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Multistage stochastic programming.

Let & be a random (stochastic) process. De-
note g[t] = (&1, ..,&) the history of the process
& up to time t. The values of the decision
vector z, chosen at stage t, may depend on
the information £, available up to time ¢, but
not on the future observations. The decision
process has the form

decision(xzg) ~» observation(£1) ~ decision(xq) ~
.. ~ observation(&r) ~ decision(zr).



Risk neutral T-stage stochastic programming
problem:
min f1(@1) + B[S, fi (21, 61))]

ZC]_,$2('),...,$T(')
S.t. x1 € X1, vt € Xp(xp_1,&), t=2,...,T.

In linear case, fi(xt, &) := ¢z and

Xip(wp—1,&) i={xy - Byry—1 + Agey = by, 2 > 0}, t=2,...

Optimization is performed over feasible poli-
cies (also called decision rules). A policy is a
sequence of (measurable) functions x; = xt(f[t]),
t=1,..,7. Each a;t(g[t]) is a function of the
data process up to time t, this ensures the
nonanticipative property of a considered pol-

icy.
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If the number of realizations (scenarios) of the
process & is finite, then the above (linear)
problem can be written as one large (linear)
programming problem.

If we measure computational complexity, of the
"true” problem, in terms of the number of sce-
narios required to approximate true distribution
of the random data process with a reasonable
accuracy, the conclusion is rather pessimistic.



Distributionally robust approach
Static case. The problem is formulated in the
following minimax form

min sup Ep[F(z,w)],

TEX P
where 2N is a specified set of probability mea-
sures (distributions) on a sample space (2, F),
and F': X x 2 — R is an objective function. It
IS assumed that for every x € X the random
variable Fy(w) = F(xz,w) is F-measurable and
the expectation

Ep(Fa] = | Fo(w)dP(w).

with respect to every P € 9, is well defined
and finite valued.



Popular approaches to define the set 91 are
either: (i) by distributions in some sense close
to a specified reference distribution P, or (ii)
by moment constraints.

With the set 91 is associated the (worst-distribution)
functional
R(Z) := sup Ep|[Z]
Pem
defined on a linear space Z of JF-measurable
variables Z : Q2 — R.



There are two, somewhat natural, frameworks
for duality analysis of this risk functional. In
case (i), the set 91 is assumed to consist of
probability measures absolutely continuous with
respect to P, and

M= {P :dP/dP € 2},

where 21 is a set of densities.

In that case

R(Z) =sup | Z(w)l(w)dP(w).
ceA JQ



Cumulative distribution function of a random
variable Z(w) (with respect to P) is Fy(t) =
P(Z < t). Two random variables Z,Z’ are dis-
tributionally equivalent if Fy = Fy, ie., P(Z <
t) =P(Z'<t) for all t € R.

Definition 1 It is said that a risk measure R
Z — R is law invariant, with respect to the ref-
erence distribution P, if for any distributionally
equivalent Z,Z' € Z, it follows that R(Z) =
R(Z"N.



That is, law invariant risk measure R(Z) is a
function of the cdf FF = Fy. We sometimes
write R(F') directly as a function of cdf F.
Value R(F) can be estimated by R(Fy), where
F is an empirical estimate of the cdf F based
on a sample of size N. Consequently solving
the distributionally robust problem can be ap-
proached by the Sample Average Approxima-
tion (SAA) method.



How law invariance of R can be formulated
in terms of the uncertainty set 97 Let Z =
Ly(2, F,P) and

R(7) = sup /Q C(w) Z(w)dP(w),

where A C Z* = Ly(2, F,P) is a set of density
functions.

It is said that the uncertainty set 2 is law invari-
ant if ¢ €2 and ¢’ is distributionally equivalent
to ¢ implies that ¢/ € 2.

Theorem 1 (i) If the uncertainty set 2 is law
invariant, then the corresponding functional R
is law invariant. (ii) Conversely, if the func-
tional R is law invariant and the set 2l is convex
and weakly* closed, then 2l is law invariant.



In case the functional R is law invariant, it
can be considered as a function of the cdf Fy.
Given a random sample Z1,...,Zny ~ P, we can
approximate F» by the empirical cdf

N 1 &
FN(Z) L= N Z 1(—00,2](Zi)'

Consequently we can approximate R(Z) =R(Fy)

Suppose now that &1,...,&N IS @ sample of the
random vector £ = &(w). Then we can es-
timate distributionally robust problem by the
SAA problem:

Min R(F, ). (1)



Example

Consider Z := L1(2, F,P) and

A= {Ci1-p W) <14p,weR, [ caP=1},

where 81 € (0,1] and 8> > 0. The correspond-
ing functional R is

R(Z) = (1 - B1)Ep[Z] + B1AV@R(Z),
where o = p1/(B1 + B2) and

1 : 1
AVOR.(Z) = — F,~(t)dt = inf {t EplZ —t :
o(Z) =" | Fyl()dt=inf {t+a 'Ep(Z — 1]}



Multistage setting

For a family of probability distributions P of the
data process (&q,...,&7) it is tempting to write
the distributionally robust analogue of the risk
neutral problem as

min sup Ep [y files, &)
with 1 being the set of policies satisfying the
feasibility constraints.

However this formulation does not explicitly
specify dynamics of the considered problem.
Even worse, at the moment it is not well de-
fined since it is not clear what ‘feasibility for
a.e. realization of the data process’ means.



Consider the nested functional (recall that &;
is deterministic)

R(Z) ;== sup E ess sup E ... esssup E [Z]” :
(Z) P P&y Pt P|&o Pem Pl&r_1;

where {1 = (&1, ...,&). This functional can be
represented in the dual form

R(Z) = sup Ep[Z]
PeMm

for some set M of probability measures.

Note that 9t #~ M.



This leads to the nested formulation of the
distributionally robust problem

QnEIH f1(z1) + %[Zthg ft(zf, Et)},

where Il is the set of feasible policies.

For the nested formulation it is possible to
write dynamic programming equations with the
respective cost-to-go (value) functions Vi (xzs_1, g[t])
given by the optimal value of the problem

min - fi(zi, &) + ess SE%EPKM [Vit1(@t, €fy1)]

TtE At

S.t. Btai‘t_l + At:ct = by

at stagest=7T,7T-1,...,1, and V4 1(-,-) omit-
ted.



The rectangular case:
M={P=P1 X ---XPp:PeM,t=1,...T}

where 9 is a set of marginal distributions of
random vector &. In the risk neutral setting,
when 9i; are singletons, this corresponds to the
stagewise independence condition.

In the rectangular case the dynamic equations
simplify to

min ) Su K V. :

T EXs Je(e, &) + P Qt—l—l[ t+1(37t ft—|—1)]

Qe+1€Mi4 1
S.t. tht—l —+ Atxt = by.



Approximate dynamic programming
Basic idea is to approximate the value func-
tions

Vig1(xt) =  sup  Eg,  [Vit1,&+1)]
Qi41E€EM1 1 Qet1

by a class of computationally manageable func-
tions. When functions V;(-) are convex it is
natural to approximate these functions by piece-
wise linear functions given by maximum of cut-
ting hyperplanes.

Cutting planes type approach. In the risk neu-
tral setting this was introduced in Pereira and
Pinto (1991), based on the nested method
of Birge (1985). This became known as the
Stochastic Dual Dynamic Programming (SDDP)
method.



Consider the linear multistage program and the
rectangular setting. First, the marginal distri-
butions of &, t = 2,..., 1", are discretized by
generating Monte Carlo samples from the ref-
erence distribution (the SAA approach).

For the constructed discretized problem the

value functions are approximated. For trial de-
cisions x¢, t=1,....,7—1, at the backward step

of the SDDP algorithm, piecewise linear ap-
proximations U;(-) of the value functions V;(-)

are constructed by solving problems

Min ()2 +Bpp1(ar) St BjT1+Alz =], 2 >0,
rtER™
7 = 1,..., N¢, and their duals, going backward
intimet="1T,...,1.



By construction

Ve(r) >0:(0), t=2,...,T.

Therefore the optimal value of

Min C-{xl + mg(wl) s.t. Ajx1 =01, x1 >0
x1ER™1L

gives a lower bound for the optimal value vy
of the SAA problem.

In the risk neutral setting,
w0 > Efoy],

and hence on average vy is also a lower bound
for the optimal value v of the true problem.



The approximate value functions U, ..., U7 and
a feasible first stage solution x1 define a fea-
sible policy. That is for a realization (sample
path) &1, ...,&p of the data process, z; = it(g[t])
are computed recursively int =2,...,1' as a so-
lution of

Min cf o + Dy 41(20) St Bilfy—1 + Ay = by,
t—

In the forward step of the SDDP algorithm M
sample paths (scenarios) are generated and the
corresponding x4, t = 2,...,T", are used as trial
points in the next iteration of the backward
step.

Note that the functions U, ...,*°Ur and x1 define
a feasible policy also for the true problem.



Periodical infinite horizon multistage programs

Consider infinite horizon problem with discount
factor v € (0,1)

7rTnEiI[I] f1(x1) + R [Zfig YL fy (xtagt)} :

where 1 is a set of policies satisfying the fea-
Sibility constraints

xt € Xy, Brry 1 + Arxy = by

Suppose the rectangular setting, and that the
problem has periodic structure with period
m € N.



That is

e [ he functional R : Z — R is a law invariant.

e Vectors & and &, have the same (refer-
ence) distribution, with support = C Rd, for
t > 2 (recall that &1 is deterministic).

e The functions b:(-), B:(-), A:(-) and fi(-,-)
have period m, i.e., are the same for t = 7
and t =74+ m, t = 2,..., and the sets A} are
nonempty and Xy = X4, for all ¢.



This leads to the following periodical variant
of Bellman equations for the value functions
Vo(:),..s; Vms1() of the dynamic equations:

Vr(zr—1) = R[Vr(zr-1,&)].

Vi(zr_1,&r) = inf f7(337757)+7vr+1(377)7

T EXT
BTCCT_ 1 —l—ATJZT:bT

forr=2,...,m+ 1, and V4o replaced by V>
for m = m+4 1. Consequently for t > m 4+ 2
the corresponding value functions are defined
recursively as Vi(-, &) = Vi_m(+, &), and hence

Vi(-) = Viem(5).



Duals of periodical linear programs

Dual approach to construction of upper bounds
was initiated in Leclére, Carpentier, Chance-
lier, Lenoir, Pacaud (2019),

we follow here the approach of Guigues, Shapiro,
Cheng (2019)

Consider linear (risk neutral) multistage stochas-
tic program
- T T
min B[S ¢f
s.t. Aixq1 = bq,
Bixy_ 1+ Ay = by, t =2,...,T.

Dualization of the the feasibility constraints



The Lagrangian

T
L(z,m) =E | Y ¢ ot + 7 (bt — Byzy_1 — Age)

t=1
in variables x = (a;l(g[l]), e ,xT(.g[T])) and T =
(wl(g[l]), . ,wT(g[T])) with the convention that
xg = 0. Dualization of the feasibility con-

straints leads to the following dual

T
max E[ > thwt}
t=1
S.t. A’}—ﬂ-T <cp,

T T —
Al m1 + B, [Bt 774 <c¢ 1, t=2,...,T.

The optimization is over policies 7 = (&),
t=1,..T.



Dynamic programming equations for the dual
problem

Assume the stagewise independence condition
and finite number of scenarios N; per stage and
respective probabilities Pt;- At the last stage
t =T we have the following problem

N

L] = N
i, 171 = 2 pribry

1=1
T -
S.t. AT]-T('TJ' < CTj, ] = yoees N,
N
T T
Ap qmp_1+ ) pri BT < ep—1.
=1

The optimal value Vip(wp_1,&ép_1) and an op-
timal solution (7p1,...,7TrN,) Of that problem
are functions of vectors wp_1 and c¢p_q1 and
matrix Ap_1.



And so on going backward in time we can write
the respective dynamic programming equations
fort=1T-1,...,2, as

Ny
T
_max S py b+ Vi (e, &) |
t17"°77TtNt ]:1
Ny -
S.t. A;r_lwt_l + Z pththtj < ¢t—1,
=1

with Vi(m_1,&_1) being the optimal value of
the above problem. Finally at the first stage
the following problem should be solved

max by w1 + Va(my, €1).



T he Brazilian hydro power operation plan-
ning problem

The Brazilian hydro power operation planning
problem is a multistage, large scale (more than
200 power plants, of which 141 are hydro plants),
stochastic optimization problem. On a high
level, planning is for 5 years on monthly ba-
sis together with 5 additional years to smooth
out the end of horizon effect. This results
in 120-stage stochastic programming problem.
Four energy equivalent reservoirs are consid-
ered, one in each one of the four intercon-
nected main regions, SE, S, N and NE. The
resulting policy obtained with the aggregate
representation can be further refined, so as
to provide decisions for each of the hydro and
thermal power plants.
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Comparison of the classical and periodical SDDP
(with 8 state variables, period m = 12)

Stored energy (in average value and 0.9 quan-
tile) by periodical SDDP (on the left) and clas-
sical SDDP (on the right) for the SAA dis-
cretization problem (100 samples per stage)
and the true problem (on the bottom) for the
risk neutral case with discount factor v = 0.8




Individual stage costs (in average value and
0.9 quantile) by periodical SDDP (on the left)
and classical SDDP (on the right) for the SAA
discretization problem (on the above) and the
true problem (on the bottom) for the risk neu-
tral case with discount factor v = 0.9906 (this
~ corresponds to the annual discount rate of
12%, that is 1/412 =1.12)
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Dual bounds for periodical problem

Hydro-thermal problem with 4 state variables,
50 samples per stage, discount factor v = 0.9906
and period m = 12. Evolution of deterministic
bounds of primal and dual periodical programs.
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