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Reinforcement learning is among
the hottest area of research in ML!
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200+ papers on RL at NeurlPS’2019!



Topic today: Offline Reinforcement
Learning, aka. Batch RL

e Task 1: Offline Policy Evaluation. (OPE)
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e Task 2: Offline Policy Learning. (OPL)
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Example applications of Oftline RL

* Medical treatment / recommender systems
* Cannot afford to run new experiments
* Need safe policy improvements

* New material discovery / Learning self-driving car
* Easy to parallelize the experiments
* But hard to have many iterations

* Connections for online RL
* Decomposing into offline epochs.
* Each epoch is an offline learning problem



Outline of the talk

1. Notations and problem setup
2. Our contribution in OPE and OPL
3. Uniform convergence theorems

4. Key technical components + open problems



Formal problem setup: Episodic,
Tabular, Non-Stationary MDPs

* Number of states, actions, horizon: S,A,H

* Number of offline trajectories: n Translation: N = nH
- Number of “steps” in online RL

* Time-varying transition kernels: - Or number of “generator calls”

Pr:SxAxS+—|0,1]
e Time-varying expected reward: 7¢ : S x A — R

* Policy T = (7717 TT2y ooy 7TH) Logging policy: U

H
* Value functions: V" (s) = EW[Z ri|sy = s

t'=t

Q?(Sv a) — EW[ZL "“t/|5t = S5,0¢ = a] v" =K,

|



A few more notations

* Trajectory data:
(51, a,r”,52,....SH,.Aag,TH, SH_|_1)
where s; ~ dy, a; ~ m(:|s¢), Sgr1 ~ Pi(-|st, ar)

i) () () (i) Y€
D= {50, ri" i) |

i€[n]

* Marginal state-action distribution:

d?(St, CLt) — d?(St) . W(&t‘8t>.

— a

e State-action transition matrix:

(P )(s.a),(s 0y = Pi(5]s, a)mi(a’|s")



We will not deal with exploration
in offline RL, because we can’t

* The logging policy u is out of our control

* Need to make assumptions about it

Ay, = gnin d(s,a) > 0 for all t,s,a

s.t. dj (s,a) > 0 for some 7 € Il

* Assumed to simplify the discussion on optimality
 Sometimes appear only in low-order terms.



Observation 1: OPE is in its essence a
statistical estimation problem.

* But is slightly non-trivial because we are estimating
a single number, when the number of parameters
describing the distribution are numerous.

* Find functions of the data --- estimators, such that

AT T
|U — U ‘ S € with high probability

EU,{)W o vw,Z} < 62



Observation 2: Offline Learning is
a statistical learning problem

e But with a structured hypothesis class ( the policy
class), and structured observations (trajectories).

* Lessons from statistical learning theory:
 ERM suffices and almost necessary.

* In RL context thisis: 7T = arg max o"
mell
(For some estimator ¥)

e Combine with OPE:

*

‘@W — UW| <€ whp. » v —v" <2e whp

El[07 — o™ ]?] <€ » 0™ —E[p™] < 2




Not quite this easy, the learned
policy T depends on the data

sup||o™ —v™| < € whp.
mell

— ?JfT < 2€ w.h.p

E [[sup]|o™ — v™|?] < €
mwell

In standard statistical learning: € < \/d/n

Where d is VC-dimension / metric entropy
log|I1]|, or implied by Rademacher complexity, etc.
( Much older Empirical process theory, Glivenko-Cantelli style) Vapnik (1995)

What is a natural complexity measure for the policy class in RL?
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TL:DR: Our main contributions are:
Optimal OPE and near optimal OPL

1. Characterizing the OPE for any fixed policy:

ah|5h) 1 1
E[(0Tns — Z Z 1(an|sn) -Var [ Vi ( 824)—1 +T§L) Sh = Sh ah = ah}
h 0 sn,a
o +0(n~1>)
HZSA (Xie, Ma & W., NeurlPS'19)

Or if in a simplified expression: € = " d"
(Yin & W., AISTATS-20)

2. Advances in Uniform OPE that allows for near optimal
offline learning
The ERM solution: 7T = arg maX UTMIS

Obeys that L H3 H3SA
n d”

(Yin, Bai & W., on arxiv) 12



Comparing with prior results

Per-instance optimal.

Offline Policy Evaluation

\

[

|

Simulation Fitted Q-
lemma IS/ DR MIS TMIS lteration
(Kearns and (Jiang and Li, 2016) (Xie, Ma, W.,2019) (Yin & W. 2020) (Duan and Wang,
Singh, 1998) 2020)
H4S? efpoly(S, A) H3 H? H?
nd,, n nd, nd, nd,
Offline Policy Learning Assume generative model
Simulation Variance-
lemma MSBO Reduction Mgz Hoesee Model-based
_ (Xie and Jiang, ) (Agarwal, Kakade, Yang,
(Kearns and Singh, 2020) (Sidford et al, 19), 20) Ours
1998) (Wainwright, 19)
H*S$? H* H3SA H3SA H?
. €
Tldm ndm n n + H Eopt n dm opt

Converted from infinite horizon case...
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Our result is the first that achieves
optimal rates in the offline setting

* And also the first that achieves the optimal rates via a
(local) uniform convergence argument

* So it is not specific to one algorithm

* On the side: we also include a lower bound

Theorem 3.8: Any estimator, exists (MDP, u), s.t., with constant probability

sup |07 — o™ | >/ H3/dmn
mell

 |dea: If faster rate => ERM breaks learning lower bounds.



Some simulation results: H3 is
the right scaling
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Why is uniform convergence in RL
a nontrivial problem?

* Even pointwise convergence is nontrivial

* Union bound is not tight
* Discrete policy class: log|Il| = HS log A
e But we expect O(H)

* Most standard approaches lead to suboptimal
dependence in S and H



Obtaining optimal dependence in
H is usually quite tricky...

- m(an|sn)” .
El(vTamis —v™)7] < = Z Z d“ -Var [(Vhﬂ(sﬁzl) + rg)) 82) = Sp, ag) = ah]

h 0 sh,ap ah‘sh)
+0(n~1>)

* You are adding H terms that are potentially O(H?)
» How do you see that the total is 0 (H?)?

 See Lemma 3.4 in (Yin and W., 2020) for a cute
proof.



The policy classes we consider

€opt-€mpirically

optimal policy 7
(data-dependent!)

For ERM, it suffices to consider the smaller policy class.
But we also want to cover other planning algorithms.
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Uniform convergence theorem for
all policies
Theorem 3.3: with probability > 1 — 6

H* HSA H*
sup |@”—v”|§\/ log( 5 )—I—\/ Slog(SA)

e Optimal inSif § < e™>, suboptimal in H.

* Proof idea: Martingale decomposition over H.
Freedman’s inequality. Rademacher complexity

argument.



Uniform convergence theorem for
all deterministic policies

e Optimal in H, suboptimal in S.

* Proof: Union bound with a high-probability
pointwise OPE bound.
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Uniform convergence theorem for
near-empirically optimal policies

Theorem 3.7: LetIl; :=={m: s.t. ||V =V || < Eopt: V't € [H]}.
Assume €y, < VH/S,and also letn = H?/d,,. Thenw.p. > 1 -,

3
<(32\/H log(HSA/6)

AN

Q1 — Q1

sup
welly

n-dm,

e Optimal in all parameters.
* Implies optimal learning bounds for ERM by taking €,,; =0

* Proof idea: A cute argument that takes the empirical
optimal policy as an anchor point.



Key technigues used in the proof

* Fictitious estimator technique
* Martingale Decomposition of the error

* Anchor around the empirically optimal policy

* Statistical independence of the past and the future
when conditioning on the number of observations



To reiterate the main points

e For fixed i
* Model-based OPE is exact optimal up to low order terms

* For uniform convergence:

* Model-based OPE achieves optimal uniform convergence in a
large ball around ERM.

e Corollary: ERM with on Model-based OPE is rate-optimal

* Near optimal global uniform convergence in some restricted
regimes.

* Getting tight dependence in H, S is nontrivial
» Key proof techniques presented in our work



Future work / open problems

1.

3
"5

Is the rate for global uniform convergence -
m

The natural complexity measure for RL policy
classes that gives rise to the “dimension” being
O(H) rather than O(HS) ?

Function approximation settings?



hank you for your attention!

(Work supported by NSF # 2007117)
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Supplementary slides



An illustration of what practical
uniform-convergence looks like

HRmax
- —— U™ Upper Bound
v™ True value
Value —-=-:- U™ Lower Bound
- Uniform confidence bands that hold
. _ _ simultaneously for all = € IT with high probability.
-7 Logging policy u - Optimal dependence on 7, u, MDP M
0 2~ , Pparameters.

Policy space Il

*You may choose your target policy mt arbitrarily using the same dataset !
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Lower bound construction

C\\N.p. 1 _%

@)
wpé+@%ﬁ
w.p. 1 choose a*

O
O

W@‘ -

1 1
choose a*

S—2
bandit
states
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Fictitious estimator technique

* Fictitious estimator
* Nice event: £} := {nSt,at > ndf(st, at)/Q}
e Define
re(Se, ar) = re(st, ar)L(Ey) + re(se, ap) L(EY)

Pr1(¢|st, ar) = Pep1(C] st ae) 1(Ey) + Pt (¢ e, ag) L(E).

Idea: hypothetically plug in the ground truth occasionally

~

Ptﬂ(3t|5t—1) — Zat—l ﬁt(st‘St—laat—l)ﬂ'(at—llst—l)-

o" o= S (d7 7T, with dF = PFdr_,



The fictitious estimator is easier
to analyze, because:

* Always unbiased.
* Has an epistemical Bellman-equation of variance
* Has nice martingale decompositions

* Moreover: Lemma C.1

sup |07 — 0| =0  whp.

mell
HSA

. .. 1
Under mild condition: n = —log—
dn, 5



The noise in the reward is
straightforward to handle.

sup [0 — v”| —sup\z d?,?t
mell mell i—1 ;

H H
—SUP‘Z df,N _ df,rt>+2(6ﬁr,rt>—z
1

rell ¢ =1 =1

(d )|

::HMm

H
7T T 7TN
<sup|§ (df dt,frt|—|—sup|§ (df yry — 1)
WEH —1 mell i—1

7 \ & 7
~~

(+) (+x)

(d 7))

Lemma C.2: (x*) S \H2/(nd,,)

Therefore, it suffices to consider the case with deterministic rewards.



Martingale decomposition of the
error vt —v

T

Primal representation (Marginal distribution style):

Zil <CET o d?) Tt>

~

|| (LemmaC.3)

(7 (8), (d

Dual representation (Value function style):

—I—Z ?Jh Th—Th)

~

~1)(8))

J
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Two implications of the
Martingale Decomposition

1. Optimal pointwise convergence with high
probability for fixed

* (Chung & Lu, 2006) Special Freedman’s inequality + Fine
grained variance calculations from (Yin & W, AISTATS’20)

2. Allow us to handle uniform convergence using
Rademacher complexity-style arguments



Rademacher Complexity based
approaches to uniform convergence

e Step 1: Concentration via McDiarmid

oy \/ HA log(HSA/3),

H

Z<CET o d?? Tt>

t=1

H

Z<CA{? o d?? 7“75>

t=1

sup
mell

|

sup

mell ndm

(Somewhat technical construction of a perturbation.)

* Step 2: Bound the expectation

(by the martingale decomposition)

H
<) E [sup (vfr, (Th, — Th)d}i_1>| - ll(E)] +E lsup
o rell mell

AE)

<v71T7 d?lr o d71T>

<0 (\/H‘*Slog(HSA) /(ndm)) By Rademacher complexity for each time step.

Main challenge: regrouping the things into < f(Policy), g(Data) > ”



ldeas behind local uniform
convergence result

* Borrow ideas from the generative model literature
 Specifically Agarwal, Kakade, Yang (2020)

e Recall: Bellman equations
™ T T L T
Qt = Tt + Pt—l—th—l—l = Tt + Pt+1”t+17

Also, the same Bellman equation for empirical MDP...
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ldeas behind local uniform
convergence result

» Taking differences of the empirical / true MDP’s
Bellman equations

QF —QF = PF,QF ., — PF,QT
= ( 1 t+1)Q775T+1 + P (Qp1 — Qfyq)

Back up recursively from the last step ..

Z L7 11 (Ph — Pr)0R
h=t+1 T

Multi-step transition matrix



Now take the empirically optimal
policy as an anchor point...

~

<> T [Py = P | + S o (B = P —5F)
h t+1 h=t+1

7 A\ J
~~ ~~

(k) (skokokok)

Key observation: Apply the assumption of

N N near-empirical optimality
Ph 1 Un | Ng a h

Save a factor of S
N HZ%S2
S Eopt * 0( ) * 1

<0 H3 N 1 :g:}{ “jﬁ' (2ﬁ1 | TlCLn
- nd, ndy, het+1 "

Back-up recursively fromt=H to 1
Tight variance calculation saves a factor of H 37

Choose €,y < VH/S



Comparing to Agarwal, Kakade, Yang
(2020), we made some improvements

* Optimal local uniform convergence, when:

HS
ndy,

Eopt < Eopt < \/E/S

N

e Comparison in terms of offline learning

H3 H3
+ H €opt

ndy, ndy,
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