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Introduction



Why probability?

Some systems are inherently probabilistic…

Randomisation, e.g. in distributed coordination algorithms
− as a symmetry breaker in leader election protocols

Examples: real-world protocols featuring randomisation
− IEEE 802.3 CSMA/CD, IEEE 802.11 Wireless LAN (WiFi)

• use randomised back-off schemes
− IEEE 1394 Firewire (root contention), Bluetooth (device discovery)

• have a random choice of waiting time
− IPv4 Zeroconf dynamic configuration (link-local addressing)

• makes a random choice over a set of possible addresses
− Randomised algorithms for anonymity, contract signing, …
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Why probability?

Some systems are inherently probabilistic…

Randomisation, e.g. in distributed coordination algorithms
− as a symmetry breaker in leader election protocols

Modelling uncertainty and performance
− to quantify rate of failures, express Quality of Service

Examples:
− computer networks, embedded systems
− power management policies
− nano-scale circuitry: reliability through defect-tolerance
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Why probability?

Some systems are inherently probabilistic…

Randomisation, e.g. in distributed coordination algorithms
− as a symmetry breaker in leader election protocols

Modelling uncertainty and performance
− to quantify rate of failures, express Quality of Service

For quantitative analysis of software and systems
− to quantify resource usage given a policy

“the minimum battery capacity for a given scenario is ..”

And many others, e.g. biological systems
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Probabilistic model checking
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Case study: FireWire protocol

FireWire (IEEE 1394)
− high-performance serial bus for networking

multimedia devices; originally by Apple
− "hot-pluggable" - add/remove devices at any time
− no requirement for a single PC (need acyclic topology)

Root contention protocol
− leader election algorithm, when nodes join/leave
− symmetric, distributed protocol
− uses electronic coin tossing and timing delays
− nodes send messages: "be my parent"
− root contention: when nodes contend leadership
− random choice: "fast"/"slow" delay before retry
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FireWire example
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FireWire leader election

R

nodes send “be my parent requests”
(when all but one of its neighbours are children)
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nodes send “be my parent requests”
(when all but one of its neighbours are children)

FireWire root contention

root
contention
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FireWire analysis

Probabilistic model checking using PRISM
− timing delays taken from standard
− model includes:

• concurrency: messages between nodes and wires
• underspecification of delays (upper/lower bounds)

− max. model size: 170 million states

Analysis:
− verified that root contention always

resolved with probability 1
− investigated time taken for leader election

and the effect of using biased coin
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FireWire: Analysis results

“minimum 
probability
of electing 

leader
by time T”
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FireWire: Analysis results

“minimum 
probability
of electing 

leader
by time T”

using a biased coin
(short wire)
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FireWire: Analysis results

“maximum 
expected

time to elect 
a leader”

using a biased coin
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FireWire: Analysis results

using a 
biased coin
is beneficial

“maximum 
expected

time to elect 
a leader”
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Probabilistic model checking inputs

Discrete-time models: variants of Markov chains
− discrete-time Markov chains
− Markov decision processes
− turn-based stochastic games
− concurrent stochastic games
− partially observable Markov decision processes and games

Continuous and real-time models
− continuous time Markov chains
− probabilistic timed automata 

• plus game-based and partially observable variants

− stochastic hybrid automata
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Probabilistic model checking inputs

Game-based models
− allow the modelling of collaborative and competitive behaviour between 

between agents, possibly with differing or opposing goals 
− e.g. security (system vs. attacker),
− e.g. controller synthesis (controller vs. environment)

Partial observability
− resolve actions based on observations only
− e.g. a robot can only make decisions based on sensors
− e.g. a scheduler cannot probe state of a component 
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Probabilistic model checking inputs

Specifications informally:
− “probability of delivery within time deadline is …”
− “expected time until message delivery is …”
− “expected power consumption is …”

Specifications formally:
− probabilistic temporal logics: PCTL, LTL, CSL, RPATL …

Will focus on probabilistic and expected reachability
− these are fundamental properties
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Probabilistic model checking involves…

Construction of models 
− from a description in a high-level modelling language

Probabilistic model checking algorithms
− graph-theoretical algorithms

• e.g. for reachability, identifying strongly connected components and 
qualitative properties (with probability 0 or 1)

− numerical computation
• linear equation systems and linear optimisation problems
• iterative methods, direct methods
• uniformisation, shortest path problems

− automata for regular languages
− also sampling-based (statistical) for approximate analysis

• e.g. hypothesis testing based on simulation runs
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Extensions - Strategy/controller synthesis

Verification vs. control

− verify that a system is “correct” for any environment/adversary/…
• counterexample yields flaw/attack/...

− synthesise a "correct-by-construction” controller from formal specification
• witness yields strategy/controller

Applications
− dynamic power management,

robots/autonomous vehicle navigation,
task/network scheduling,                                                                 
security, …

Task schedule 20Simons Institute Bootcamp
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Extensions – Multiple objectives

Multi-objective controller synthesis
− trade-offs between conflicting objectives

• e.g. cost vs. quality of service

Mix of optimisation and guarantees
− e.g. “what strategy maximises probability of

message transmission, whilst guaranteeing
expected battery life-time is >10 hrs?”

− Pareto curve generation/approximation

obj1

o
b
j
2
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Extensions - Parameter synthesis

Synthesising models that are guaranteed to satisfy quantitative 
correctness properties is difficult 

− but we can synthesise controllers and parameters

Parameter synthesis 
− given a parametric model and a property ɸ... 
− find the optimal parameter values, with respect to an objective function 
obj, such that the property ɸ is satisfied, if such values exist 

Quantitative parameter synthesis
− parameters: timing delays, rates
− objectives: optimise probability, reward
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Probabilistic model checking in practice

PRISM: Probabilistic symbolic model checker
− developed at Birmingham/Oxford University, since 1999
− free, open source (GPL)
− versions for Linux, Mac OS X and Windows

Modelling and verification of:
− DTMCs, CTMCs, MDPs, POMDPs, probabilistic timed automata (PTAs)
− PRISM-games extension (www.prismmodelchecker.org/games/)

PRISM website: www.prismmodelchecker.org/
− tool download: binaries, source code (GPL)
− on-line example repository (50+ case studies)
− on-line documentation: PRISM manual and tutorial
− support: help forum, bug tracking, feature requests 
− related publications, talks, tutorials, links
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Course outline

Part 1: Discrete-time Markov chains (DTMCs)
− paths and probabilities for DTMCs
− probabilistic reachability  
− reward structures
− expected reachability

Part 2: Markov Decision Processes (MDPs)
− paths, strategies and probabilities for MDPs
− probabilistic reachability for MDPs

• qualitative probabilistic reachability
• optimality equations 
• computing reachability probabilities

Live lecture (advanced topic): Partially observable probabilistic systems
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parts 1 and 2 are 
present the basics 

and material suitable 
to newcomers for 
entering the field


