
íO via Functional Encryption:

Techniques and Challenges from LWE

Laying Out a Plan

Yesterday:

1. Why FE implies $i O$
2. Survey of JLS20: Identify and leverage a surprising, beautiful synergy between three different assumptions to build FE : LWE, SXDH, LPN

Today:

Try to build FE from LWE alone.
Identify technical challenges, discuss how pairings overcome these

> Why?

M C Escher

Hans Hoffman

FE \rightarrow í ${ }_{[A J 15, ~ B V 15, L i n 16, L V 16, A S 16 ~}^{\rightarrow}$ Yael's talk]

The following FE suffices for $\hat{i} O$:

- Single key for a function with long output $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
- $|C T|$ is sublinear in output length m
- Supporting function class NC^{0}

How to build it?

Natural Idea: Use LWE

-- Recall: LWE *only* assumption yielding FHE

Perfect:

 Encrypted computation with All or Nothing Decryption
LWE...Leakage on Partial Decryption (FE)

- Using LWE, can support all polynomial sized circuits for FE
- But only for restricted security games
- Adversary sees limited number of queries [GVW12, GKPVZ13, AR17], restricted types of queries [GVW15], combination of these [A17]
- Attacks against scheme when adversary violates security game [A17]

In Most LWE Based FE Constructions

Learning With Errors \rightarrow Ciphertext

Distinguish "noisy inner products" from uniform

versus

In Most LWE Based FE Constructions

SIS Problem \rightarrow Secret Key

Given matrix A, find "short" integer z such that

$$
A z=0 \bmod q
$$

Many short vectors form a trapdoor for A Can be used to break LWE with matrix A

Decryption works

when matrices match

SK

$$
\{\mathrm{A}\} \mathrm{z}]=\left[\begin{array}{l}
0 \\
\hline
\end{array}\right.
$$

We need: Partial Decryption Capability

$$
\begin{aligned}
& \text { Encrypt (mpk, } x \text {): } \\
& c_{1}=A_{1}, x_{1} \quad \ldots \ldots . . c_{n}=A_{n}, x_{n} \\
& c_{0}=A, 0
\end{aligned}
$$

We need: Partial Decryption Capability

$B G G+14$ showed homomorphic evaluation algorithms eval ${ }_{c t}$ and $e{ }^{2} l_{p k}$ such that:
Encrypt (mpk, x):

$$
\begin{aligned}
& c_{1}=A_{1}, x_{1} \ldots \ldots . . c_{n}=A_{n}, x_{n} \\
& c_{0}=A, 0
\end{aligned}
$$

1. Compute ct* $=$ Eval $_{\text {ct }}\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n}, \mathrm{f}\right)$

$$
c t^{*}=\left[\mathrm{A} \mid \mathrm{A}_{\mathrm{f}}\right], \mathrm{f}(\mathrm{x})
$$

1. Compute $A_{f}=E v a l_{p k}\left(A_{1} \ldots A_{n}, f\right)$

We need: Partial Decryption Capability

$B G G+14$ showed homomorphic evaluation algorithms eval ${ }_{c t}$ and $e{ }^{2} l_{p k}$ such that:

Encrypt (mpk, x):

$$
\begin{aligned}
& c_{1}=A_{1}, x_{1} \\
& c_{0}=A, 0
\end{aligned}
$$

$$
c_{n}=A_{n}, x_{n}
$$

Decrypt $\left(\mathrm{sk}_{\mathrm{f}}, \mathrm{ct}\right) \rightarrow \mathrm{f}(\mathrm{x})$

1. Compute ct* $=E v a l_{c t}\left(c_{1} \ldots \mathrm{c}_{n}, f\right)$

$$
\mathrm{ct}^{*}=\left[\mathrm{A} \mid \mathrm{A}_{\mathrm{f}}\right], \mathrm{f}(\mathrm{x})
$$

Keygen(msk, f):

1. Compute $A_{f}=E v a l_{p k}\left(A_{1} \ldots A_{n}, f\right)$
2. Compute short vector z such that

$$
\left\{A \mid A_{f}\right\}[Z]=[0\}
$$

We need: Partial Decryption Capability

BGG+14 showed homomorphic evaluation algorithms eval ${ }_{c t}$ and eval $_{p k}$ such that:

Encrypt (mpk, x):

$c_{1}=A_{1}, x_{1}$

$$
c_{n}=A_{n}, x_{n}
$$

$$
\mathrm{C}_{0}=\mathrm{A}, \mathrm{O}
$$

Keygen(msk, f):

1. Compute $A_{f}=E v a l_{p k}\left(A_{1} \ldots A_{n}, f\right)$
2. Compute short vector z such that

$$
\left\{A \mid A_{f}\right\}\{Z=[0
$$

Decrypt $\left(\mathrm{sk}_{\mathrm{f}, \mathrm{ct}}\right) \rightarrow \mathrm{f}(\mathrm{x})$

1. Compute ct* $=\operatorname{Eval}_{\mathrm{ct}}\left(\mathrm{c}_{1} \ldots \mathrm{c}_{\mathrm{n}}, \mathrm{f}\right)$

$$
c t^{*}=\left[A \mid A_{f}\right], f(x)
$$

Matrices in ct* and key match, can recover $f(x)$!

Catch: x is not hidden

We need: Partial Decryption Capability
GVW15 showed how to hide x in restricted security game
Encrypt (mpk, x): Use FHE to encrypt x_{i} denote by \hat{X}_{i}

$$
\begin{array}{ll}
\mathrm{c}_{1}=A_{1}, \hat{x}_{1} & \ldots \\
\mathrm{c}_{\mathrm{n}}=A_{n}, \hat{x}_{n} \\
\mathrm{c}_{0}=\mathrm{A}, 0 & \mathrm{c}_{\text {sk }}=\text { FHE.sk }
\end{array}
$$

Keygen(msk, f): Let $\mathrm{f}^{\prime}=$ FHE.Dec $\circ \mathrm{f}$

We need: Partial Decryption Capability

GVW15 showed how to hide x in restricted security game

Encrypt (mpk, x): Use FHE to encrypt x_{i} denote by \hat{X}_{i}

$$
\begin{array}{ll}
\mathrm{c}_{1}=A_{1}, \hat{x}_{1} & \ldots \ldots . . \\
\mathrm{c}_{\mathrm{n}}=A_{n}, \hat{x}_{n} \\
\mathrm{c}_{0}=\mathrm{A}, 0 & \mathrm{c}_{\text {sk }}=\text { FHE.sk }
\end{array}
$$

$$
\operatorname{Decrypt}\left(\mathrm{sk}_{\mathrm{f}}, \mathrm{ct}\right) \rightarrow \mathrm{f}(\mathrm{x})
$$

1. Compute ct* $=\operatorname{Eval}_{c t}\left(c_{1} \ldots c_{n}, f^{\prime}\right)$

$$
c t^{*}=\left[A \mid A_{f^{\prime}}\right], f(x)
$$

OK to reveal \hat{x}_{i}
Need work to argue that FHE.sk is hidden
Keygen(msk, f): Let $\mathrm{f}^{\prime}=$ FHE.Dec of

1. Compute $A_{f^{\prime}}=\operatorname{Eval}_{P K}\left(A_{1} \ldots A_{n}, f^{\prime}\right)$
2. Compute short vector z such that

$$
\left.\left\{A \mid A_{f^{\prime}}\right\}[Z]=0\right\}
$$

Attacks Outside Game[A17]

- Request keys for linearly dependent vectors
- Combine keys to get short vectors, hence trapdoor in certain lattice A^{*}
- Manipulate challenge CT to get LWE sample with matrix B^{*}
- A^{*} and B^{*} only match for keys where $f(x)=1$
- Lessons: Inherent vulnerability for "attribute hiding" scheme with this structure of keys

How do pairings help [GJLS20]?

Can build FE for quadratic functions from pairings [Lin16,BCFG17,G20,Wee20]
(mpk, msk) $\leftarrow \operatorname{Setup}\left(1^{\text {n }}\right)$
Encrypt $\left(m p k, x=\left(x_{1} \ldots . . x_{n}\right)\right)$:

ct

Keygen(msk, C $\left.=\left(\mathrm{c}_{11} \ldots . \mathrm{c}_{\mathrm{nn}}\right)\right)$:

Decrypt (sk_{c}, ct) outputs
$\sum_{i, j} c_{i j} x_{i j}$

No restrictions in the security game!

How do pairings help [GJLS20]?

- Compute $c t^{*}=\left[A \mid A_{f}\right], f(x)$ as before using evaluation algorithm
- Looking more closely at structure of ct*:

$$
c t^{*}=\left[A \mid A_{f}\right]^{T} s+f(x)+n o i s e
$$

- Encryptor knows (s, noise) and can provide Linear FE ciphertext for vector (s, noise)
- Key generator knows $\left[A \mid A_{f}\right.$] and can provide Linear FE key for vector ($\left.\left[A \mid A_{f}\right]^{\top}, 1\right)$
- Decryption recovers inner product ($\left[A \mid A_{f}\right]^{\top} s+$ noise, which can be subtracted from ct* to recover $f(x)$ (upto rounding).

Using Pairing based FE to implement Quadratic (hence Linear) FE prevents the leakage created by LWE secret keys

Doing Without Pairings?

- Linear FE exists from LWE [ABDP15, ALS16] but does not suffice : same key structure
- There are other approaches [A19,AP20], but all suffer from unsimulatable key structure -
- No known attacks but do not admit proof

Challenge: Construct LWE based FE with more secure keys

Difficulty in Reduction for FE.

Does not show up in Functional Encodings

Degree Flattening

Given: LWE encoding of input x (encoding may vary).
Want: to compute a "deep" (say NC_{1}) circuit f on x , to obtain an encoding of $f(x)$

Can represent deep computation f as equivalent function f^{\prime} such that f^{\prime} has public computation of high degree and private computation of low degree

Deep, public computation done publicly, shallow private computation, done using Linear Functional Encryption

Linear Functional Enc [ABDP15,ALS16]

Can build FE for quadratic functions from pairings [Lin16,BCFG17,G20,Wee20]

$$
(m p k, m s k) \leftarrow \operatorname{Setup}\left(1^{n}\right)
$$

$$
\text { Encrypt }\left(m p k, x=\left(x_{1} \ldots . x_{n}\right)\right) \text { : }
$$

Decrypt (sk_{y}, ct) outputs

$$
\sum_{i \in[n]} x_{i} y_{i}
$$

No restrictions in the security game

More than n key requests \rightarrow MSK leaked

Symmetric key FHE for Quadratic Polynomials [BV11a]

s: secret key
Encrypt (s, x_{1}, x_{2}):
Sample u_{1}, u_{2} randomly in ring. Sample err ${ }_{1}$, err $_{2}$. Compute:

$$
\begin{aligned}
& c_{1}=u_{1} s+e r r_{1}+x_{1} \\
& c_{2}=u_{2} s+e r r_{2}+x_{2}
\end{aligned}
$$

Evaluate $\left(c_{1}, c_{2}, f=x_{1} x_{2}\right)$:
Want: Use $\mathrm{c}_{1}, \mathrm{c}_{2}$ to compute product ciphertext c_{12} that encrypts $\mathrm{x}_{1} \mathrm{x}_{2}$

FHE Evaluation

We may write:

$$
\begin{aligned}
& x_{1} \approx c_{1}-u_{1} s \\
& x_{2} \approx c_{2}-u_{2} s \\
& \therefore x_{1} x_{2} \approx c_{1} c_{2}-\left(c_{1} u_{2}+c_{2} u_{1}\right) s+u_{1} u_{2} s^{2}
\end{aligned}
$$

$$
\text { Let } \mathrm{c}^{\text {mult }}=\left(\mathrm{c}_{1} \mathrm{c}_{2}, \quad \mathrm{c}_{1} \mathrm{u}_{2}+\mathrm{c}_{2} \mathrm{u}_{1}, \quad \mathrm{u}_{1} \mathrm{u}_{2}\right)
$$

Decryption $x_{1} x_{2} \approx\left\langle\left(c_{1} c_{2},\left(c_{1} u_{2}+c_{2} u_{1}\right), u_{1} u_{2}\right) ;\left(1,-s, s^{2}\right)\right\rangle$

Quadratic Functional Enc [AR17]

- Recall FHE decryption equation:

$$
x_{1} x_{2} \approx c_{1} c_{2}-\left(c_{1} u_{2}+c_{2} u_{1}\right) s+u_{1} u_{2} s^{2}
$$

- What if we group the "‘fferentl"

Known to
 Key Generator
Decryption

$$
x_{1} x_{2} \approx c_{1} c_{2}+<\left(c_{1} s, c_{2} s, s^{2}\right) ;\left(-u_{2},-u_{1}, u_{1} u_{2}\right)>
$$

Quadratic Functional Enc [AR17]

Encryptor provides $\mathrm{c}_{1}, \ldots . . . \mathrm{c}_{\mathrm{n}}$ as well as Linear FE encryption of vector $\left(c_{1} s, c_{2} s, \ldots . c_{n} s, s^{2}\right)$
Key Generator provides Linear FE key for vector

$$
\left(-u_{2},-u_{1}, 0 \ldots . .0, u_{1} u_{2}\right)
$$

Computing $\mathrm{c}_{1} \mathrm{c}_{2}$ herself, decryptor can recover :

$$
x_{1} x_{2} \approx c_{1} c_{2}-u_{2}\left(c_{1} s\right)-u_{1}\left(c_{2} s\right)+u_{1} u_{2}\left(s^{2}\right)
$$

Dependent
Computation
Key Insight: Quadratic terms are $\mathrm{c}_{\mathrm{i}} \mathrm{c}_{\mathrm{j}}$ which are public
Only 2 n ciphertexts instead of n^{2}

Compactness Vs Leakage

- Supports NC_{0} with sublinear ciphertexts
- Last slide: Degree reduction to linear
- Adversary sees exact linear equations in secrets
- Too much leakage!
- AJLMS19: Degree reduction to quadratic
- Adversary sees quadratic equations in secrets
- May be secure (aka MQ assumption for some distribution)

Degree reduction to Linear Too Much! Quadratic FE from LWE?

Way Forward?

- Don't have quadratic FE from LWE
- Previously: multivariate quadratic equations may hide secrets
- But... noisy linear equations can also hide secrets

> [A19,AJLMS19]:

Suffices to construct FE for linear functions plus noise

Noisy Linear Functional Encryption [A19]

- Recall Linear FE: Enc(x), Keygen(y), Decrypt to get $\langle x, y\rangle$.
- Noisy Linear FE : Enc(x), Keygen(y), Decrypt to get <x,y> plus noise
- Special Case via Degree 2.5 FE we saw yesterday
-Where does noise come from?
- What security properties does it need to satisfy?

Noise must satisfy only | mild statistical |
| :---: |
| properties |

A key observation: Computing a
noise term may be easier as exact
value not important

A key Observation: Old grandma advice!

If you cannot have what you want, you must learn to want what you can have

A key Observation:

Relax requirement on correctness

If you cannot compute what you can use, you must learn to use what

Noisy Linear Functional Encryption [A19]

```
CT (x, seed)
```



```
\[
<x, y>+G(\text { seed })
\]
```

- Only $<x, y>$ needs to be correct! G(seed) is allowed some corruption
- So far: Assume polynomial is PRG and insist on computing it exactly
- Here: Compute whatever can be computed and check if it can satisfy PRG like properties

Noisy Linear Functional Encryption [A19]

- Let's try to build it
- From LWE alone, we don't know how to
- Extend LWE based Linear FE of ALS16 to Noisy Linear FE using new hardness conjectures on lattices.

Let's see how...

Recap: Regev Public Key Encryption

Recall: Finding short \vec{e} such that $\langle\vec{a} ; \vec{e}\rangle=u$ is hard
\&SK: \vec{e} PK: \vec{a}, u

* Encrypt (PK, x) :

$$
\begin{aligned}
& \vec{c}_{0}=\vec{a} \cdot s+2 \cdot e \vec{r} r_{1} \\
& c_{1}=u \cdot s+2 \cdot e r r_{2}+x
\end{aligned}
$$

*Decrypt (SK) :

$$
\begin{aligned}
c_{1}-\left\langle\vec{e} ; \vec{c}_{0}\right\rangle & =u \cdot s+2 \cdot e r r_{2}+x-u \cdot s-\left\langle\vec{e} ; e \vec{r}_{1}\right\rangle \\
& =x+2 \cdot \operatorname{err} \\
& =x \quad \bmod 2
\end{aligned}
$$

Linear Functional Encryption [ALS16]

MSK: $\vec{e}_{1}, \ldots \vec{e}_{\ell}$ (short)
PK: $\quad \vec{a}, \vec{u}=\left(u_{1}, \ldots, u_{\ell}\right)$
where $\left\langle\vec{a} ; \vec{e}_{i}\right\rangle=u_{i} \in R_{q}$

Linear Functional Encryption [als16]

MSG: $\vec{e}_{1}, \ldots \vec{e}_{\ell}$ (short) $\quad \operatorname{Enc}($ PK, x): PK: $\quad \vec{a}, \vec{u}=\left(u_{1}, \ldots, u_{\ell}\right) \quad \vec{c}_{0}=\vec{a} \cdot s+2 \cdot e \vec{r} \vec{r}_{0}$ where $\left\langle\vec{a} ; \vec{e}_{i}\right\rangle=u_{i} \in R_{q}$

$$
\vec{c}_{1}=\vec{u} \cdot s+2 \cdot e \vec{r} \vec{r}_{1}+\vec{x}
$$

Linear Functional Encryption [ALS16]

MSK: $\vec{e}_{1}, \ldots \vec{e}_{\ell}$ (short) $\quad \operatorname{Enc}(\mathrm{PK}, \mathrm{x}):$
PK: $\quad \vec{a}, \vec{u}=\left(u_{1}, \ldots, u_{\ell}\right) \quad \vec{c}_{0}=\vec{a} \cdot s+2 \cdot e \vec{r} \vec{r}_{0}$
where $\left\langle\vec{a} ; \vec{e}_{i}\right\rangle=u_{i} \in R_{q}$
$\vec{c}_{1}=\vec{u} \cdot s+2 \cdot e \vec{r} \vec{r}_{1}+\vec{x}$

KeyGen(MSK, y):

$$
\sum_{i \in[\ell]} y_{i} \vec{e}_{i}
$$

Linear Functional Encryption [ALS16]

MST: $\vec{e}_{1}, \ldots \vec{e}_{\ell}$ (short) $\quad \operatorname{Enc}(\mathrm{PK}, \mathrm{x}):$
PK: $\quad \vec{a}, \vec{u}=\left(u_{1}, \ldots, u_{\ell}\right) \quad \vec{c}_{0}=\vec{a} \cdot s+2 \cdot e \overrightarrow{r r}_{0}$
where $\left\langle\vec{a} ; \vec{e}_{i}\right\rangle=u_{i} \in R_{q}$

$$
\vec{c}_{1}=\vec{u} \cdot s+2 \cdot e \overrightarrow{r r}_{1}+\vec{x}
$$

KeyGen(MSK, y):

$$
\sum_{i \in[\ell]} y_{i} \vec{e}_{i}
$$

Decrypt:

$$
\left(\begin{array}{l}
\left(\sum_{i \in[\ell]} y_{i} \vec{e}_{i}\right)^{\top} \cdot \vec{c}_{0}=\left(\sum_{i \in[\ell]} y_{i} \vec{u}_{i}\right) \cdot s+2 \cdot \mathrm{err} \\
-\vec{y}^{T} \vec{c}_{1}=\left(\sum_{i \in[\ell]} y_{i} u_{i}\right) \cdot s+2 \cdot \mathrm{err}+\langle\vec{x} ; \vec{y}\rangle \\
=\langle\vec{x}, \vec{y}\rangle+2 \cdot \mathrm{err}
\end{array}\right.
$$

Note that ..

- Decryption reveals $\langle\vec{x}, \vec{y}\rangle+2 \cdot$ err : inner product + noise
- Isn't this noisy linear FE already?

Noise not pseudorandom

Noise is learnt fully after sufficient key requests!

Adding Noise to Linear FE

Starting point idea: Linear FE computes $\langle\vec{x}, \vec{y}\rangle$ where $\vec{x}, \vec{y} \in R^{\ell}$ Add dummy co-ordinate $\quad x[\ell+1]=$ noise,$\quad y[\ell+1]=1$ Now output $\langle\vec{x}, \vec{y}\rangle+$ noise

Repeat m times, once for each output bit

Satisfies security, violates succinctness CT size grows with m

Can we compress encodings of noise?

- Polynomial for computing noise must be degree at least 3 [LV18, BBKK18]
- Recall: Do not have FE for even degree 2 polynomials from LWE
- Is approximate computation easier?

Is approximate computation easier? Or, Enter NTRU

Let $R=Z[x] /\left\langle x^{n}+1\right\rangle, p_{1}<p_{2}$ primes, $R_{p_{1}}=R /\left(p_{1} \cdot R\right), R_{p_{2}}=R /\left(p_{2} \cdot R\right)$
Want to compute $d=h \cdot s+p_{1} \cdot e r r+n o i s e$
"noise" is message!

For $i \in\{1, \ldots, w\}$, sample $f_{1 i}, f_{2 i}$ and g_{1}, g_{2} from a discrete Gaussian over ring R. Set

$$
h_{1 i}=\frac{f_{1 i}}{g_{1}}, \quad h_{2 j}=\frac{f_{2 j}}{g_{2}} \in R_{p_{2}} \forall i, j \in[w]
$$

Assume these look random. Note difference from NTRU: Reusing denominator!

RLWE with Structured Noise

Discrete Gaussian

Want to compute $d=h \cdot s+p_{1} \cdot \operatorname{err}+$ noise

Sample

$$
\begin{array}{ll}
e_{1 i} \leftarrow \widehat{\mathcal{D}}\left(\Lambda_{2}\right), & \text { where } \Lambda_{2} \triangleq g_{2} \cdot R . \\
e_{2 i} \leftarrow \widehat{\mathcal{D}}\left(\Lambda_{1}\right), & \text { where } \Lambda_{1} \triangleq g_{1} \cdot R .
\end{array} \text { Let } \quad \begin{aligned}
& e_{1 i}=g_{2} \cdot \xi_{1 i} \in \text { small }, \\
& e_{2 i}=g_{1} \cdot \xi_{2 i} \in \text { small },
\end{aligned}
$$

Recall $\quad h_{1 i}=\frac{f_{1 i}}{g_{1}}, \quad h_{2 j}=\frac{f_{2 j}}{g_{2}}$

We have that: $h_{1 i} \cdot e_{2 j}=f_{1 i} \cdot \xi_{2 j}, \quad h_{2 j} \cdot e_{1 i}=f_{2 j} \cdot \xi_{1 i} \in$ small

RLWE with Structured Noise

$$
\text { Want to compute } d=h \cdot s+p_{1} \cdot e r r+n o i s e
$$

We showed: $h_{1 i} \cdot e_{2 j}=f_{1 i} \cdot \xi_{2 j}, \quad h_{2 j} \cdot e_{1 i}=f_{2 j} \cdot \xi_{1 i} \in$ small
Compute encodings of "PRG seed": $\begin{aligned} d_{1 i} & =h_{1 i} \cdot t_{1}+p_{1} \cdot e_{1 i} \in R_{p_{2}} \\ d_{2 i} & =h_{2 i} \cdot t_{2}+p_{1} \cdot e_{2 i} \in R_{p_{2}}\end{aligned}$
Multiply encodings:

As desired!

$$
d_{1 i} \cdot d_{2 j}=\left(h_{1 i} \cdot h_{2 j}\right) \cdot\left(t_{2} t_{2}\right)+p_{1} \cdot \text { noise }
$$

where noise $=p_{1} \cdot\left(f_{1 i} \cdot \xi_{2 j} \cdot t_{1}+f_{2 j} \cdot \xi_{1 i} \cdot t_{2}+p_{1} \cdot g_{1} \cdot g_{2} \cdot \xi_{1 i} \cdot \xi_{2 j}\right) \in$ small

RLWE with Structured Noise

Noise lives in an ideal that "cancels" large term in RLWE sample Extends to higher degree

"Theorem": Its easy to make noise!

Security

- Proof from clumsy assumption in overly weak security game
- Adversary only gets single ciphertext
- Security based on inability to find attacks $:($ A19,AP20]
- Hurdles in proof:
- Compressed PK is correlated $d_{1 i} \cdot d_{2 j}=\left(h_{1 i} \cdot h_{2 j}\right) \cdot t+p_{1} \cdot$ noise
- Don't know to simulate secret keys (short preimages) for correlated images

$$
\left\langle\vec{a} ; \vec{e}_{i j}\right\rangle=h_{1 i} \cdot h_{2 j}
$$

- Interactive assumption in general
- can be made non-interactive if Adv only gets one CT

Connection with Functional Encodings [ww20]

- Functional encodings are akin to functional encryption with *single* ciphertext
- "Open" (counterpart of keygen) can have message x as input
- Assumption in A19 can be made non-interactive for this setting
- As is, does not achieve compression required by WW20
- Can be modified to do so (schemes can be seen as duals)
- But leakage/correlation in noise inherent to both
- Does not improve WW20 assumption, even for functional encodings
- But gives Functional Encryption, which is stronger

Open Problems

- Replace pairings with some weaker structure that can be built from LWE?
- New, simpler, plausible assumptions from lattices? Chart territory between LWE and multilinear map assumptions?
- Use idea that noise computation need not be exact?
- Build post quantum FE and base applications on this?

Images Credit:
M C Escher
Hans Hoffman
Jackson Pollock

