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MDPs

 Dynamical System:

[Xk+1 = f(Xkruker)}

-
4[ Environment
J

X}, : state (finite state space), uy: control action, wy: noise

e Reward Function:

D VEE (Ko w)

k=0

e Problem: Find u;, = u(Xy) to maximize the reward function



Q-learning

The max operator leads
to overestimation of the
next state Q-value!

e Q-function:

[ Q(i,U)=T(i,U)+VmaxaE(g \fl)IXk=i) J

* If the conditional expectation can be calc , then this fixed-point
equation can be solved

* This requires knowledge of p;;(a), the probabili
transitioning from state i to state j under action

 What if the transition probabilities are unknown_\Q-Learning

the Markov chain

\
[Qk+1(ik: ur) = (1 — ay) Qp (i, ug) + ag{r(ix, ux) +v max, Qr(Sk+1, a)}}




Maximization Bias (van Hasselt, 2010)

* Consider the following MDP (Sutton and Barto, 2" Edition):
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e How does Q-learning do?
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How to Fix the Problem?

* Need to estimate max E (Y;)
l

e Suppose we have twenty samples of Y; for each i
* One estimator is max (i;
l

* Another estimator
e Divide the twenty samples into two batches of 10 each, call the corresponding
empirical mean estimates ji; and ji;

e Find i* = argmax fij
* Estimate max E(Y;) as fi%
l

 The first estimator overestimates, the second one underestimates



Double Q-learning

e Q-learning :

The max operator leads
to overestimation of the
next state Q-value!

[Qk+1(ikruk) = (1 — ap)Qx ik, u) + ag{r(ix, ux) +vy T%axa Qk (Sk+1, a)}}

* Bootstrapping leads to maximization bias.

* Double Q-learning: Use two Q-learning estimates! 5, € {0,1}

/

.

Qits1 (o uge) = QF (i uge) + arBre{r G, ug) + ¥ maxg QF (g1, @) — Qi (i, ug)}

~

Qr 1 (i ur) = QF (i, ug) + ax (1 — B ){r (i, ug) + y max, Qf (Sg11, @) — Qr (i, up)}

)




Double Q-learning

e Advantage: Faster transient

performance due to reduced

maximization bias.
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Double Q-learning

* Advantage: Faster transient
performance due to reduced
maximization bias.

e Disadvantage: In problems
where the maximization bias
does not matter, Double Q-
learning does not perform
well as well as Q-learning
and its asymptotic mean-
squared error is worse
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Goals

e Use asymptotic mean-squared error as the metric (??) and derive
conditions on the learning rates such that Double Q-learning has the
same asymptotic mean-squared error as Q-learning

e Use these conditions and study using experiments whether the
transient performance of Double Q-learning is better without
sacrificing asymptotic mean-square error



Simplest Reinforcement Learning Problem

* Motivated by Devraj and Meyn (2017), we analyze a simpler problem
* Fix a policy u;, = u(X, ) and evaluate the value function:

[V(i) =c(D) +YE(V (Xy+1) Xk = i)}

e Using TD learning

e But which policy? We prove a result for all policies, which then holds
for the optimal policy



Value Function Approximation

" Linear function approximation (in this talk)

» ((Dl(i)' (DZ(D) (g;) = V(i) - Learn @ instead of V

features parameters

State |

= Deep neural network (nonlinear)

= V(i) » Learn @ (parameters)
instead of V

State i
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Standard TD Learning

e Assume V(i) = 87 ¢ (i)

* ¢ is a known feature vector of dimension much smaller than the state space

* TD learning with linear function approximation (Sutton, 1988):

Bierr = O — (X ) (7 (X0 — c(X) — YT (Kie11)61)|

 Special case: ¢ (i) = e; reduces to tabular TD learning
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Standard TD - Linear Stochastic Approximation

e (Tsitisiklis and van Roy, 1998): With appropriate centering, the TD
algorithm can be written as

[8k+1 = 0, + Ek(A(Xk)Hk + b(Xk))'J

where
A =E(A(Xs)) is Hurwitzand b = E(b(Xs)) = 0
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Double TD Learning

e Double TD learning with linear function approximation:

O = 0 = BiSid (X ) (97 (X0 — c (X)) — ¥$T (X )OF) |

[Qilcgﬂ =0 — (1 = B Sk (Xi )(@T (Xi)0) — c(Xi) — yqu(Xk“)H'?)}




Double TD — Linear Stochastic Approximation

* Linear Stochastic Approximation (LSA):

[Uk+1 = Uy + 6 (Ap (X)) Uy + bp (Xk))}

where Uj, = [9;?, HE],JD = E(AD(XOO)) is Hurwitz and bp = E(bD(Xoo)) =0

 The asymptotic mean-squared error of LSA has been studied recently in Chen,
Devraj, Busic, Meyn (2020) for linear stochastic approximation
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Asymptotic Mean-Squared Error

e Assume 8" =0
e AMSE of Double TD-Learning:

+ AMSE(64) = lim KE |(6¢) 6
+ AMSE(6®) = lim kE |(6F) 6F
- amsE (2427) = tim £ (64 + 02)" (62 + 6F)|

e AMSE of Standard TD-Learning:
* AMSE(9) = lim kE|6) 6]
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Main Result (Double Q-learning)

e Let step-size(Double Q) = 2 X step-size(Standard Q):

" AMSE(64) = AMSE(6%) > AMSE(0)

04 + 6B
AMSE > = AMSE(9)
_ Y,

* Double Q-learning with twice the step as Q-learning, with its two
outputs averaged has the same AMSE as Q-learning




Baird’s Example

e MIDP with six states
e Action: dashed or solid transitions

 Reward: randomly sampled from |[-
0.05,0.05]

* Linear function approximation
e As specified in the graph
e Example: Q(6,dashed) = 260, + 04,

 Discount factory = 0.8
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Baird’s Example — Results

e Mean-squared error: ||0 — 8*||5  (Step sizes for Q and D-Qare

Mean-Squared Error
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—f— D-Q avg with twice the step size
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)
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GridWorld

* Environment: n X n grid D
e Actions: up, down, left, right

e Each action has a 30% error probability.
e Reward: +1 at D, -0.001 for other steps

 Termination: walk outside the grid, or arrive at D S
e Tabular Q-Learning: ¢(s,a) = ez,

A 3x3 GridWorld



GridWorld (3x3) — Results
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GridWorld (4x4) — Results

Mean-Squared Error
I

——4— D-Q
—f— D-Q avg with twice the step size
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Linear Stochastic Approximation (LSA)

e General Linear Stochastic Approximation (Chen et al., 2020):

Sk+1 = Sk +%(A(Yk)€k +b(1))
e Assume é, —» 0

* T = lImKE|&edc |, 2o = i EIb (V)b (V1)'], 4 = E[A(Y ()]

\
/Main Result: If%l + gA is Hurwitz,
1 1
(51 + gA) Yoo + Zoo (51 + gAT> + g%, =0
NS /




Outline of the Proof: Standard TD-Learning
* Recall )41 = 0+ (A(Xi )6y + b(Xy))

* Lyapunov equation:
T
1 _ 1 _
§I+gA %5 + X5, §I+gA +g%%, =0
where 23 = lim kE[6,0.] .

k— o0
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Outline of the Proof: Double TD-learning

2
e Recall U, = [9;’?; 95], Ug+1 = Up + ?g(AD (Xi) Uy + bD(Xk))

* Lyapunov equation:

T
1 _ 1 _
(51 + ZgAD)ZODO + >0 (51 + ZgAD) +g%2Zp =0

where 22 = lim kE|U, U{|.

k— o0

e “Guess”: for some matrix V, C,

oo _[V C

Cc V
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Connection between 4, 4,

* E[A(Xi)] = YE[d(X)pKi+1)']1 — Eld KX)o (X)) ] = A, — A4

. _ —Brp(Xi)d (X )" By (Xi)d (Xir)"
EAKII=E] 1 g e®0eun)” (- BdE)SX
_1 _Al Az ]
214, —Ay
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Proof outline: compare Lyapunov equations

* Double TD-learning: with some manipulations

11+ A V+C+V+C 11+ /TT+ 2y, =0

e Recall that for TD-Learning:

1 _ 1 AN
§I+gA %5 + X5, §I+gA +g%%, =0

. . V+C
* Uniqueness implies — = ¥
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Proof outline: back to AMSE

. AMSE(

9A+6’B) = lim ZE (67 + 6F) (67 + 6F)]

k—oo 4

= 1 lim trace (kE lek CH ] + kE [3;'?(95)1)

k—o00
= %trace(V + C)
= trace(Z%,)
= AMSE(6)

« AMSE(64) > AMSE(6)?
e Show trace(V) > trace(C)



Conclusions

e Showed that an averaged estimator of Double Q-Learning with twice the
step-size has the same (asymptotic) mean-squared error as Q-Learning

e But each estimator from Double Q-Learning is not as good

e Possible step-size guideline for Double Q-Learning
* Doubling the step size

* Transient Analysis, Nonlinear Function Approximation??
e Finite time analysis of Double Q-learning: Xiong, Zhao, Liang, Zhang (NeurlPS 2020)



	The Mean-Squared Error of Double Q-Learning�(To appear in NeurIPS 2020)
	Collaborators
	MDPs
	Q-learning
	Maximization Bias (van Hasselt, 2010)
	How to Fix the Problem?
	Double Q-learning
	Double Q-learning
	Double Q-learning
	Goals
	Simplest Reinforcement Learning Problem
	Value Function Approximation
	Standard TD Learning
	Standard TD - Linear Stochastic Approximation
	Double TD Learning
	Double TD – Linear Stochastic Approximation
	Asymptotic Mean-Squared Error
	Main Result (Double Q-learning)
	Baird’s Example
	Baird’s Example – Results
	GridWorld
	GridWorld (3x3) – Results
	GridWorld (4x4) – Results
	Linear Stochastic Approximation (LSA)
	Outline of the Proof: Standard TD-Learning
	Outline of the Proof: Double TD-learning
	Connection between  𝐴 ,   𝐴  𝐷 
	Proof outline: compare Lyapunov equations
	Proof outline: back to AMSE
	Conclusions
	Additional Experiments
	Roulette (Hado van Hasselt, 2010)
	GridWorld (Hado van Hasselt, 2010)
	Baird’s Example with Neural Network Approx

