
Probabilistic Systems

Dr. Gethin Norman
School of Computing Science

University of Glasgow
gethin.norman@glasgow.ac.uk

Simons Institue Bootcamp 2021

Introduction

Why probability?

Some systems are inherently probabilistic…

Randomisation, e.g. in distributed coordination algorithms
− as a symmetry breaker in leader election protocols

Examples: real-world protocols featuring randomisation
− IEEE 802.3 CSMA/CD, IEEE 802.11 Wireless LAN (WiFi)

• use randomised back-off schemes
− IEEE 1394 Firewire (root contention), Bluetooth (device discovery)

• have a random choice of waiting time
− IPv4 Zeroconf dynamic configuration (link-local addressing)

• makes a random choice over a set of possible addresses
− Randomised algorithms for anonymity, contract signing, …

2Simons Institute Bootcamp

Why probability?

Some systems are inherently probabilistic…

Randomisation, e.g. in distributed coordination algorithms
− as a symmetry breaker in leader election protocols

Modelling uncertainty and performance
− to quantify rate of failures, express Quality of Service

Examples:
− computer networks, embedded systems
− power management policies
− nano-scale circuitry: reliability through defect-tolerance

3Simons Institute Bootcamp

Why probability?

Some systems are inherently probabilistic…

Randomisation, e.g. in distributed coordination algorithms
− as a symmetry breaker in leader election protocols

Modelling uncertainty and performance
− to quantify rate of failures, express Quality of Service

For quantitative analysis of software and systems
− to quantify resource usage given a policy

“the minimum battery capacity for a given scenario is ..”

And many others, e.g. biological systems

4Simons Institute Bootcamp

Model checking

Property
specification

e.g. LTL

Result
System

Counter-
example

(error trace)

System
requirements

G ¬error

Model checker
e.g. SPIN

Finite-state model
e.g. Kripke structure

5Simons Institute Bootcamp

Probabilistic model checking

Probabilistic model
e.g. Markov chain

Result

Quantitative
results

System

Counter-
example

P=?[G ¬error]

Probabilistic
model checker

e.g. PRISM

6Simons Institute Bootcamp

0.5 0.4

0.1

Probabilistic
property

specification

System
requirements

Case study: FireWire protocol

FireWire (IEEE 1394)
− high-performance serial bus for networking

multimedia devices; originally by Apple
− "hot-pluggable" - add/remove devices at any time
− no requirement for a single PC (need acyclic topology)

Root contention protocol
− leader election algorithm, when nodes join/leave
− symmetric, distributed protocol
− uses electronic coin tossing and timing delays
− nodes send messages: "be my parent"
− root contention: when nodes contend leadership
− random choice: "fast"/"slow" delay before retry

7Simons Institute Bootcamp

FireWire example

8Simons Institute Bootcamp

FireWire leader election

R

nodes send “be my parent requests”
(when all but one of its neighbours are children)

9Simons Institute Bootcamp

nodes send “be my parent requests”
(when all but one of its neighbours are children)

FireWire root contention

root
contention

R
H HH T

10Simons Institute Bootcamp

11

FireWire analysis

Probabilistic model checking using PRISM
− timing delays taken from standard
− model includes:

• concurrency: messages between nodes and wires
• underspecification of delays (upper/lower bounds)

− max. model size: 170 million states

Analysis:
− verified that root contention always

resolved with probability 1
− investigated time taken for leader election

and the effect of using biased coin

11Simons Institute Bootcamp

FireWire: Analysis results

“minimum
probability
of electing

leader
by time T”

12Simons Institute Bootcamp

FireWire: Analysis results

“minimum
probability
of electing

leader
by time T”

using a biased coin
(short wire)

13Simons Institute Bootcamp

FireWire: Analysis results

“maximum
expected

time to elect
a leader”

using a biased coin

14Simons Institute Bootcamp

FireWire: Analysis results

using a
biased coin
is beneficial

“maximum
expected

time to elect
a leader”

15Simons Institute Bootcamp

Probabilistic model checking inputs

Discrete-time models: variants of Markov chains
− discrete-time Markov chains
− Markov decision processes
− turn-based stochastic games
− concurrent stochastic games
− partially observable Markov decision processes and games

Continuous and real-time models
− continuous time Markov chains
− probabilistic timed automata

• plus game-based and partially observable variants

− stochastic hybrid automata

16Simons Institute Bootcamp

Probabilistic model checking inputs

Game-based models
− allow the modelling of collaborative and competitive behaviour between

between agents, possibly with differing or opposing goals
− e.g. security (system vs. attacker),
− e.g. controller synthesis (controller vs. environment)

Partial observability
− resolve actions based on observations only
− e.g. a robot can only make decisions based on sensors
− e.g. a scheduler cannot probe state of a component

17Simons Institute Bootcamp

Probabilistic model checking inputs

Specifications informally:
− “probability of delivery within time deadline is …”
− “expected time until message delivery is …”
− “expected power consumption is …”

Specifications formally:
− probabilistic temporal logics: PCTL, LTL, CSL, RPATL …

Will focus on probabilistic and expected reachability
− these are fundamental properties

18Simons Institute Bootcamp

Probabilistic model checking involves…

Construction of models
− from a description in a high-level modelling language

Probabilistic model checking algorithms
− graph-theoretical algorithms

• e.g. for reachability, identifying strongly connected components and
qualitative properties (with probability 0 or 1)

− numerical computation
• linear equation systems and linear optimisation problems
• iterative methods, direct methods
• uniformisation, shortest path problems

− automata for regular languages
− also sampling-based (statistical) for approximate analysis

• e.g. hypothesis testing based on simulation runs

19Simons Institute Bootcamp

Extensions - Strategy/controller synthesis

Verification vs. control

− verify that a system is “correct” for any environment/adversary/…
• counterexample yields flaw/attack/...

− synthesise a "correct-by-construction” controller from formal specification
• witness yields strategy/controller

Applications
− dynamic power management,

robots/autonomous vehicle navigation,
task/network scheduling,
security, …

Task schedule 20Simons Institute Bootcamp

50

100

150

200

500

1000

1500

2000
0

500

1000

1500

2000

2500

exp
ect

ed
los

t c
ust

ome
rsqueue size

m
i
n

p
o
w
e
r

c
o
n
s
u
m
p
t
i
o
n

Extensions – Multiple objectives

Multi-objective controller synthesis
− trade-offs between conflicting objectives

• e.g. cost vs. quality of service

Mix of optimisation and guarantees
− e.g. “what strategy maximises probability of

message transmission, whilst guaranteeing
expected battery life-time is >10 hrs?”

− Pareto curve generation/approximation

obj1

o
b
j
2

21Simons Institute Bootcamp

Extensions - Parameter synthesis

Synthesising models that are guaranteed to satisfy quantitative
correctness properties is difficult

− but we can synthesise controllers and parameters

Parameter synthesis
− given a parametric model and a property ɸ...
− find the optimal parameter values, with respect to an objective function
obj, such that the property ɸ is satisfied, if such values exist

Quantitative parameter synthesis
− parameters: timing delays, rates
− objectives: optimise probability, reward

22Simons Institute Bootcamp

Probabilistic model checking in practice

PRISM: Probabilistic symbolic model checker
− developed at Birmingham/Oxford University, since 1999
− free, open source (GPL)
− versions for Linux, Mac OS X and Windows

Modelling and verification of:
− DTMCs, CTMCs, MDPs, POMDPs, probabilistic timed automata (PTAs)
− PRISM-games extension (www.prismmodelchecker.org/games/)

PRISM website: www.prismmodelchecker.org/
− tool download: binaries, source code (GPL)
− on-line example repository (50+ case studies)
− on-line documentation: PRISM manual and tutorial
− support: help forum, bug tracking, feature requests
− related publications, talks, tutorials, links

23Simons Institute Bootcamp

mailto:http://www.prismmodelchecker.org/games/
http://www.prismmodelchecker.org/

24

Acknowledgements

Material in parts 1 and 2 is based on existing lecture courses
prepared by:

− Dave Parker, Marta Kwiatkowska and Gethin Norman

Various material and examples also appear courtesy of:
− Christel Baier and Joost-Pieter Katoen

Simons Institute Bootcamp

Course outline

Part 1: Discrete-time Markov chains (DTMCs)
− paths and probabilities for DTMCs
− probabilistic reachability
− reward structures
− expected reachability

Part 2: Markov Decision Processes (MDPs)
− paths, strategies and probabilities for MDPs
− probabilistic reachability for MDPs

• qualitative probabilistic reachability
• optimality equations
• computing reachability probabilities

Live lecture (advanced topic): Partially observable probabilistic systems

25Simons Institute Bootcamp

parts 1 and 2 are
present the basics

and material suitable
to newcomers for
entering the field

