1⋅V(g1)+...+γN⋅V(gN)) }

Can then build and solve a DTMC using the strategy’s choices

approximation of V(ba,o)

where ba,o = γ1⋅g1 + ... + γN⋅gN

Slight detour

In practice, not usually interested in knowing that all reachability
values are between the minimum and maximum values

Instead just interested in one of the optimal reachability values or
optimal strategies

When considering worst case behaviour
− maximum probability of an error or expected time/cost
− minimum probability message arrives or expected profit

For controller synthesis the best case is of interest
− controller that minimizes probability of an error or expected time/cost
− controller that maximizes probability message arrives or expected profit

POMDPs – Grid based methods

Consider the case of probabilistic reachability

Value iteration on grid yields an over approximation of optimal values
− based on results from [Yu & Bertsekas 2004]

pgrid pgrid
min max

pmin pmax0 1

POMDPs – Grid based methods

Consider the case of probabilistic reachability

Value iteration on grid yields an over approximation of optimal values

Synthesize a finite memory strategy σopt using the obtained results
yields under approximation of optimal values

pσmin maxpgrid pgrid
min maxpσ

pmin pmax0 1

POMDPs – Grid based methods

Consider the case of probabilistic reachability

Value iteration on grid yields an over approximation of optimal values

Synthesize a finite memory strategy σopt using the obtained results
yields under approximation of optimal values

Gives us two sided bounds for each optimal value and an indication of
how ‘optimal’ is the synthesized strategy σopt

pσmin maxpgrid pgrid
min maxpσ

pmin pmax0 1

POMDPs – Grid based methods

Consider the case of probabilistic reachability

Value iteration on grid yields an over approximation of optimal values

Synthesize a finite memory strategy σopt using the obtained results
yields under approximation of optimal values

Gives us two sided bounds for each optimal value and an indication of
how ‘optimal’ is the synthesized strategy σopt

If the bounds/strategy are too coarse can refine the grid and repeat
− no guarantee this will yield tighter bounds (problem is undecidable)
− all we have is asymptotic convergence (converges as we go to infinity)

Interlude - The dining cryptographers problem

Problem
− N cryptographers share a meal
− the meal is either paid for by the master or by one of the cryptographers
− the master decides who pays
− each cryptographer is informed by the master whether or not they pay

Goal
− the cryptographers would like to know whether the meal is being paid for

by the master or one of themselves
− without knowing who is paying and without involving the master

Chaum’s solution [Chaum, 1988]
− each cryptographer flips a coin
− tells only their left neighbour the

value of the coin
− each cryptographer looks at the

two coins they can see
• their own coin and their right

neighbour’s coin
− if the cryptographer is not paying announces:

• agree if the coins agree
• disagree otherwise

− if the cryptographer is paying announces:
• disagree if the coins agree
• agree otherwise

crypt3

crypt1 crypt2coin2

coin1 coin3

Interlude - The dining cryptographers problem

Interlude - The dining cryptographers problem

Chaum’s solution [Chaum, 1988]
− if the cryptographer is not paying announces:

• agree if the coins agree
• disagree otherwise

− if the cryptographer is paying announces:
• agree if the coins agree
• disagree otherwise

Correctness: an odd number of agree’s indicates that the master paid
while an even number indicates that a cryptographer paid

Anonymity: in the latter case, neither the non-paying cryptographers
nor any external observer will be able to deduce who is paying

crypt3

crypt1 crypt2coin2

coin1 coin3

Without POMDPs can verify in the probabilistic model checker PRISM
− correctness is straightforward
− checking anonymity requires 2N properties to be verified and is a hack

• I did the hacking

POMDP model in PRISM
− model is very simple and only one property to check
− one cryptographer guesses who paid after the announcements assuming

which of the other N-1 cryptographer pays was random chosen
− not a hack

Quick demo...

Interlude - The dining cryptographers problem

Outline

MDPs

POMDPs

PTAs

POPTAs

Implementation and experimental results

Conclusions

Time, clocks and Zones

Dense time domain: non-negative reals ℝ

Finite set of clocks denoted X
− clock x∈X is a variables taking values from time domain ℝ
− clocks increase at the same rate as real time and can be reset to 0
− a clock valuation over the clocks X is a vector v∈ℝX

• for t∈ℝ, v+t is the clock valuation where (v+t)(x)=v(x)+t for all x∈X

Zones over clocks X, denoted Zones(X), are given by the syntax:
− ζ ::= x≤d | c≤x | x+c ≤ y+d | ¬ζ | ζ∧ζ

• where x,y∈X and c,d∈ℕ
− can be considered as a subclass of polyhedra

A clock valuation v satisfies a zone ζ if
− ζ resolves to true after substituting each clock x∈X with v(x)

Probabilistic timed automata (PTAs)

Probabilistic timed automata (PTAs)
− Markov decision processes (MDPs) + real-valued clocks
− or timed automata + discrete probabilistic choice
− model probabilistic, nondeterministic and timed behaviour

PTA is a tuple (L,l0,Act,X,inv,enab,prob,r)
− L is a finite set of locations with an initial location l0∈L
− Act is a finite set of actions
− X is a finite set of clocks
− inv:L➝Zones(X) is an invariant condition
− enab:(L×Act)➝Zones(X) is an enabling condition
− prob:(L×Act)➝Dist(2X×L) is a probabilistic transition function
− r=(rL,rA) is a reward structure where rL:L➝ℝ and rA:(L×Act)➝ℝ

PTAs - Example

Models a simple probabilistic communication protocol
− starts in location di;

di

0.1

x≤2

0.9

x≥2
send

x≥1

x:=0

retry

si
x≤3

sr
true

0.95

x:=0

done
x≥1

0.05
x:=0

location

PTAs - Example

Models a simple probabilistic communication protocol
− starts in location di; after between 1 and 2 time units, the protocol

attempts to send the data

action

invariant

guard

di

0.1

x≤2

0.9

x≥2
send

x≥1

x:=0

retry

si
x≤3

sr
true

0.95

x:=0

done
x≥1

0.05
x:=0

PTAs - Example

Models a simple probabilistic communication protocol
− starts in location di; after between 1 and 2 time units, the protocol

attempts to send the data
• with probability 0.9 data is sent correctly, move to location sr

di

0.1

x≤2

0.9

x≥2
send

x≥1

x:=0

retry

si
x≤3

sr
true

0.95

x:=0

done
x≥1

0.05
x:=0

PTAs - Example

Models a simple probabilistic communication protocol
− starts in location di; after between 1 and 2 time units, the protocol

attempts to send the data
• with probability 0.9 data is sent correctly, move to location sr
• with probability 0.1 data is lost, move to location si

clock reset

di

0.1

x≤2

0.9

x≥2
send

x≥1

x:=0

retry

si
x≤3

sr
true

0.95

x:=0

done
x≥1

0.05
x:=0

PTAs - Example

Models a simple probabilistic communication protocol
− starts in location di; after between 1 and 2 time units, the protocol

attempts to send the data
• with probability 0.9 data is sent correctly, move to location sr
• with probability 0.1 data is lost, move to location si

− in location si, after 2 to 3 time units, attempts to retry
• correctly sent with probability 0.95 and lost with probability 0.05

di

0.1

x≤2

0.9

x≥2
send

x≥1

x:=0

retry

si
x≤3

sr
true

0.95

x:=0

done
x≥1

0.05
x:=0

PTAs - Example

Models a simple probabilistic communication protocol
− starts in location di; after between 1 and 2 time units, the protocol

attempts to send the data
• with probability 0.9 data is sent correctly, move to location sr
• with probability 0.1 data is lost, move to location si

− in location si, after 2 to 3 time units, attempts to retry
• correctly sent with probability 0.95 and lost with probability 0.05

di

0.1 0.05

x≤2

0.9

x≥2∧y≤10
send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0

done
x≥1

can now only retry if
it is also the case that

less than 10 times
units have elapsed
since initialization

PTAs - Semantics

Semantics of a PTA is an infinite state MDP
− states of the MDP are location-clock valuation pairs (l,v) ∈ L×ℝX

such that invariant inv(l) is satisfied by the clock valuation v
− initial state is the initial location with all clocks initialized to zero
− actions of the MDP are time-PTA action pairs (t,a) ∈ ℝ×Act

• corresponds to letting t time units pass and then performing action a

In state (l,v) a nondeterministic choice over the time t that elapses
and action a performed under the requirement that from (l,v):

− the invariant inv(l) is continuously satisfied during time t
• i.e. v+t′ satisfies inv(l) for all 0≤t′≤t

− a is enabled after t time units have elapsed
• i.e. enab(l,a) is satisfied by v+t

− if a is chosen, then probability of moving to location l′ and resetting
the set of clocks Y equals prob(l,a)(l′,Y)

PTAs - Semantics

(di,x=0)

(1.1,send)

(di,x=1.1)

0.10.9

(sr,x=1.1) (si,x=0)

(2.7,retry)

(si,x=2.7)

0.050.95

(sr,x=2.7) (si,x=0)

(8.66,done)

(sr,x=0)

⋮

⋮ ⋮

Example execution (DTMC):

di

0.1 0.05

x≤2

0.9

x≥2
send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0

done
x≥1

PTAs - Semantics

PTAs have two kinds of rewards:
− location rewards accumulated at rate rL(l) in location l as time passes
− action rewards accumulated instantaneous with value rA(l,a) when

taking action a in l

PTAs equipped with such reward structures are a probabilistic
extension of linearly-priced timed automata

− also called weighted timed automata

PTAs - Digital clocks

Clocks can only take integer (digital) values
− i.e. time domain is a subset of ℕ as opposed to ℝ

Digital clocks semantics yields a finite-state MDP which preserves
optimal probabilistic and expected reachability values

− under the requirement that zones are closed (no strict inequalities) and
diagonal-free (no comparison of clock values)

− clocks bounded by kmax+1, where kmax is the maximum constant in PTA

Automated analysis exists (e.g. using PRISM)
− translation from PTA to a finite state MDP can also be done manually
− many case studies despite restrictions
− can lead to large MDPs (partially alleviated by symbolic model checking)

PTAs - Alternative approaches for analysis

The region graph useful for proving decidability, but exponential size

Zone-based approaches based on “building” a finite state MDP by
traversing the PTA where the states are location-zone pairs

− forwards reachability
• can only compute upper bounds on maximum reachability probabilities
• extended to computation of optimal reachability probabilities using

game-based abstraction refinement but introduces non-convex zones
• more complex in practice to perform operations on such zones

− backwards reachability
• can compute optimal reachability probabilities and rewards
• requires non-convex zones for minimum probabilities and rewards
• rational constants in zones also required for rewards

Outline

MDPs

POMDPs

PTAs

POPTAs

Implementation and experimental results

Conclusions

Partially observable PTAs (POPTAs)

POPTA is a tuple (L,l0,Act,X,inv,enab,prob,r,OL,obsL)
− (L,l0,Act,X,inv,enab,prob,r) is a PTA
− OL is a finite set of observations
− obsL:L➝OL is a labelling of locations with observations

Require that for any locations l and l′ :
− if obsL(l)=obsL(l′), then inv(l)=inv(l′) and enab(l,a)=enab(l′,a)

for all actions a
− i.e. for any observationally equivalent locations the invariant and

enabling conditions are the same
− similar to the requirement on POMDPs
− otherwise the strategy could differentiate the locations, and therefore

they would not be observationally equivalent

Partially observable PTAs (POPTAs)

POPTA is a tuple (L,l0,Act,X,inv,enab,prob,r,OL,obsL)
− (L,l0,Act,X,inv,enab,prob,r) is a PTA
− OL is a finite set of observations
− obsL:L➝OL is a labelling of locations with observations

The semantics is an (uncountable) infinite state POMDP
− states as for PTAs: location-clock valuation pairs (l,v)
− probabilistic transition and reward functions as for PTAs

− observations of the POMDP given by obs((l,v)) = (obsL(l),v)

Note: all clocks are visible
− things gets even more complex if (some) clocks are hidden - underlying

semantics will need to be a partially observable (two player) game

POPTAs and digital clocks

Theorem. Under the following restrictions the digital clocks semantics
preserves probabilistic and expected reachability values of POPTAs
1. zones must be closed and diagonal free
− as for PTAs and TAs is required when using digital clocks semantics

2. resets can only be applied to clocks that are non-zero
− clock resets can be used to differentiate between locations

• when there are probabilistic edges going to observationally equivalent
locations where only one of the edges resets a (visible) clock

− without this with real-valued clocks, a strategy can do this at no “cost”
• can choose an arbitrarily small amount of time to elapse before taking the

corresponding transition
− while with digital clocks must let at least 1 time unit pass

Both restrictions can be easily checked syntactically

POPTAs and digital clocks

Semantics of a POPTA is an infinite state POMDP

Using digital clocks semantics we can construct an ‘equivalent’ finite
state POMDP

Can then analyse the finite POMDP using grid-based techniques
− again produce lower and upper bounds on the property of interest

and ‘optimal’ strategy σopt
− and if the results are not precise enough, we can refine and repeat

0 1

pσmin maxpgrid pgrid
min maxpσ

pmin pmax

Outline

MDPs

POMDPs

PTAs

POPTAs

Implementation and experimental results

Conclusions

Implementation – For POMPs and POPTAs

Recently integrated into the main branch of PRISM
− extends existing modelling language for MDPs and PTAs
− allows model variables to be specified as either observable or hidden

• or just the truth values only predicates over variables to be visible
− computes a pair of bounds for a given property
− and synthesizes a corresponding strategy

Case studies available
− through the PRISM website

Implementation – For POMPs and POPTAs

Uses a fixed grid from the literature [Lovejoy 1991]
− requires a grid resolution constant M∈ℕ, grid is then given by
− G = { (1/M)·v | v∈ℕS ∧ ∑ivi = M } ⊆ Dist(S)

A benefit is that interpolation is very efficient
− i.e. given arbitrary belief (distribution) b finding constants γ1,…,γN such

that b = γ1⋅g1 + ... + γN⋅gN
− this using a process called triangulation

A downside is that the grid size is exponential in M
− efficiency might be improved with more complex grids that vary using

value iteration
• e.g. grid updated based on the beliefs found during each iteration

Case studies

Wireless downlink scheduling of traffic to number of users/channels
− uses hard deadlines (packets not sent by their deadline are dropped)
− packets have priorities (low, medium or high)
− status of channels is not available (unobservable)

• since probing channels requires non-negligible network resources
− generate optimal scheduling of packets for time bounded properties

• minimum number of dropped packets
• maximize expected cumulative reward

• rewards accumulated when packets sent and based on priorities

Analysis demonstrates that idling is sometimes the optimal choice
− idling: not sending a packet when there are packets to send
− confirms results obtained from handwritten proofs
− idling allows the scheduler to learn more about the status of channels

which have high priority packets scheduled

Case studies

NRL (Naval Research Laboratory) Pump
− aims to prevent a covert channel leaking information from ‘high’ to ‘low’

through the timing of messages and acknowledgements
− buffers communication adding probabilistic delays to acks from ‘high’

to minimize information leakage while maintaining network performance

Modelled the pump as a POPTA using a hidden variable for a secret
value z∈{0,1} which ‘high’ tries to covertly communicate to ‘low’

− ‘high’ adds a delay of either h0 or h1, depending on the value of z,
whenever sending an acknowledgement to ‘low’

Maximum probability that ‘low’ can correctly guess the secret value
after N messages sent (and acknowledgements received) by ‘low’

0
5

10
15

20

0

10

20
0.4

0.6

0.8

1

h
1

N

m
a

x.
 p

ro
b

 g
u

e
ss

 c
o

rr
e

ct
ly

Case studies – NRL Pump

increasing the difference between h0 and h1 or N improve the chances of ‘low’
correctly guessing the secret

N – number of messages ‘low’ sends (and acks ‘high’ returns)
hi – delay added by high if secret value equals i (h0=2 in all plots)

N
h1

0
5

10
15

20

0

10

20
0.4

0.6

0.8

1

h
1

N

m
a

x.
 p

ro
b

 g
u

e
ss

 c
o

rr
e

ct
ly

Case studies – NRL Pump

increasing the difference between h0 and h1 or N improve the chances of ‘low’
correctly guessing the secret, at the cost of a decrease in network performance

0
5

10
15

20

0

10

20
0

100

200

300

400

h
1

N

e
xp

e
ct

e
d
 t
im

e
 t
o
 t
ra

n
sm

it

N – number of messages ‘low’ sends (and acks ‘high’ returns)
hi – delay added by high if secret value equals i (h0=2 in all plots)

h1
N h1N

Case studies

Task scheduling
− processors have different speeds and energy consumption
− scheduler cannot observe if a process is sleeping or idling
− synthesize optimal schedulers

• minimising expected execution time or energy usage

Non-repudiation protocol
− designed to allow an originator to send information to a recipient
− guarantees non-repudiation

• neither party can deny having participated in the information transfer
− recipient cannot observe the number of messages the originator will send
− maximum probability that recipient gains an unfair advantage

• gains information from originator while able to deny participation

Analysis of the results

Analysed POPTAs where integer semantics yields POMDPs of up to
60,000 states

Verification/synthesis for POMDPs and POPTAs usually taking just a
few seconds and, at worst, 20 minutes

In general, the lower and upper bounds generated are very close (or
even equal, in which case we obtain precise results)

− although in some case bounds do not converge given memory limitations
− grid approximation can have millions states

Outline

MDPs

POMDPs

PTAs

POPTAs

Implementation and experimental results

Conclusions

Conclusions

Model non-determinism, real-time, probability & partial observability
− all are required for many real-world case studies

Future work and improvements include
− only presented a simple solution method for POMDPs
− many more advanced techniques in AI and planning

• e.g. grid points are not not fixed

− symbolic techniques (currently only have an explicit implementation)
− use zone based approach (most successful approach for PTAs and TAs)
− extend POPTAs with unobservable clocks

• need a second player (environment) to make choices based on the values
of the hidden clocks some work on this for (non-probabilistic) TAs

• however partially observable stochastic games are even harder to solve

Questions?

