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Multistage stochastic programming.

Let ξt be a random (stochastic) process. De-

note ξ[t] := (ξ1, .., ξt) the history of the process

ξt up to time t. The values of the decision

vector xt, chosen at stage t, may depend on

the information ξ[t] available up to time t, but

not on the future observations. The decision

process has the form

decision(x0) observation(ξ1) decision(x1) 
... observation(ξT ) decision(xT ).
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Risk neutral T -stage stochastic programming

problem:

min
x1,x2(·),...,xT (·)

f1(x1) + E
[∑T

t=2 ft (xt, ξt)
]

s.t. x1 ∈ X1, xt ∈ Xt(xt−1, ξt), t = 2, . . . , T.

In linear case, ft(xt, ξt) := c>t xt and

Xt(xt−1, ξt) := {xt : Btxt−1 +Atxt = bt, xt ≥ 0} , t = 2, ..., T.

Optimization is performed over feasible poli-

cies (also called decision rules). A policy is a

sequence of (measurable) functions xt = xt(ξ[t]),

t = 1, ..., T . Each xt(ξ[t]) is a function of the

data process up to time t, this ensures the

nonanticipative property of a considered pol-

icy.
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If the number of realizations (scenarios) of the

process ξt is finite, then the above (linear)

problem can be written as one large (linear)

programming problem.

If we measure computational complexity, of the

”true” problem, in terms of the number of sce-

narios required to approximate true distribution

of the random data process with a reasonable

accuracy, the conclusion is rather pessimistic.
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Distributionally robust approach

Static case. The problem is formulated in the

following minimax form

min
x∈X

sup
P∈M

EP [F (x, ω)],

where M is a specified set of probability mea-

sures (distributions) on a sample space (Ω,F),

and F : X ×Ω→ R is an objective function. It

is assumed that for every x ∈ X the random

variable Fx(ω) = F (x, ω) is F-measurable and

the expectation

EP [Fx] =
∫

Ω
Fx(ω)dP (ω),

with respect to every P ∈ M, is well defined

and finite valued.
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Popular approaches to define the set M are

either: (i) by distributions in some sense close

to a specified reference distribution P, or (ii)

by moment constraints.

With the set M is associated the (worst-distribution)

functional

R(Z) := sup
P∈M

EP [Z]

defined on a linear space Z of F-measurable

variables Z : Ω→ R.
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There are two, somewhat natural, frameworks

for duality analysis of this risk functional. In

case (i), the set M is assumed to consist of

probability measures absolutely continuous with

respect to P, and

M = {P : dP/dP ∈ A},

where A is a set of densities.

In that case

R(Z) = sup
ζ∈A

∫
Ω
Z(ω)ζ(ω)dP(ω).
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Cumulative distribution function of a random

variable Z(ω) (with respect to P) is FZ(t) =

P(Z ≤ t). Two random variables Z,Z′ are dis-

tributionally equivalent if FZ = FZ′, i.e., P(Z ≤
t) = P(Z′ ≤ t) for all t ∈ R.

Definition 1 It is said that a risk measure R :

Z → R is law invariant, with respect to the ref-

erence distribution P, if for any distributionally

equivalent Z,Z′ ∈ Z, it follows that R(Z) =

R(Z′).
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That is, law invariant risk measure R(Z) is a

function of the cdf F = FZ. We sometimes

write R(F ) directly as a function of cdf F .

Value R(F ) can be estimated by R(F̂N), where

F̂N is an empirical estimate of the cdf F based

on a sample of size N . Consequently solving

the distributionally robust problem can be ap-

proached by the Sample Average Approxima-

tion (SAA) method.
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How law invariance of R can be formulated

in terms of the uncertainty set M? Let Z :=

Lp(Ω,F ,P) and

R(Z) = sup
ζ∈A

∫
Ω
ζ(ω)Z(ω)dP(ω),

where A ⊂ Z∗ = Lq(Ω,F ,P) is a set of density

functions.

It is said that the uncertainty set A is law invari-

ant if ζ ∈ A and ζ′ is distributionally equivalent

to ζ implies that ζ′ ∈ A.

Theorem 1 (i) If the uncertainty set A is law

invariant, then the corresponding functional R
is law invariant. (ii) Conversely, if the func-

tional R is law invariant and the set A is convex

and weakly∗ closed, then A is law invariant.
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In case the functional R is law invariant, it

can be considered as a function of the cdf FZ.

Given a random sample Z1, ..., ZN ∼ P, we can

approximate FZ by the empirical cdf

F̂N(z) :=
1

N

N∑
i=1

1(−∞,z](Zi).

Consequently we can approximate R(Z) = R(FZ)

by R(F̂N).

Suppose now that ξ1, ..., ξN is a sample of the

random vector ξ = ξ(ω). Then we can es-

timate distributionally robust problem by the

SAA problem:

Min
x∈X
R(F̂x,N). (1)
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Example

Consider Z := L1(Ω,F ,P) and

A :=
{
ζ : 1− β1 ≤ ζ(ω) ≤ 1 + β2, ω ∈ Ω,

∫
Ω
ζdP = 1

}
,

where β1 ∈ (0,1] and β2 ≥ 0. The correspond-

ing functional R is

R(Z) = (1− β1)EP[Z] + β1AV@Rα(Z),

where α = β1/(β1 + β2) and

AV@Rα(Z) =
1

α

∫ 1

1−α
F−1
Z (t)dt = inf

t∈R

{
t+ α−1EP [Z − t]+

}
.
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Multistage setting

For a family of probability distributions P of the

data process (ξ1, ..., ξT ) it is tempting to write

the distributionally robust analogue of the risk

neutral problem as

min
π∈Π

sup
P∈M

EP
[∑T

t=1 ft(xt, ξt)
]

with Π being the set of policies satisfying the

feasibility constraints.

However this formulation does not explicitly

specify dynamics of the considered problem.

Even worse, at the moment it is not well de-

fined since it is not clear what “feasibility for

a.e. realization of the data process” means.
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Consider the nested functional (recall that ξ1

is deterministic)

R(Z) := sup
P∈M

EP |ξ1

[
ess sup

P∈M
EP |ξ2

[
· · · ess sup

P∈M
EP |ξ[T−1]

[Z]
]]
,

where ξ[t] = (ξ1, ..., ξt). This functional can be

represented in the dual form

R(Z) = sup
P∈M̂

EP [Z]

for some set M̂ of probability measures.

Note that M 6= M̂.
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This leads to the nested formulation of the

distributionally robust problem

min
π∈Π

f1(x1) + R
[∑T

t=2 ft(x
π
t , ξt)

]
,

where Π is the set of feasible policies.

For the nested formulation it is possible to

write dynamic programming equations with the

respective cost-to-go (value) functions Vt(xt−1, ξ[t])

given by the optimal value of the problem

min
xt∈Xt

ft(xt, ξt) + ess sup
P∈M

EP |ξ[t]
[Vt+1(xt, ξ[t+1])]

s.t. Btxt−1 +Atxt = bt

at stages t = T, T −1, ...,1, and VT+1(·, ·) omit-

ted.
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The rectangular case:

M = {P = P1 × · · · × PT : Pt ∈Mt, t = 1, ..., T}

where Mt is a set of marginal distributions of

random vector ξt. In the risk neutral setting,

when Mt are singletons, this corresponds to the

stagewise independence condition.

In the rectangular case the dynamic equations

simplify to

min
xt∈Xt

ft(xt, ξt) + sup
Qt+1∈Mt+1

EQt+1
[Vt+1(xt, ξt+1)]

s.t. Btxt−1 +Atxt = bt.
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Approximate dynamic programming

Basic idea is to approximate the value func-

tions

Vt+1(xt) = sup
Qt+1∈Mt+1

EQt+1
[Vt+1, ξt+1)]

by a class of computationally manageable func-

tions. When functions Vt(·) are convex it is

natural to approximate these functions by piece-

wise linear functions given by maximum of cut-

ting hyperplanes.

Cutting planes type approach. In the risk neu-

tral setting this was introduced in Pereira and

Pinto (1991), based on the nested method

of Birge (1985). This became known as the

Stochastic Dual Dynamic Programming (SDDP)

method.
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Consider the linear multistage program and the

rectangular setting. First, the marginal distri-

butions of ξt, t = 2, ..., T , are discretized by

generating Monte Carlo samples from the ref-

erence distribution (the SAA approach).

For the constructed discretized problem the

value functions are approximated. For trial de-

cisions x̄t, t = 1, ..., T −1, at the backward step

of the SDDP algorithm, piecewise linear ap-

proximations Vt(·) of the value functions Vt(·)
are constructed by solving problems

Min
xt∈Rnt

(cjt)
Txt+Vt+1(xt) s.t. Bjt x̄t−1+A

j
txt = b

j
t , xt ≥ 0,

j = 1, ..., Nt, and their duals, going backward

in time t = T, ...,1.
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By construction

Vt(·) ≥ Vt(·), t = 2, ..., T.

Therefore the optimal value of

Min
x1∈Rn1

cT1x1 + V2(x1) s.t. A1x1 = b1, x1 ≥ 0

gives a lower bound for the optimal value v̂N
of the SAA problem.

In the risk neutral setting,

v0 ≥ E[v̂N ],

and hence on average v̂N is also a lower bound

for the optimal value v0 of the true problem.
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The approximate value functions V2, ...,VT and

a feasible first stage solution x̄1 define a fea-

sible policy. That is for a realization (sample

path) ξ1, ..., ξT of the data process, x̄t = x̄t(ξ[t])

are computed recursively in t = 2, ..., T as a so-

lution of

Min
xt≥0

cTt xt + Vt+1(xt) s.t. Btx̄t−1 +Atxt = bt.

In the forward step of the SDDP algorithm M

sample paths (scenarios) are generated and the

corresponding x̄t, t = 2, ..., T , are used as trial

points in the next iteration of the backward

step.

Note that the functions V2, ...,VT and x̄1 define

a feasible policy also for the true problem.
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Periodical infinite horizon multistage programs

Consider infinite horizon problem with discount

factor γ ∈ (0,1)

min
π∈Π

f1(x1) + R
[∑∞

t=2 γ
t−1ft (xt, ξt)

]
,

where Π is a set of policies satisfying the fea-

sibility constraints

xt ∈ Xt, Btxt−1 +Atxt = bt.

Suppose the rectangular setting, and that the

problem has periodic structure with period

m ∈ N.
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That is

• The functional R : Z → R is a law invariant.

• Vectors ξt and ξt+m have the same (refer-

ence) distribution, with support Ξ ⊂ Rd, for

t ≥ 2 (recall that ξ1 is deterministic).

• The functions bt(·), Bt(·), At(·) and ft(·, ·)
have period m, i.e., are the same for t = τ

and t = τ + m, t = 2, ..., and the sets Xt are

nonempty and Xt = Xt+m for all t.
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This leads to the following periodical variant

of Bellman equations for the value functions

V2(·), ...,Vm+1(·) of the dynamic equations:

Vτ(xτ−1) = R[Vτ(xτ−1, ξτ)].

Vτ(xτ−1, ξτ) = inf
xτ∈Xτ

Bτxτ−1+Aτxτ=bτ

fτ(xτ , ξτ)+γVτ+1(xτ),

for τ = 2, ...,m + 1, and Vm+2 replaced by V2

for τ = m + 1. Consequently for t ≥ m + 2

the corresponding value functions are defined

recursively as Vt(·, ξt) = Vt−m(·, ξt), and hence

Vt(·) = Vt−m(·).
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Duals of periodical linear programs

Dual approach to construction of upper bounds

was initiated in Leclére, Carpentier, Chance-

lier, Lenoir, Pacaud (2019),

we follow here the approach of Guigues, Shapiro,

Cheng (2019)

Consider linear (risk neutral) multistage stochas-

tic program

min
xt≥0

E
[∑T

t=1 c
>
t xt

]
s.t. A1x1 = b1,

Btxt−1 +Atxt = bt, t = 2, ..., T.

Dualization of the the feasibility constraints
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The Lagrangian

L(x, π) = E

 T∑
t=1

c>t xt + π>t (bt −Btxt−1 −Atxt)


in variables x = (x1(ξ[1]), . . . , xT (ξ[T ])) and π =

(π1(ξ[1]), . . . , πT (ξ[T ])) with the convention that

x0 = 0. Dualization of the feasibility con-

straints leads to the following dual

max
π

E
[ T∑
t=1

b>t πt
]

s.t. A>T πT ≤ cT ,
A>t−1πt−1 + E|ξ[t−1]

[
B>t πt

]
≤ ct−1, t = 2, ..., T.

The optimization is over policies πt = πt(ξ[t]),

t = 1, ..., T .
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Dynamic programming equations for the dual

problem

Assume the stagewise independence condition

and finite number of scenarios Nt per stage and

respective probabilities ptj. At the last stage

t = T we have the following problem

max
πT1,...,πTNT

E[b>T πT ] =
NT∑
j=1

pTjb
>
TjπTj

s.t. A>TjπTj ≤ cTj, j = 1, ..., NT ,

A>T−1πT−1 +
NT∑
j=1

pTjB
>
TjπTj ≤ cT−1.

The optimal value VT (πT−1, ξT−1) and an op-

timal solution (π̄T1, . . . , π̄TNT ) of that problem

are functions of vectors πT−1 and cT−1 and

matrix AT−1.
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And so on going backward in time we can write

the respective dynamic programming equations

for t = T − 1, ...,2, as

max
πt1,...,πtNt

Nt∑
j=1

ptj
[
b>tjπtj + Vt+1(πtj, ξtj)

]

s.t. A>t−1πt−1 +
Nt∑
j=1

ptjB
>
tjπtj ≤ ct−1,

with Vt(πt−1, ξt−1) being the optimal value of

the above problem. Finally at the first stage

the following problem should be solved

max
π1

b>1 π1 + V2(π1, ξ1).
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The Brazilian hydro power operation plan-

ning problem

The Brazilian hydro power operation planning

problem is a multistage, large scale (more than

200 power plants, of which 141 are hydro plants),

stochastic optimization problem. On a high

level, planning is for 5 years on monthly ba-

sis together with 5 additional years to smooth

out the end of horizon effect. This results

in 120-stage stochastic programming problem.

Four energy equivalent reservoirs are consid-

ered, one in each one of the four intercon-

nected main regions, SE, S, N and NE. The

resulting policy obtained with the aggregate

representation can be further refined, so as

to provide decisions for each of the hydro and

thermal power plants.

27



Existing  Future 

Load Center 
Total Circuits 
Watershed 
Hydroplant 

± 3,400 km 

± 
3

,4
0

0
 k

m
 

28



Comparison of the classical and periodical SDDP

(with 8 state variables, period m = 12)

Stored energy (in average value and 0.9 quan-

tile) by periodical SDDP (on the left) and clas-

sical SDDP (on the right) for the SAA dis-

cretization problem (100 samples per stage)

and the true problem (on the bottom) for the

risk neutral case with discount factor γ = 0.8
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Individual stage costs (in average value and

0.9 quantile) by periodical SDDP (on the left)

and classical SDDP (on the right) for the SAA

discretization problem (on the above) and the

true problem (on the bottom) for the risk neu-

tral case with discount factor γ = 0.9906 (this

γ corresponds to the annual discount rate of

12%, that is 1/γ12 = 1.12)
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Dual bounds for periodical problem

Hydro-thermal problem with 4 state variables,

50 samples per stage, discount factor γ = 0.9906

and period m = 12. Evolution of deterministic

bounds of primal and dual periodical programs.
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