I/ //
“ \ \ 4 "‘::' %
£ 3

P

: [" ‘é ?:i"um, ~ f\ Py !/ AlH \l
10 via Functional Encrypt|0n°
Technlques and ChaIIenges from LWE

— sx\ M—
,..._,,.,Y.s. N

Shweta Agrawal
IIT Madras

Laying Out a Plan

Yesterday:
1. Why FE implies 10

2. Survey of JLS20: Identify and leverage a surprising, beautiful synergy between

three different assumptions to build FE : LWE, SXDH, LPN

Today:

Try to build FE from LWE alone.

Identify technical challenges, discuss how pairings overcome these

| |

M C Escher

-
(©
-
4=
o,
1
0
-
(O
1

Functional Encryption
Encryption with Partial Decryption Keys

(mpk, msk) €< Setup(1")
Encrypt (mpk, x):

Keygen(msk, F):

Decrypt (sk, ct):

y = F(x)

Security:
Adversary possessing keys for multiple
circuits F; cannot distinguish Enc(x,) from
Enc(x;) unless F;(x,) # Fi(x,)

Functional Encryption [SWO05,BSW11]

FE =» iO [AJ15, BV15,Lin16,LV16,A516 <> Yael’s talk]
The following FE suffices for 10:
* Single key for a function with long output f: {0, 1} - {0, 1}™
* |CT| is sublinear in output length m

 Supporting function class NC°

{ How to build it? J

Natural Idea: Use LWE

-- Recall: LWE *only* assumption yielding FHE

ENCRYPT | Client’s
-—— Encrypted
Data Cloud
Evaluation
(Decrypred | (ououtor)
Computation € — — —| computation
of Client’s on encrypted
4 : N 4 Compact N 4 Perfect: N
Expressive :
: : ciphertext, Encrypted
Functionality: : . :
independent of computation with
Supports . :
: _ circuit size All or Nothing
arbitrary circuits .
J _ J _ Decryption

* . up to minor variations 7

LWE...Leakage on Partial Decryption (FE)

* Using LWE, can support all polynomial sized circuits for FE

* But only for restricted security games

e Adversary sees limited number of queries [GVW12, GKPVZ13,
AR17], restricted types of queries [GVW15], combination of
these [A17]

 Attacks against scheme when adversary violates security
game [A17]

{ Causes of Attack and Ways to Overcome them?

n
>
<))
2
LLl
>
>
—Z
g
<))
—J

Challenge

In Most LWE Based FE Constructions

[Learning With Errors =2 Ciphertext J

Distinguish “noisy inner products” from uniform

e

’

VEersus

{A} e

In Most LWE Based FE Constructions

SIS Problem =2 Secret Key

Given matrix A, find “short” integer z such that
Az=0modq

< A > = 0 modaqg

Many short vectors form a trapdoor for A
Can be used to break LWE with matrix A

CT‘S"<A>+[ej
]
1

SK <A -

We need: Partial Decryption Capability

Encrypt mpk X)/ LWE enfcodlngs
of x

C1=[Aq, X1]]

We need: Partial Decryption Capability

BGG+14 showed homomorphic evaluation algorithms eval; and eval ,, such that:

Encrypt mpk X)/ LWE enfcodlngs
of x

C1= [Alr Xl] A Xn]

.p_{‘.?\ 2

1. Compute ct* = Eval(c;...c,, f)

ct*= | [AlAd,)

1. Compute A; = Eval, (A;..A,, f)

14

We need: Partial Decryption Capability

BGG+14 showed homomorphic evaluation algorithms eval; and eval ,, such that:

of x

Encrypt (mpk, x)/ LWE encodings Decrypt (sk, ct) = f(x)

C1=[AL X] ________ A, X J 1. Compute ct* = Eval,(c;...c,, f)

Co= Ct*=[[AlA], () J

Keygen(msk, f):
1. Compute A; = Eval, (A;..A,, f)

2. Compute short vector z such that

(anJE - @

We need: Partial Decryption Capability

BGG+14 showed homomorphic evaluation algorithms eval; and eval ,, such that:

Encrypt (mpk, x)/ LWE encodings Decrypt (sk, ct) = f(x)

of x

C,= [AL X;] ________ A, X, J 1. Compute ct* = Eval(c;...c,, f)

ct*= | [AIA], T |

Matrices in ct* and key match, can
recover f(x) !
Keygen(msk, f):
1. Compute A; = Eval (A,...A, f
pute Ay = Evaly (A A 1) [Catch: x is not hidden J
2. Compute short vector z such that

16

We need: Partial Decryption Capability

GVW15 showed how to hide x in restricted security game

Encrypt (mpk, x): Use FHE to encrypt X;
denote by I;

C1=[A17£%1] Cn=\An,5I\jn)

CO= Csk= FHESk

Keygen(msk, f): Let f" = FHE.Dec of

17

We need: Partial Decryption Capability

GVW15 showed how to hide x in restricted security game

Encrypt (mpk, x): Use FHE to encrypt X;

: f
denote by I; Decrypt (sk, ct) & f(x)

C,= [Ah 21] ________ cn=|A,, Tn 1. Compute ct* = Eval(c;...c,, f')
: \ ct*= | [AlAc], Tl |
C=| A0 Co=| FHE.sk
OK to reveal Z;
Need work to argue that FHE.sk is hidden
Keygen(msk, f): Let f" = FHE.Dec of
, 4 I
1. Compute A¢ = Evalp(A;..A,, f7) Can be done in restricted security game,
2. Compute short vector z such that where Adv may not request any keys such

) that f(x) =1
il - B :

18

Attacks Outside Game[Al7]

* Request keys for linearly dependent vectors

 Combine keys to get short vectors, hence trapdoor in certain
lattice A*

* Manipulate challenge CT to get LWE sample with matrix B*
 A* and B* only match for keys where f(x)=1

* Lessons: Inherent vulnerability for “attribute hiding” scheme
with this structure of keys

How do pairings help [GJLS20]?

Can build FE for quadratic functions from pairings [Lin16,BCFG17,G20,Wee20] J

(mpk, msk) €< Setup(1")

Encrypt (mpk, x = (X;....X,,)):

Keygen(msk, C =(cqq....Con)):

Decrypt (skc, ct) outputs

E Cij.ili‘z'j

2,]

No restrictions in the
security game!

20 .

s

How do pairings help [GJLS20]?

e Compute ct*= [[A|Ar], f(x) } as before using evaluation algorithm

* Looking more closely at structure of ct*:
ct* = [A|Af]" s + f(x) + noise

Encryptor knows (s, noise) and can provide Linear FE ciphertext for
vector (s, noise)

» Key generator knows [A| A:] and can provide Linear FE key for
vector ([A] A¢]" 1)

* Decryption recovers inner product ([A| A:]"s + noise, which can be
subtracted from ct* to recover f(x) (upto rounding).

Using Pairing based FE to implement Quadratic (hence Linear) FE prevents
the leakage created by LWE secret keys

Doing Without Pairings?

 Linear FE exists from LWE [ABDP15, ALS16] but does not
suffice : same key structure

* There are other approaches [A19,AP20], but all suffer from
unsimulatable key structure —

* No known attacks but do not admit proof

{ Challenge: Construct LWE based FE with more secure keys}

Difficulty in Reduction for FE.
Does not show up in Functional Encodings

1Se

ing No

o]0
o)
>
&
(Vp)
Q
)
>
Q.
&
O
O
O
)
S
O
L

Challenge

Degree Flattening

Given: LWE encoding of input x (encoding may vary).

Want: to compute a “deep” (say NC,) circuit f on x, to obtain an
encoding of f(x)

Can represent deep computation f as equivalent function f’ such that f’ has
public computation of high degree and private computation of low degree

N

)

Deep, public computation done publicly, shallow private computation,
done using Linear Functional Encryption

Linear Functional Enc [aBpbr15 ALS16])

At

Can build FE for quadratic functions from pairings [Lin16,BCFG17,G20,Wee20] J

mpk, msk) € Setup(1"
(mp) p(17) Decrypt (sk,, ct) outputs

Z LiYi
1€[n]

Encrypt (mpk, x = (X;....X,,)):

Keygen(msk, y = (y;....¥,)): No restrictions in the
security game

More than n key requests
=>» MSK leaked

25 PN

Symmetric key FHE
for Quadratic Polynomials [BV11a]

s: secret key

Encrypt (s, X4, X,):
Sample u,, u, randomly in ring. Sample err,, err,.

Compute :
c, =u,s+err,+Xx,

C, =U,S +err, +Xx,
Evaluate (c,, ¢, f =X, X,):

Want: Use c,, ¢, to compute product ciphertext c,,
that encrypts x, x,

FHE Evaluation

We may write:
X, R, —US
Xy, R Cy—U,S
XX, R cc,—(Cu, +Cu,)S +u s
R M) 172 1772 2771 1772
mult —
Let c™" =(c,c,, c,u,+cC,uU;, UU,)

Decryption x,x, <(cc,, (cu, +c,u), uu,) ; (1,—s,s°) >

27

Quadratic Functional Enc [AR17]

* Recall FHE decryption equation:

2
X, X, = c,c, —(cu, +c,u,)s+uu,s

 What if we group the~ “Herently”
7 . Known to
. nown to
SoX X, RCCy Key
S iel Generator

Decryption

xx, = cc,+<(¢s, c,s, 8 (—u,,—u,,uu,) >

28

Quadratic Functional Enc [AR17]

Encryptor provides c,.....c, as well as Linear FE ezncryption of vector
(¢S,)8 ,....C,8 ,87)

Deep
Computation
is on public
encodings

Key Generator provides Linear FE key for vector

Computing c,c, herself, decryptor can recover :

Key
Dependent
Computation
is Linear

2
XX, & CC, — Uy () —uy(C,8) +uy, (s7)

Key Insight: Quadratic terms are c;c; which are public
Only 2n ciphertexts instead of n?

[Can be generalized to NC, [AR17]

Compactness Vs Leakage

* Supports NC, with sublinear ciphertexts

* Last slide: Degree reduction to linear

* Adversary sees exact linear equations in secrets
e Too much leakage!

* AJLMS19: Degree reduction to quadratic

e Adversary sees quadratic equations in secrets
* May be secure (aka MQ assumption for some distribution)

{ Degree reduction to Linear Too Much! Quadratic FE from LWE?]

30

Way Forward?

* Don’t have quadratic FE from LWE

* Previously: multivariate quadratic equations may hide
secrets

* But... noisy linear equations can also hide secrets

[A19,AILMS19]:
Suffices to construct FE for linear functions plus noise

Noisy Linear Functional Encryption [A19]

e Recall Linear FE : Enc(x), Keygen(y), Decrypt to get <x,y>.

* Noisy Linear FE : Enc(x), Keygen(y), Decrypt to get <x,y>
plus noise

* Special Case via Degree 2.5 FE we saw yesterday

* Where does noise come from?

* What security properties does it need to satisfy? o
S NG
CIN : A key observation: Computing a
Noise must satisfy only : :
noise term Mmay be easier as exact

mild statistical .
. value not important
properties

A key Observation: Old grandma advice!

If you cannot have
what you want, you
must learn to want
what you can have

A key Observation:
Relax requirement on correctness

If you cannot compute
what you can use, you
must learn to use what
you can compute

Noisy Linear Functional Encryption [A19]

RN

<x,y> + G(seed) <x,y>+ G'(seed’)

* Only <x,y> needs to be correct! G(seed) is allowed some
corruption

* So far: Assume polynomial is PRG and insist on computing it
exactly

* Here: Compute whatever can be computed and check if it can
satisfy PRG like properties 36

Noisy Linear Functional Encryption [A19]

* Let’s try to build it
* From LWE alone, we don’t know how to

* Extend LWE based Linear FE of ALS16 to Noisy Linear FE using new
hardness conjectures on lattices.

{ Let’s see how... J

37

Recap: Regev Public Key Encryption

Recall: Finding short ¢ such that <a;e >=u is hard

Pseudorandom

+ Encrypt (PK, x) :
Small only if
e is small

5() 5'S+2°6FT1
ci1=u-sS+2-erro+x

+» Decrypt (SK) :

cp —(€:Ch)=u-s+2-errg+x—u-s— (€ erry)

~»

—x+2-err

= mod 2

38

Linear Functional Encryption [aLsie]

Linear Functional Encryption [atsie]

KeyGen(MSK, y):

Zie[z] Yi €;

Linear Functional Encryption [atsie]

KeyGen(MSK, y):

2 icle Yi €

(yigi)T'EOZ(Zyiﬁz')'S-I-Z-err

i€/ i€ 4]

. :(Zyz’ u;) - s+ 2-err + (Z;)
i€l

<f7 @+2-err

Note that ..

* Decryption reveals (Z, ¥) +2-err : inner product + noise

* Isn’t this noisy linear FE already?

e _ B
Noise not

pseudorandom
- /

U Noise is learnt fully after sufficient key requests! W

Adding Noise to Linear FE

Starting point idea: Linear FE computes <f, 37} where Cl_f, 37 = R£
Add dummy co-ordinate x|¢ 4+ 1| = noise, ylf+ 1] =1

Now output (f, g‘} + noise

Repeat m times, once for each output bit

e)
Satisfies security, violates succinctness

CT size grows with m

Can we compress encodings of noise ?

« Polynomial for computing noise must
be degree at least 3 [LV18, BBKK18]

* Recall: Do not have FE for even degree
2 polynomials from LWE

* |s approximate computation easier?

S approximate computation easier? M
Or, Enter NTRU y”

Let R = Z|z|/(z™ + 1), p1 < p2 primes, R,, = R/(p1- R), Rp, = R/(p2 - R)

“noise” is
message!

[Want to compute d = h - s+ py - err + noise -

For ¢ € {1,...,w}, sample fi;, fo; and g1, go from a discrete Gaussian over
ring R. Set
i _ Joj .
hii ===, hgj=""€Ry, V i,j€ v
g1 g2
4 I

Assume these look random.
Note difference from NTRU: Reusing denominator!

RLWE with Structured Noise

}V A

Discret
Gicsr;ai [Want to compute d = h - s + p; - err + notse }

Samp|e €1; < ﬁ(/lg), where A2 il go - R. Let Leli — (g2 flzT SmaII,

€o; — 25(/11), where A; £ g; - R. Let | ea; = g1 - &9; € small,

Recall {hlz = E, hgj — &J
g1 92

We have that: hi;-e2; = f1i-&25, hoj-e1i = fo2; - &1 € small

RLWE with Structured Noise

[Want to compute d = h - s+ p1 - err + notse]

We showed: hli $ €25 = fli y fgj, hgj €1y — f2j . 512' € small

))

. “ ndZ:hzt ’ ZGR
Compute encodings of “PRG seed” : “1 13 11 T P11 €1 p2
do; = ha;|- t2 + p1 {€2; |€ Ry,
Multiply encodings: As

desired!

dlz’ y dgj == (hlz y hgj) y (tQ tg) + p1 - noise
where noise = py - (f1; - &5 -1+ foj - &1t + D1 g1 g2 - E1i - &) € small

RLWE with Structured Noise [12 7

Noise lives in an ideal that “cancels” large term in RLWE sample

Extends to higher degree

{ “Theorem”: Its easy to make noise!]

Description
oversimplified.
Please see
paper [A19]

Security

* Proof from clumsy assumption in overly weak security game

* Adversary only gets single ciphertext

* Security based on inability to find attacks ® [A19,AP20]

* Hurdles in proof:
e Compressed PK is correlated di; - d2j = (hi1; - haj) -t + p1 - noise
 Don’t know to simulate secret keys (short preimages) for correlated images

(@; €;5) = h1; - haj

* |Interactive assumption in general

* can be made non-interactive if Adv only gets one CT 50

Connection with Functional Encodings [Ww20]

* Functional encodings are akin to functional encryption with *single*
ciphertext

* “Open” (counterpart of keygen) can have message x as input

e Assumption in A19 can be made non-interactive for this setting

* As is, does not achieve compression required by WW?20

* Can be modified to do so (schemes can be seen as duals)
» But leakage/correlation in noise inherent to both
* Does not improve WW20 assumption, even for functional encodings

e But gives Functional Encryption, which is stronger

51

P {::5.“. e T d"‘% *ﬁ@ B | ‘Q\‘:W;W\
4

Summary: Three Nuggets for Thought

generate

smudging
noise using
only linear

perform
approximate
| computation |
more easily? |

Open Problems

Replace pairings with some that can be built from LWE?

New, ? Chart territory
between LWE and multilinear map assumptions?

Use idea that noise computation need not be exact?

Build post quantum FE and base applications on this?

Images Credit:
} M C Escher

Hans Hoffman
Jackson Pollock

{ Thank You

53

