
iO via Functional Encryption:
Techniques and Challenges from LWE

Shweta Agrawal
IIT Madras

Laying Out a Plan
Yesterday:

1. Why FE implies iO

2. Survey of JLS20: Identify and leverage a surprising, beautiful synergy between

three different assumptions to build FE : LWE, SXDH, LPN

Today:

Try to build FE from LWE alone.

Identify technical challenges, discuss how pairings overcome these

2

Why?

M C Escher

Hans Hoffman

(mpk, msk) ß Setup(1n)

Encrypt (mpk, x):

Keygen(msk, F):

skF

ct

y = F(x)

Decrypt (skF, ct):

ct

skF

Security:
Adversary possessing keys for multiple
circuits Fi cannot distinguish Enc(x0) from
Enc(x1) unless Fi(x0) Fi(x1)

5
Functional Encryption [SW05,BSW11]

6=
<latexit sha1_base64="+7RhLb2Ei+GxlsZSdytQfUzk2wo=">AAAB63icdVDLSgMxFM3UV62vqks3wSK4GmbasY9d0Y3LCvYB7VAyaaYNTTJjkhHK0F9w40IRt/6QO//GTFtBRQ9cOJxzL/feE8SMKu04H1ZubX1jcyu/XdjZ3ds/KB4edVSUSEzaOGKR7AVIEUYFaWuqGenFkiAeMNINpleZ370nUtFI3OpZTHyOxoKGFCOdSQNB7obFkmOXq67nVaBje9VaxXMMaTTqF04durazQAms0BoW3wejCCecCI0ZUqrvOrH2UyQ1xYzMC4NEkRjhKRqTvqECcaL8dHHrHJ4ZZQTDSJoSGi7U7xMp4krNeGA6OdIT9dvLxL+8fqLDup9SESeaCLxcFCYM6ghmj8MRlQRrNjMEYUnNrRBPkERYm3gKJoSvT+H/pFO23YpdvvFKzctVHHlwAk7BOXBBDTTBNWiBNsBgAh7AE3i2uPVovVivy9actZo5Bj9gvX0CkO+OmQ==</latexit>

Functional Encryption
Encryption with Partial Decryption Keys

FE è iO [AJ15, BV15,Lin16,LV16,AS16 è Yael’s talk]

How to build it?

The following FE suffices for iO:

• Single key for a function with long output f : {0, 1}n → {0, 1}m

• |CT| is sublinear in output length m

• Supporting function class NC0

6

Natural Idea: Use LWE
-- Recall: LWE *only* assumption yielding FHE

7

Expressive
Functionality:

Supports
arbitrary circuits

Compact
ciphertext,

independent of
circuit size

Perfect:
Encrypted

computation with
All or Nothing

Decryption

* : up to minor variations

LWE…Leakage on Partial Decryption (FE)

Causes of Attack and Ways to Overcome them?

• Using LWE, can support all polynomial sized circuits for FE

• But only for restricted security games

• Adversary sees limited number of queries [GVW12, GKPVZ13,
AR17], restricted types of queries [GVW15], combination of
these [A17]

• Attacks against scheme when adversary violates security
game [A17]

8

Challenge: Leaky LWE Keys

In Most LWE Based FE Constructions

Distinguish “noisy inner products” from uniform

versus

A e+s
A

A Unif

,

,

Learning With Errors è Ciphertext

In Most LWE Based FE Constructions

Given matrix A, find “short” integer z such that
A z = 0 mod q

A z 0=

Many short vectors form a trapdoor for A
Can be used to break LWE with matrix A

mod q

SIS Problem è Secret Key

Decryption works

A e+s

A z 0=

CT

SK

when matrices match

Encrypt (mpk, x):

13

We need: Partial Decryption Capability

A1, x1c1 = An, xncn =……..

LWE encodings
of x

A, 0c0 =

Encrypt (mpk, x):

14

We need: Partial Decryption Capability
BGG+14 showed homomorphic evaluation algorithms evalct and evalpk such that:

A1, x1c1 = An, xncn =……..

LWE encodings
of x

1. Compute Af = Evalpk(A1…An, f)

A, 0c0 =

1. Compute ct* = Evalct(c1…cn, f)1. Compute ct* = Evalct(c1…cn, f)

[A|Af] , f(x)ct* =

Encrypt (mpk, x):

15

We need: Partial Decryption Capability
BGG+14 showed homomorphic evaluation algorithms evalct and evalpk such that:

A1, x1c1 = An, xncn =……..

LWE encodings
of x

Keygen(msk, f):
1. Compute Af = Evalpk(A1…An, f)

A| Af z 0=

A, 0c0 =

f(x)Decrypt (skf, ct) è

1. Compute ct* = Evalct(c1…cn, f)1. Compute ct* = Evalct(c1…cn, f)

[A|Af] , f(x)ct* =

2. Compute short vector z such that

Encrypt (mpk, x):

Keygen(msk, f):

f(x)Decrypt (skf, ct) è

16

We need: Partial Decryption Capability
BGG+14 showed homomorphic evaluation algorithms evalct and evalpk such that:

A1, x1c1 = An, xncn =……..

LWE encodings
of x

1. Compute ct* = Evalct(c1…cn, f)

[A|Af] , f(x)ct* =

A| Af z 0=

A, 0c0 =

Matrices in ct* and key match, can
recover f(x) !

Catch: x is not hidden
1. Compute Af = Evalpk(A1…An, f)

2. Compute short vector z such that

17

We need: Partial Decryption Capability
GVW15 showed how to hide x in restricted security game

c1 = cn =……..

A, 0c0 =

A1, x̂1
<latexit sha1_base64="IH/wvxBnT0SnyT+HAGDZgBsDy0s=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCnqsevFYwX5AG8Nmu2mXbjZhd6OW0P/hxYMiXv0v3vw3btoctPXBwOO9GWbm+TFnStv2t1VYWl5ZXSuulzY2t7Z3yrt7LRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW37o+vMbz9QqVgk7vQ4pm6IB4IFjGBtpPtLzzlBvSHW6MlzSl65YlftKdAicXJSgRwNr/zV60ckCanQhGOluo4dazfFUjPC6aTUSxSNMRnhAe0aKnBIlZtOr56gI6P0URBJU0Kjqfp7IsWhUuPQN50h1kM172Xif1430cGFmzIRJ5oKMlsUJBzpCGURoD6TlGg+NgQTycytiAyxxESboLIQnPmXF0mrVnVOq7Xbs0r9Ko+jCAdwCMfgwDnU4QYa0AQCEp7hFd6sR+vFerc+Zq0FK5/Zhz+wPn8AF7yQ8g==</latexit>

An, x̂n
<latexit sha1_base64="40Vw2SUtpL+B2PQ5c2J66jsrEGQ=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBg5SkCnqsevFYwX5AG8Nmu2mXbjZhd6KW0P/hxYMiXv0v3vw3btoctPXBwOO9GWbm+bHgGmz72yosLa+srhXXSxubW9s75d29lo4SRVmTRiJSHZ9oJrhkTeAgWCdWjIS+YG1/dJ357QemNI/kHYxj5oZkIHnAKQEj3V968gT3hgTwkydLXrliV+0p8CJxclJBORpe+avXj2gSMglUEK27jh2DmxIFnAo2KfUSzWJCR2TAuoZKEjLtptOrJ/jIKH0cRMqUBDxVf0+kJNR6HPqmMyQw1PNeJv7ndRMILtyUyzgBJulsUZAIDBHOIsB9rhgFMTaEUMXNrZgOiSIUTFBZCM78y4ukVas6p9Xa7VmlfpXHUUQH6BAdIwedozq6QQ3URBQp9Ixe0Zv1aL1Y79bHrLVg5TP76A+szx/TgJFs</latexit>

Encrypt (mpk, x): Use FHE to encrypt
denote by

xi
<latexit sha1_base64="HYbfjgGaRCmI8j+M0Errr+OmJEA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuRiyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LBjBP0IzqQPOSMGivdP/V4r1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvkZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14p1XqncX5dp1HkcBjuEEzsCDS6jBLdShAQwG8Ayv8OYI58V5dz7mrStOPnMEf+B8/gBh3o3c</latexit>

x̂i
<latexit sha1_base64="gZBtVzHTjZifz3YIUqm5HtM/nWY=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120y7dbOLuRCyhf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKzucZxwP6IDJULBKFqp3R1SJE890SuV3Yo7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx274ScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMps+TvtCcoRxbQpkW9lbChlRThjaiog3BW3x5mTSrFe+8Ur27KNeu8zgKcAwncAYeXEINbqEODWAg4Rle4c15cF6cd+dj3rri5DNH8AfO5w/AFI/H</latexit>

FHE.skcsk =

Keygen(msk, f): Let f’ = FHE.Dec f�<latexit sha1_base64="900n7YW3mPjKCkcVAbcGvW6FsVk=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvppl262YTdjVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTyHxMRKI6IdVMcMl8w41gnVQxGoeCtcPx3cxvPzGleSIfzSRlQUyHkkccqbGS30OusF+pujV3DrJKvIJUoUCzX/nqDRLMYiYNCqp113NTE+RUGY6CTcu9TLOU4pgOWddSSWOmg3x+7JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZpjExaIoE8QkZPY5GXDF0IiJJRQVt7cSHFFF0dh8yjYEb/nlVdKq17zLWv3hqtq4LeIowSmcwQV4cA0NuIcm+IDA4Rle4c2Rzovz7nwsWtecYuYE/sD5/AHMwY6t</latexit>

f(x)Decrypt (skf, ct) è

18

We need: Partial Decryption Capability
GVW15 showed how to hide x in restricted security game

c1 = cn =……..

1. Compute Af’ = EvalPK(A1…An, f’)
2. Compute short vector z such that

1. Compute ct* = Evalct(c1…cn, f’)

[A|Af’] , f(x)ct* =

A| Af’ z 0=

A, 0c0 =

OK to reveal
Need work to argue that FHE.sk is hidden

Can be done in restricted security game,
where Adv may not request any keys such

that f(x) =1

A1, x̂1
<latexit sha1_base64="IH/wvxBnT0SnyT+HAGDZgBsDy0s=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCnqsevFYwX5AG8Nmu2mXbjZhd6OW0P/hxYMiXv0v3vw3btoctPXBwOO9GWbm+TFnStv2t1VYWl5ZXSuulzY2t7Z3yrt7LRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW37o+vMbz9QqVgk7vQ4pm6IB4IFjGBtpPtLzzlBvSHW6MlzSl65YlftKdAicXJSgRwNr/zV60ckCanQhGOluo4dazfFUjPC6aTUSxSNMRnhAe0aKnBIlZtOr56gI6P0URBJU0Kjqfp7IsWhUuPQN50h1kM172Xif1430cGFmzIRJ5oKMlsUJBzpCGURoD6TlGg+NgQTycytiAyxxESboLIQnPmXF0mrVnVOq7Xbs0r9Ko+jCAdwCMfgwDnU4QYa0AQCEp7hFd6sR+vFerc+Zq0FK5/Zhz+wPn8AF7yQ8g==</latexit>

An, x̂n
<latexit sha1_base64="40Vw2SUtpL+B2PQ5c2J66jsrEGQ=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBg5SkCnqsevFYwX5AG8Nmu2mXbjZhd6KW0P/hxYMiXv0v3vw3btoctPXBwOO9GWbm+bHgGmz72yosLa+srhXXSxubW9s75d29lo4SRVmTRiJSHZ9oJrhkTeAgWCdWjIS+YG1/dJ357QemNI/kHYxj5oZkIHnAKQEj3V968gT3hgTwkydLXrliV+0p8CJxclJBORpe+avXj2gSMglUEK27jh2DmxIFnAo2KfUSzWJCR2TAuoZKEjLtptOrJ/jIKH0cRMqUBDxVf0+kJNR6HPqmMyQw1PNeJv7ndRMILtyUyzgBJulsUZAIDBHOIsB9rhgFMTaEUMXNrZgOiSIUTFBZCM78y4ukVas6p9Xa7VmlfpXHUUQH6BAdIwedozq6QQ3URBQp9Ixe0Zv1aL1Y79bHrLVg5TP76A+szx/TgJFs</latexit>

FHE.skcsk =

x̂i
<latexit sha1_base64="gZBtVzHTjZifz3YIUqm5HtM/nWY=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120y7dbOLuRCyhf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKzucZxwP6IDJULBKFqp3R1SJE890SuV3Yo7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx274ScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMps+TvtCcoRxbQpkW9lbChlRThjaiog3BW3x5mTSrFe+8Ur27KNeu8zgKcAwncAYeXEINbqEODWAg4Rle4c15cF6cd+dj3rri5DNH8AfO5w/AFI/H</latexit>

Keygen(msk, f): Let f’ = FHE.Dec f�<latexit sha1_base64="900n7YW3mPjKCkcVAbcGvW6FsVk=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvppl262YTdjVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTyHxMRKI6IdVMcMl8w41gnVQxGoeCtcPx3cxvPzGleSIfzSRlQUyHkkccqbGS30OusF+pujV3DrJKvIJUoUCzX/nqDRLMYiYNCqp113NTE+RUGY6CTcu9TLOU4pgOWddSSWOmg3x+7JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZpjExaIoE8QkZPY5GXDF0IiJJRQVt7cSHFFF0dh8yjYEb/nlVdKq17zLWv3hqtq4LeIowSmcwQV4cA0NuIcm+IDA4Rle4c2Rzovz7nwsWtecYuYE/sD5/AHMwY6t</latexit>

Encrypt (mpk, x): Use FHE to encrypt
denote by

xi
<latexit sha1_base64="HYbfjgGaRCmI8j+M0Errr+OmJEA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuRiyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LBjBP0IzqQPOSMGivdP/V4r1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvkZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14p1XqncX5dp1HkcBjuEEzsCDS6jBLdShAQwG8Ayv8OYI58V5dz7mrStOPnMEf+B8/gBh3o3c</latexit>

x̂i
<latexit sha1_base64="gZBtVzHTjZifz3YIUqm5HtM/nWY=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120y7dbOLuRCyhf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKzucZxwP6IDJULBKFqp3R1SJE890SuV3Yo7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx274ScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMps+TvtCcoRxbQpkW9lbChlRThjaiog3BW3x5mTSrFe+8Ur27KNeu8zgKcAwncAYeXEINbqEODWAg4Rle4c15cF6cd+dj3rri5DNH8AfO5w/AFI/H</latexit>

Attacks Outside Game[A17]
• Request keys for linearly dependent vectors

• Combine keys to get short vectors, hence trapdoor in certain
lattice A*

• Manipulate challenge CT to get LWE sample with matrix B*

• A* and B* only match for keys where f(x)=1

• Lessons: Inherent vulnerability for “attribute hiding” scheme
with this structure of keys

(mpk, msk) ß Setup(1n)

Encrypt (mpk, x = (x1….xn)):

Keygen(msk, C = (c11….cnn)):

Decrypt (skC, ct) outputs

ct

skC

20

How do pairings help [GJLS20]?

X

i,j

cijxij

<latexit sha1_base64="Nnw28eQN8cLsRsu1LlTPFoFyfoY=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEF1JmqqDLohuXFewD2mHIpJk2mmSGJCOWobjxV9y4UMStX+HOvzEznYW2XgjncM693NwTxIwq7TjfVmlhcWl5pbxaWVvf2Nyyt3faKkokJi0csUh2A6QIo4K0NNWMdGNJEA8Y6QR3l5nfuSdS0Ujc6HFMPI6GgoYUI20k397rq4T7KT2+nUBs0MBDDhXfrjo1Jy84T9yCVEFRTd/+6g8inHAiNGZIqZ7rxNpLkdQUMzKp9BNFYoTv0JD0DBWIE+Wl+QkTeGiUAQwjaZ7QMFd/T6SIKzXmgenkSI/UrJeJ/3m9RIfnXkpFnGgi8HRRmDCoI5jlAQdUEqzZ2BCEJTV/hXiEJMLapJaF4M6ePE/a9Zp7Uqtfn1YbF0UcZbAPDsARcMEZaIAr0AQtgMEjeAav4M16sl6sd+tj2lqyipld8Keszx/+LZcp</latexit>

Can build FE for quadratic functions from pairings [Lin16,BCFG17,G20,Wee20]

No restrictions in the
security game!

How do pairings help [GJLS20]?
• Compute as before using evaluation algorithm

• Looking more closely at structure of ct*:

• Encryptor knows (s, noise) and can provide Linear FE ciphertext for
vector (s, noise)

• Key generator knows [A| Af] and can provide Linear FE key for
vector ([A| Af]T, 1)

• Decryption recovers inner product ([A| Af]T s + noise, which can be
subtracted from ct* to recover f(x) (upto rounding).

[A|Af’] , f(x)ct* =

ct⇤ = [A|Af]
T s+ f(x) + noise

<latexit sha1_base64="OYd0TRJuigEiD2PfUv0lFFMrCEo=">AAACDXicbVDLTgIxFO3gC/E16tJNI5qgJmQGTXRjArpxiQmvZBhIp3SgodOZtB0jQX7Ajb/ixoXGuHXvzr+xwCwUPMnNPTnn3rT3eBGjUlnWt5FaWFxaXkmvZtbWNza3zO2dmgxjgUkVhywUDQ9JwignVUUVI41IEBR4jNS9/vXYr98RIWnIK2oQETdAXU59ipHSUts8wKp1DC+hU4IPsNT2oduqQAlPoJ+7P9KNh1SStpm18tYEcJ7YCcmCBOW2+dXshDgOCFeYISkd24qUO0RCUczIKNOMJYkQ7qMucTTlKCDSHU6uGcFDrXSgHwpdXMGJ+ntjiAIpB4GnJwOkenLWG4v/eU6s/At3SHkUK8Lx9CE/ZlCFcBwN7FBBsGIDTRAWVP8V4h4SCCsdYEaHYM+ePE9qhbx9mi/cnmWLV0kcabAH9kEO2OAcFMENKIMqwOARPINX8GY8GS/Gu/ExHU0Zyc4u+APj8wfAcJg2</latexit>

Using Pairing based FE to implement Quadratic (hence Linear) FE prevents
the leakage created by LWE secret keys

Doing Without Pairings?

• Linear FE exists from LWE [ABDP15, ALS16] but does not
suffice : same key structure

• There are other approaches [A19,AP20], but all suffer from
unsimulatable key structure –
• No known attacks but do not admit proof

Challenge: Construct LWE based FE with more secure keys

Difficulty in Reduction for FE.
Does not show up in Functional Encodings

Challenge: How to compute smudging noise

Degree Flattening
Given: LWE encoding of input x (encoding may vary).

Want: to compute a “deep” (say NC1) circuit f on x, to obtain an
encoding of f(x)

Can represent deep computation f as equivalent function f’ such that f’ has
public computation of high degree and private computation of low degree

Deep, public computation done publicly, shallow private computation,
done using Linear Functional Encryption

(mpk, msk) ß Setup(1n)

Encrypt (mpk, x = (x1….xn)):

Keygen(msk, y = (y1….yn)):

Decrypt (sky, ct) outputs

ct

sky

25

Linear Functional Enc [ABDP15,ALS16]

Can build FE for quadratic functions from pairings [Lin16,BCFG17,G20,Wee20]

No restrictions in the
security game

X

i2[n]

xiyi
<latexit sha1_base64="6yblJWvuwlOKizZ7ybat4GKrrI4=">AAACC3icbVDLSsNAFJ34rPUVdelmaBFclaQKuiy6cVnBPiAJYTKZtEMnkzAzEUPI3o2/4saFIm79AXf+jdM2C209cOFwzr3ce0+QMiqVZX0bK6tr6xubta369s7u3r55cNiXSSYw6eGEJWIYIEkY5aSnqGJkmAqC4oCRQTC5nvqDeyIkTfidylPixWjEaUQxUlryzYab8VD7RBUUupRDh3tl4cosLuGDT2HuU99sWi1rBrhM7Io0QYWub365YYKzmHCFGZLSsa1UeQUSimJGyrqbSZIiPEEj4mjKUUykV8x+KeGJVkIYJUIXV3Cm/p4oUCxlHge6M0ZqLBe9qfif52QquvQKytNMEY7ni6KMQZXAaTAwpIJgxXJNEBZU3wrxGAmElY6nrkOwF19eJv12yz5rtW/Pm52rKo4aOAYNcApscAE64AZ0QQ9g8AiewSt4M56MF+Pd+Ji3rhjVzBH4A+PzB0NFmy0=</latexit>

More than n key requests
è MSK leaked

Symmetric key FHE
for Quadratic Polynomials [BV11a]

26

c1 = u1s + err1 + x1
c2 = u2s + err2 + x2

Encrypt (s, x1, x2):
Sample u1, u2 randomly in ring. Sample err1, err2.
Compute :

Evaluate (c1, c2, f = x1 x2):

Want: Use c1, c2 to compute product ciphertext c12
that encrypts x1 x2

s: secret key

FHE Evaluation

27

1 1 1

2 2 2
2

1 2 1 2 1 2 2 1 1 2()

c u s
x c u s
x x c c c u c u s u u s

x » -
» -

\ » - + +

We may write:

Let cmult = (c1 c2, c1 u2 + c2 u1, u1u2)

Decryption 2
1 2 1 2 1 2 2 1 1 2,) ; (1, , (()), x x c c c u c u u u ss» < + - >

Quadratic Functional Enc [AR17]

• Recall FHE decryption equation:

28

2
1 2 1 2 1 2 2 1 1 2()x x c c c u c u s u u s» - + +

• What if we group the terms differently?

\x1x2 » c1c2 -u2(c1s)-u1(c2s)+u1u2(s
2)

Decryption
2

1 2 1 2 1 2 2 1 21 (, ,) ; (, ,)x x c c c s c s s u u u u+ <» - - >

Known to
encryptor

Known to
Key

Generator

• Encryptor provides c1,…..cn as well as Linear FE encryption of vector

• Key Generator provides Linear FE key for vector

• Computing c1c2 herself, decryptor can recover :

29

x1x2 » c1c2 -u2(c1s)-u1(c2s)+u1u2(s
2)

Key Insight: Quadratic terms are cicj which are public
Only 2n ciphertexts instead of n2

Quadratic Functional Enc [AR17]

2
1 2(, ,.... ,) nc s c s c s s

1 212(, ,0.....0,)u u u u- -

Deep
Computation
is on public
encodings

Key
Dependent

Computation
is Linear

Can be generalized to NC1 [AR17]

• Supports NC0 with sublinear ciphertexts

• Last slide: Degree reduction to linear
• Adversary sees exact linear equations in secrets
• Too much leakage!

• AJLMS19: Degree reduction to quadratic
• Adversary sees quadratic equations in secrets
• May be secure (aka MQ assumption for some distribution)

30

Compactness Vs Leakage

Degree reduction to Linear Too Much! Quadratic FE from LWE?

• Don’t have quadratic FE from LWE

• Previously: multivariate quadratic equations may hide
secrets

• But… noisy linear equations can also hide secrets

31

Way Forward?

[A19,AJLMS19]:
Suffices to construct FE for linear functions plus noise

FE for linear functions plus noise

Noisy Linear Functional Encryption [A19]

• Recall Linear FE : Enc(x), Keygen(y), Decrypt to get <x,y>.
• Noisy Linear FE : Enc(x), Keygen(y), Decrypt to get <x,y>

plus noise
• Special Case via Degree 2.5 FE we saw yesterday

•Where does noise come from?
•What security properties does it need to satisfy?

33

A key observation: Computing a
noise term may be easier as exact

value not important

Noise must satisfy only
mild statistical

properties

A key Observation: Old grandma advice!

34

If you cannot have
what you want, you
must learn to want
what you can have

A key Observation:
Relax requirement on correctness

35

If you cannot compute
what you can use, you
must learn to use what

you can compute

Noisy Linear Functional Encryption [A19]

• Only <x,y> needs to be correct! G(seed) is allowed some
corruption
• So far: Assume polynomial is PRG and insist on computing it

exactly
• Here: Compute whatever can be computed and check if it can

satisfy PRG like properties 36

CT (x, seed)

sky,G sky,G

CT(x, seed)

<x,y> + G’(seed’)<x,y> + G(seed)

Noisy Linear Functional Encryption [A19]

• Let’s try to build it

• From LWE alone, we don’t know how to

• Extend LWE based Linear FE of ALS16 to Noisy Linear FE using new
hardness conjectures on lattices.

37

Let’s see how…

Recap: Regev Public Key Encryption
Recall: Finding short such that is hard

vSK : PK :

vEncrypt (PK, x) :

vDecrypt (SK) :

Small only if
e is small

38

!
"e !

"a,u

;e ua =< >
!!

e!

Pseudorandom
By R-LWE

~c0 = ~a · s+ 2 · ~err1

c1 = u · s+ 2 · err2 + x

<latexit sha1_base64="gTzKu/+eJjxXJOSqlqNhe489Si4=">AAACXnicbVFdS8MwFE3r16xfU18EX4JDEYXRDkVfhIEvPio4HayjpLd3M5imJUnFUfYnfRNf/ClmWwV1Xgg5nHMu9+YkzgXXxvffHXdhcWl5pbbqra1vbG7Vt3cedFYowA5kIlPdmGkUXGLHcCOwmytkaSzwMX6+nuiPL6g0z+S9GeXYT9lQ8gEHZiwV1YswxiGXJRN8KE/GXviCQCHy6dEVnWJGQ0gyQzU9pa0KT4QSlRpHAQ1DD+xl7cW8cWZqWebVC1Em32OiesNv+tOi8yCoQINUdRvV38IkgyJFaUAwrXuBn5t+yZThINCuXWjMGTyzIfYslCxF3S+n8YzpoWUSOsiUPdLQKfuzo2Sp1qM0ts6UmSf9V5uQ/2m9wgwu+yWXeWFQwmzQoBDUZHSSNU24QjBiZAEDxe2uFJ6YYmDsj3g2hODvk+fBQ6sZnDXP71qNdreKo0b2yQE5JgG5IG1yQ25JhwD5cBzHc9acT3fZ3XC3ZlbXqXp2ya9y974A4yqwUQ==</latexit>

c1 � h~e;~c0i = u · s+ 2 · err2 + x� u · s� h~e; ~err1i
= x+ 2 · err
= x mod 2

<latexit sha1_base64="5d7C/eZ9uLi1TYNoVGnsSn1waqM=">AAACqXicdVFda9swFJW9r877SrfHvVwWFsbKgm02OhiFwl720IcWljQsCkaWb1xRWTKSXBaM/9t+w972b6bE6T7S7YLQ4Zx7j67uzWsprIvjH0F46/adu/f27kcPHj56/GSw/3RqdWM4TriW2sxyZlEKhRMnnMRZbZBVucTz/PLjWj+/QmOFVp/dqsZFxUolloIz56ls8I3mWArVMilK9bqLeJbAG6CSqVIi0CvkgB/6m2cxUNMLoyOAhvJCO7BwACn0uEVjuiz1zFfv8ivhf47r9Czprk0pjUZw5Et3DH8LtNIFpBFFVVx3nA2G8TjeBNwEyRYMyTZOs8F3WmjeVKgcl8zaeRLXbtEy4wSX2EW0sVgzfslKnHuoWIV20W4m3cFLzxSw1MYf5WDD/lnRssraVZX7zIq5C7urrcl/afPGLd8vWqHqxqHi/UPLRoLTsF4bFMIgd3LlAeNG+F6BXzDDuPPLjfwQkt0v3wTTdJy8Hb87S4fHJ9tx7JHn5AV5RRJySI7JJ3JKJoQHo+AkmATT8CA8C2fhlz41DLY1z8hfEfKfbw3Idg==</latexit>

Linear Functional Encryption [ALS16]

MSK:

PK:

where

(short)

Linear Functional Encryption [ALS16]

MSK:

PK:

where

(short) Enc(PK, x):

Linear Functional Encryption [ALS16]

MSK:

PK:

where

(short) Enc(PK, x):

KeyGen(MSK, y):

Linear Functional Encryption [ALS16]

MSK:

PK:

where

(short) Enc(PK, x):

KeyGen(MSK, y): Decrypt:

-
=

Note that ..

• Decryption reveals : inner product + noise

• Isn’t this noisy linear FE already?

Noise not
pseudorandom

Noise is learnt fully after sufficient key requests!

Adding Noise to Linear FE

• Starting point idea: Linear FE computes

• Add dummy co-ordinate

• Now output

• Repeat m times, once for each output bit

Satisfies security, violates succinctness
CT size grows with m

Can we compress encodings of noise ?

• Polynomial for computing noise must
be degree at least 3 [LV18, BBKK18]

• Recall: Do not have FE for even degree
2 polynomials from LWE

• Is approximate computation easier?

Is approximate computation easier?
Or, Enter NTRU

46

“noise” is
message!

Assume these look random.
Note difference from NTRU: Reusing denominator!

RLWE with Structured Noise

47

Discrete
Gaussian

Thus, [2] assumes that the samples {h1i, h2j} for i, j 2 [w] are indistinguishable
from random, even though multiple samples share the same denominator.

Additionally, [2] assumes that RLWE with small secrets remains secure if the
noise terms live in some secret ideal. The motivation for choosing such structured
secrets is that they can be multiplied with well chosen NTRU terms such as the
{h1i, h2j} above, to cancel the denominator and obtain a small element which
can be absorbed in noise.

In more detail, for i 2 [w], let bD(⇤2), bD(⇤1) be discrete Gaussian distributions
over lattices ⇤2 and ⇤1 respectively. Then, sample

e1i bD(⇤2), where ⇤2 , g2 ·R. Let e1i = g2 · ⇠1i 2 small,

e2i bD(⇤1), where ⇤1 , g1 ·R. Let e2i = g1 · ⇠2i 2 small,

Here, small is used to collect terms whose norms may be bounded away from the
modulus. Note that for i, j 2 [w], it holds that:

h1i · e2j = f1i · ⇠2j , h2j · e1i = f2j · ⇠1i 2 small

Now, sample small secrets t1, t2 and for i 2 [w], compute

d1i = h1i · t1 + p1 · e1i 2 Rp2

d2i = h2i · t2 + p1 · e2i 2 Rp2

Then, note that the products d1i · d2j do not su↵er from large cross terms for
any i, j 2 [w]. As discussed above, due to the fact that the error of one sample is
chosen to “cancel out” the large denominator in the other sample, the product
yields a well behaved RLWE sample whose label is a product of the original labels.
In more detail,

d1i · d2j =
�
h1i · h2j

�
· (t2 t2) + p1 · noise

where noise = p1 ·
�
f1i · ⇠2j · t1 + f2j · ⇠1i · t2 + p1 · g1 · g2 · ⇠1i · ⇠2j

�
2 small

The encoding d1i · d2j can be seen an an RLWE encoding under a public label
– this enables the noise term p1 · noise above to be added to the inner product
computed by LinFE, yielding the desired NLinFE. The actual construction [2]
does several more tricks to ensure that the noise term is high entropy and spread
across the ring – we refer the reader to Section 3 for details.

Exploiting Correlated Noise across Multiple Ciphertexts. As discussed above,
Agrawal [2] provided a proof of security for the NLinFE construction (under a
non-standard assumption) in a very weak security model where the adversary
is only allowed to request a single ciphertext. In this work, we show that the
construction is in fact insecure if the adversary has access to multiple ciphertexts.
To do so, we first formally define a variant of the RLWE problem, which we
call the RLWE problem with correlated noise. The distribution of the elements
in this problem are similar to the one obtained by the encryption procedure

6

We have that:

Recall

Noisy Linear Functional Encryption. Noisy linear functional encryption (NLinFE)
is a generalization of linear functional encryption (LinFE) [1, 3]. Recall that
in linear FE, the encryptor provides a CTz which encodes vector z 2 R

n, the
key generator provides a secret key SKv which encodes vector v 2 R

n and the
decryptor combines them to recover hz,vi. NLinFE is similar to linear FE, except
that the function value is recovered only up to some bounded additive noise term,
and indistinguishability holds even if the challenge messages evaluated on any
function key are only “approximately” and not exactly equal. The functionality of
NLinFE is as follows: given a ciphertext CTz and a secret key SKv, the decryptor
recovers hz, vi+ noisez,v where noisez,v is specific to the message and function
being evaluated.

It is well known that functional encryption (FE) for the function class NC1

which achieves sublinear3 ciphertext is su�cient to imply iO [6, 15]. Agrawal [2]
additionally showed the following “bootstrapping” theorem.

Theorem 1.1 ([2]). (Informal) There exists an FE scheme for the circuit class

NC1 with sublinear ciphertext size and satisfying indistinguishability based security,

assuming:

– A noisy linear FE scheme NLinFE with sublinear ciphertext size satisfying

indistinguishability based security and supporting superpolynomially large

outputs.

– The Learning with Errors (LWE) Assumption.

– A pseudorandom generator (PRG) computable in NC0.

Since the last two assumptions are widely believed, it su�ces to construct an
NLinFE scheme to construct the all-powerful iO.

The NLinFE Construction. Agrawal provided a direct construction of NLinFE
which supports superpolynomially large outputs, based on new assumptions that
are based on the Ring Learning With Errors (RLWE) and NTRU assumptions
(we refer the reader to Section 2 for a refresher on RLWE and NTRU).

The starting point of Agrawal’s NLinFE scheme is the LinFE scheme of [3],
which is based on LWE (or RLWE). NLinFE inherits the encodings and secret
key structure of LinFE verbatim to compute inner products, and develops new
techniques to compute the desired noise. Since the noise must be computed
using a high degree polynomial for security [10, 39], the work of [2] designs new
encodings that are amenable to multiplication as follows.

Let R = Z[x]/hxn + 1i and Rp1 = R/(p1 · R), Rp2 = R/(p2 · R) for some
primes p1 < p2. Then, for i 2 {1, . . . , w}, sample f1i, f2i and g1, g2 from a discrete
Gaussian over ring R. Set

h1i =
f1i

g1
, h2j =

f2j

g2
2 Rp2 8 i, j 2 [w]

3 Here “sublinear” refers to the property that the ciphertext size is sublinear in the
number of keys requested by the FE adversary.

5

Thus, [2] assumes that the samples {h1i, h2j} for i, j 2 [w] are indistinguishable
from random, even though multiple samples share the same denominator.

Additionally, [2] assumes that RLWE with small secrets remains secure if the
noise terms live in some secret ideal. The motivation for choosing such structured
secrets is that they can be multiplied with well chosen NTRU terms such as the
{h1i, h2j} above, to cancel the denominator and obtain a small element which
can be absorbed in noise.

In more detail, for i 2 [w], let bD(⇤2), bD(⇤1) be discrete Gaussian distributions
over lattices ⇤2 and ⇤1 respectively. Then, sample

e1i bD(⇤2), where ⇤2 , g2 ·R. Let e1i = g2 · ⇠1i 2 small,

e2i bD(⇤1), where ⇤1 , g1 ·R. Let e2i = g1 · ⇠2i 2 small,

Here, small is used to collect terms whose norms may be bounded away from the
modulus. Note that for i, j 2 [w], it holds that:

h1i · e2j = f1i · ⇠2j , h2j · e1i = f2j · ⇠1i 2 small

Now, sample small secrets t1, t2 and for i 2 [w], compute

d1i = h1i · t1 + p1 · e1i 2 Rp2

d2i = h2i · t2 + p1 · e2i 2 Rp2

Then, note that the products d1i · d2j do not su↵er from large cross terms for
any i, j 2 [w]. As discussed above, due to the fact that the error of one sample is
chosen to “cancel out” the large denominator in the other sample, the product
yields a well behaved RLWE sample whose label is a product of the original labels.
In more detail,

d1i · d2j =
�
h1i · h2j

�
· (t2 t2) + p1 · noise

where noise = p1 ·
�
f1i · ⇠2j · t1 + f2j · ⇠1i · t2 + p1 · g1 · g2 · ⇠1i · ⇠2j

�
2 small

The encoding d1i · d2j can be seen an an RLWE encoding under a public label
– this enables the noise term p1 · noise above to be added to the inner product
computed by LinFE, yielding the desired NLinFE. The actual construction [2]
does several more tricks to ensure that the noise term is high entropy and spread
across the ring – we refer the reader to Section 3 for details.

Exploiting Correlated Noise across Multiple Ciphertexts. As discussed above,
Agrawal [2] provided a proof of security for the NLinFE construction (under a
non-standard assumption) in a very weak security model where the adversary
is only allowed to request a single ciphertext. In this work, we show that the
construction is in fact insecure if the adversary has access to multiple ciphertexts.
To do so, we first formally define a variant of the RLWE problem, which we
call the RLWE problem with correlated noise. The distribution of the elements
in this problem are similar to the one obtained by the encryption procedure

6

Sample

RLWE with Structured Noise

48

Thus, [2] assumes that the samples {h1i, h2j} for i, j 2 [w] are indistinguishable
from random, even though multiple samples share the same denominator.

Additionally, [2] assumes that RLWE with small secrets remains secure if the
noise terms live in some secret ideal. The motivation for choosing such structured
secrets is that they can be multiplied with well chosen NTRU terms such as the
{h1i, h2j} above, to cancel the denominator and obtain a small element which
can be absorbed in noise.

In more detail, for i 2 [w], let bD(⇤2), bD(⇤1) be discrete Gaussian distributions
over lattices ⇤2 and ⇤1 respectively. Then, sample

e1i bD(⇤2), where ⇤2 , g2 ·R. Let e1i = g2 · ⇠1i 2 small,

e2i bD(⇤1), where ⇤1 , g1 ·R. Let e2i = g1 · ⇠2i 2 small,

Here, small is used to collect terms whose norms may be bounded away from the
modulus. Note that for i, j 2 [w], it holds that:

h1i · e2j = f1i · ⇠2j , h2j · e1i = f2j · ⇠1i 2 small

Now, sample small secrets t1, t2 and for i 2 [w], compute

d1i = h1i · t1 + p1 · e1i 2 Rp2

d2i = h2i · t2 + p1 · e2i 2 Rp2

Then, note that the products d1i · d2j do not su↵er from large cross terms for
any i, j 2 [w]. As discussed above, due to the fact that the error of one sample is
chosen to “cancel out” the large denominator in the other sample, the product
yields a well behaved RLWE sample whose label is a product of the original labels.
In more detail,

d1i · d2j =
�
h1i · h2j

�
· (t2 t2) + p1 · noise

where noise = p1 ·
�
f1i · ⇠2j · t1 + f2j · ⇠1i · t2 + p1 · g1 · g2 · ⇠1i · ⇠2j

�
2 small

The encoding d1i · d2j can be seen an an RLWE encoding under a public label
– this enables the noise term p1 · noise above to be added to the inner product
computed by LinFE, yielding the desired NLinFE. The actual construction [2]
does several more tricks to ensure that the noise term is high entropy and spread
across the ring – we refer the reader to Section 3 for details.

Exploiting Correlated Noise across Multiple Ciphertexts. As discussed above,
Agrawal [2] provided a proof of security for the NLinFE construction (under a
non-standard assumption) in a very weak security model where the adversary
is only allowed to request a single ciphertext. In this work, we show that the
construction is in fact insecure if the adversary has access to multiple ciphertexts.
To do so, we first formally define a variant of the RLWE problem, which we
call the RLWE problem with correlated noise. The distribution of the elements
in this problem are similar to the one obtained by the encryption procedure

6

We showed:

Compute encodings of “PRG seed” :

Thus, [2] assumes that the samples {h1i, h2j} for i, j 2 [w] are indistinguishable
from random, even though multiple samples share the same denominator.

Additionally, [2] assumes that RLWE with small secrets remains secure if the
noise terms live in some secret ideal. The motivation for choosing such structured
secrets is that they can be multiplied with well chosen NTRU terms such as the
{h1i, h2j} above, to cancel the denominator and obtain a small element which
can be absorbed in noise.

In more detail, for i 2 [w], let bD(⇤2), bD(⇤1) be discrete Gaussian distributions
over lattices ⇤2 and ⇤1 respectively. Then, sample

e1i bD(⇤2), where ⇤2 , g2 ·R. Let e1i = g2 · ⇠1i 2 small,

e2i bD(⇤1), where ⇤1 , g1 ·R. Let e2i = g1 · ⇠2i 2 small,

Here, small is used to collect terms whose norms may be bounded away from the
modulus. Note that for i, j 2 [w], it holds that:

h1i · e2j = f1i · ⇠2j , h2j · e1i = f2j · ⇠1i 2 small

Now, sample small secrets t1, t2 and for i 2 [w], compute

d1i = h1i · t1 + p1 · e1i 2 Rp2

d2i = h2i · t2 + p1 · e2i 2 Rp2

Then, note that the products d1i · d2j do not su↵er from large cross terms for
any i, j 2 [w]. As discussed above, due to the fact that the error of one sample is
chosen to “cancel out” the large denominator in the other sample, the product
yields a well behaved RLWE sample whose label is a product of the original labels.
In more detail,

d1i · d2j =
�
h1i · h2j

�
· (t2 t2) + p1 · noise

where noise = p1 ·
�
f1i · ⇠2j · t1 + f2j · ⇠1i · t2 + p1 · g1 · g2 · ⇠1i · ⇠2j

�
2 small

The encoding d1i · d2j can be seen an an RLWE encoding under a public label
– this enables the noise term p1 · noise above to be added to the inner product
computed by LinFE, yielding the desired NLinFE. The actual construction [2]
does several more tricks to ensure that the noise term is high entropy and spread
across the ring – we refer the reader to Section 3 for details.

Exploiting Correlated Noise across Multiple Ciphertexts. As discussed above,
Agrawal [2] provided a proof of security for the NLinFE construction (under a
non-standard assumption) in a very weak security model where the adversary
is only allowed to request a single ciphertext. In this work, we show that the
construction is in fact insecure if the adversary has access to multiple ciphertexts.
To do so, we first formally define a variant of the RLWE problem, which we
call the RLWE problem with correlated noise. The distribution of the elements
in this problem are similar to the one obtained by the encryption procedure

6

Thus, [2] assumes that the samples {h1i, h2j} for i, j 2 [w] are indistinguishable
from random, even though multiple samples share the same denominator.

Additionally, [2] assumes that RLWE with small secrets remains secure if the
noise terms live in some secret ideal. The motivation for choosing such structured
secrets is that they can be multiplied with well chosen NTRU terms such as the
{h1i, h2j} above, to cancel the denominator and obtain a small element which
can be absorbed in noise.

In more detail, for i 2 [w], let bD(⇤2), bD(⇤1) be discrete Gaussian distributions
over lattices ⇤2 and ⇤1 respectively. Then, sample

e1i bD(⇤2), where ⇤2 , g2 ·R. Let e1i = g2 · ⇠1i 2 small,

e2i bD(⇤1), where ⇤1 , g1 ·R. Let e2i = g1 · ⇠2i 2 small,

Here, small is used to collect terms whose norms may be bounded away from the
modulus. Note that for i, j 2 [w], it holds that:

h1i · e2j = f1i · ⇠2j , h2j · e1i = f2j · ⇠1i 2 small

Now, sample small secrets t1, t2 and for i 2 [w], compute

d1i = h1i · t1 + p1 · e1i 2 Rp2

d2i = h2i · t2 + p1 · e2i 2 Rp2

Then, note that the products d1i · d2j do not su↵er from large cross terms for
any i, j 2 [w]. As discussed above, due to the fact that the error of one sample is
chosen to “cancel out” the large denominator in the other sample, the product
yields a well behaved RLWE sample whose label is a product of the original labels.
In more detail,

d1i · d2j =
�
h1i · h2j

�
· (t2 t2) + p1 · noise

where noise = p1 ·
�
f1i · ⇠2j · t1 + f2j · ⇠1i · t2 + p1 · g1 · g2 · ⇠1i · ⇠2j

�
2 small

The encoding d1i · d2j can be seen an an RLWE encoding under a public label
– this enables the noise term p1 · noise above to be added to the inner product
computed by LinFE, yielding the desired NLinFE. The actual construction [2]
does several more tricks to ensure that the noise term is high entropy and spread
across the ring – we refer the reader to Section 3 for details.

Exploiting Correlated Noise across Multiple Ciphertexts. As discussed above,
Agrawal [2] provided a proof of security for the NLinFE construction (under a
non-standard assumption) in a very weak security model where the adversary
is only allowed to request a single ciphertext. In this work, we show that the
construction is in fact insecure if the adversary has access to multiple ciphertexts.
To do so, we first formally define a variant of the RLWE problem, which we
call the RLWE problem with correlated noise. The distribution of the elements
in this problem are similar to the one obtained by the encryption procedure

6

Multiply encodings: As
desired!

RLWE with Structured Noise

49

Noise lives in an ideal that “cancels” large term in RLWE sample

“Theorem”: Its easy to make noise!

Extends to higher degree

Description
oversimplified.

Please see
paper [A19]

50

Security
• Proof from clumsy assumption in overly weak security game

• Adversary only gets single ciphertext

• Security based on inability to find attacks L [A19,AP20]

• Hurdles in proof:

• Compressed PK is correlated

• Don’t know to simulate secret keys (short preimages) for correlated images

• Interactive assumption in general

• can be made non-interactive if Adv only gets one CT

d1i · d2j = (h1i · h2j) · t+ p1 · noise
<latexit sha1_base64="HttwLp9hIu8/GOG2CoXpSRtv9f0=">AAACLXicbZBLSwMxEMez9VXrq+rRS7AIilB2q6AXQdSDxwr2AW1Zstm0jWaTJZkVytIv5MWvIoKHinj1a5hu9+BrIPCf38wwmX8QC27AdSdOYW5+YXGpuFxaWV1b3yhvbjWNSjRlDaqE0u2AGCa4ZA3gIFg71oxEgWCt4P5yWm89MG24krcwilkvIgPJ+5wSsMgvX4V+6vFxl4YKsNW1uzE+w/vDjOIZHmb4IM8AH+LY9/JMKm6YX664VTcL/Fd4uaigPOp++aUbKppETAIVxJiO58bQS4kGTgUbl7qJYTGh92TAOlZKEjHTS7Nrx3jPkhD3lbZPAs7o94mURMaMosB2RgSG5ndtCv+rdRLon/ZSLuMEmKSzRf1EYFB4ah0OuWYUxMgKQjW3f8V0SDShYA0uWRO83yf/Fc1a1Tuq1m6OK+cXuR1FtIN20T7y0Ak6R9eojhqIokf0jCbozXlyXp1352PWWnDymW30I5zPL40xpno=</latexit>

h~a; ~eiji = h1i · h2j
<latexit sha1_base64="qpX5VrvADxg2fjlD1WXuktjHU08=">AAACJXicbZDLSgMxFIYz9VbrbdSlm2ARXJWZKihUoejGZQV7gU4ZMulpmzaTGZJMoQx9GTe+ihsXFhFc+Sqml4W2Hgh8+f9zSM4fxJwp7ThfVmZtfWNzK7ud29nd2z+wD49qKkokhSqNeCQbAVHAmYCqZppDI5ZAwoBDPRjcT/36EKRikXjSoxhaIekK1mGUaCP59o3HiehywN4QKCa45JXmCH7K+mPsybl9i3t+6jIj0Hakp5dif+zbeafgzAqvgruAPFpUxbcnXjuiSQhCU06UarpOrFspkZpRDuOclyiICR2QLjQNChKCaqWzLcf4zCht3ImkOULjmfp7IiWhUqMwMJ0h0T217E3F/7xmojvXrZSJONEg6PyhTsKxjvA0MtxmEqjmIwOESmb+immPSEK1CTZnQnCXV16FWrHgXhSKj5f58t0ijiw6QafoHLnoCpXRA6qgKqLoGb2idzSxXqw368P6nLdmrMXMMfpT1vcPK6uj2A==</latexit>

51

Connection with Functional Encodings [WW20]
• Functional encodings are akin to functional encryption with *single*

ciphertext
• “Open” (counterpart of keygen) can have message x as input

• Assumption in A19 can be made non-interactive for this setting

• As is, does not achieve compression required by WW20

• Can be modified to do so (schemes can be seen as duals)
• But leakage/correlation in noise inherent to both
• Does not improve WW20 assumption, even for functional encodings

• But gives Functional Encryption, which is stronger

Summary: Three Nuggets for Thought

How to
Strengthen
LWE keys

Can we
perform

approximate
computation
more easily?

How to
generate
smudging

noise using
only linear

FE?

53

Open Problems

• Replace pairings with some weaker structure that can be built from LWE?

• New, simpler, plausible assumptions from lattices? Chart territory
between LWE and multilinear map assumptions?

• Use idea that noise computation need not be exact?

• Build post quantum FE and base applications on this?

Thank You

Images Credit:
M C Escher
Hans Hoffman
Jackson Pollock

