On the Assumptions
 used for Obfuscation

Benny Applebaum

Tel Aviv University

New Developments in Obfuscation
Simons Institute, December 2020

LPN
(mod-q)

Local PRGs

Cheap pseudorandomness (Fast-mini-Crypt)

SXDH

PKE
Assumptions (Homomotopia)

LWE

Learning Parity with Noise [BFKL94]

Problem: find s

Decoding Random Linear Code [GKL88]

Problem: find s

iid noise vector of rate ε

- Information theoretic solvable when $m>n /(1-H(\epsilon))$
- Gets "easier" when m grows and ϵ decreases
- Solving $\operatorname{LPN}(m, \epsilon)=>$ Solving $\operatorname{LPN}\left(m+m^{\prime}, \epsilon-\epsilon^{\prime}\right)$
- Trivially solvable in time $2^{H(\epsilon) n}$
- Trivially solvable w/p $(1-\epsilon)^{n}<1-\epsilon n$

Known Attacks

Samples

 (m)$\exp \left(\frac{n}{\log n}\right) \uparrow$
n^{1+c}
$O(n)$

poly-LPN

const-LPN

Noise

| $\frac{\log n}{n}$ | $\frac{\log ^{2} n}{n}$ | $\frac{1}{n^{0.9}}$ | $\frac{1}{n^{0.5}}$ | $\frac{1}{n^{0.1}}$ |
| :--- | :--- | :--- | :--- | :--- | 0.250 .5

Known Attacks

Samples

 (m)$$
\exp \left(\frac{n}{\log n}\right) \uparrow
$$

n^{1+c}
$O(n)$

Quasi-Poly	
Poly-time	SZK
[BK02,	worst->avg
APY09]	[BLVW18]

Sub-Exp

$$
\begin{aligned}
& \operatorname{Exp} \\
& \exp (n)
\end{aligned}
$$

$$
\begin{aligned}
& \exp \left(\frac{n}{\log n}\right) \quad[B K W 03] \\
& \exp \left(\frac{n}{\log \log n}\right)[\text { Lyu05] }
\end{aligned}
$$

$$
\frac{\log n}{n} \quad \frac{\log ^{2} n}{n}
$$

$\frac{1}{n^{0.9}}$	$\frac{1}{n^{0.5}}$	$\frac{1}{n^{0.1}}$

Simple Distinguishing Attack

Goal: Distinguish (A,b) from (A, uniform)

1. Find "small" set of linearly dependent rows in A

Simple Distinguishing Attack

Goal: Distinguish (A,b) from (A, uniform)

1. Find "small" set of linearly dependent rows in A
Δ-weight vector \mathbf{v} in co-Kernel(A)
2. Output $\langle v, b\rangle=\langle v, e\rangle$

Distinguishing advantage $(0.5-\epsilon)^{\Delta}=\exp (-\Delta / \epsilon)$
How small is $\Delta=\Delta(n, m)$?

$$
\tilde{o}\left(\frac{n}{\epsilon \log m}\right)
$$

Ignoring complexity of finding $\mathbf{v} \Rightarrow$ overall complexity \exp in $\tilde{O}\left(\frac{n}{\epsilon \log m}\right)$

Pseudorandomness

Thm.[BFKL94] LPN \Rightarrow pseudorandomness $(\mathrm{A}, \mathrm{As}+\mathrm{e}) \approx\left(\mathrm{A}, \mathrm{U}_{\mathrm{m}}\right)$
Proof: [AIK07]

- Assume LPN \Rightarrow By [GL89] can't approximate <s,r> for a random r
- Use distinguisher \mathbf{D} to compute hardcore bit <s,r> given a random r
-Given (A,b=As+e) and $\mathbf{r} \in\{0,1\}^{n}$ define $\mathbf{C}=$ re-random(A) s.t:

C is random and

$$
\mathbf{b}= \begin{cases}\text { Uniform } & \text { if }\langle r, s\rangle=1 \\ \text { Cs+e } & \text { if }\langle r, s\rangle=0\end{cases}
$$

Random Self-Reducibility

Problem: find s

Random Self-Reducibility

Problem: find s

Dual Version: Syndrome Decoding

Problem: find s

iid noise vector of rate ε
Problem: find e

iid noise vector of rate ε

Dual Version: Syndrome Decoding

Problem: find s

Problem: find x

iid noise vector of rate ε

Corollary: Planting Short Vector in Kernel

iid noise vector of rate ε

Public-Key Encryption [Alek03]

LPN: Evidence for Hardness

- Search problem, Random-Self Reducibility
- Gaussian-Elimination is noise sensitive
- Well studied in learning/coding community for some parameters
- "Win-Win" results
- Provably resist limited attacks
- Robust (Search-to-Decision, leakage-resilient, low-weight secret, circularity) [BFKL93,AGV09, DKL09, ACPS09, GKPV10, ...,] See Pietrzak's survey
- Seems hard even for Quantum algorithms and co-AM algorithms
- "Simple mathematical domain" (compare with factoring/group-based crypto)

LPN: Features

- Simple algebraic structure: "almost linear" function
- Computable by simple (bit) operations
- exploited by [HB01, ...]

Variants

iid noise vector of rate ε

- Under-constraint case (\Rightarrow hashing [AHIKV17])
- Changing the matrix distribution
- Make sure that $\Delta(A)$ is not too small
- Noise distribution
- Fixed weight vector (OK)
- Structured Noise (may be subject to linearization [AG11])
- Larger Alphabet
- Noise: Gaussian vs Bernoulli

"LPN" over \mathbb{Z}_{q}

$A \in_{R} \mathbb{Z}_{q}^{m \times n}$
$s \in_{R} \mathbb{Z}_{q}^{n}$

$$
e_{i}=\left\{\begin{array}{llr}
U_{q} & \text { w.p } & \epsilon \\
0 & \text { w.p } & 1-\epsilon
\end{array}\right.
$$

- Decoding over the q-ary symmetric channel (Random-Linear-Code)
- Support(x) = sequence of iid Bernoulli variables
- Lifting binary-crypto to Arithmetic Crypto [IPS09, AAB15, ADINZ17, BCGI18...]
- Search-RLC(q,n,m, ϵ):
hard to find s
- Decision-RLC(q,n,m, ϵ):
$(A, b) \approx\left(U_{q}^{m \times n}, U_{q}^{m}\right)$
- Equivalence not known when q is super-polynomial

"LPN" over \mathbb{Z}_{q}

$A \in_{R} \mathbb{Z}_{q}^{m \times n}$
$s \in_{R} \mathbb{Z}_{q}^{n}$

$$
e_{i}=\left\{\begin{array}{llr}
U_{q} & \text { w.p } & \epsilon \\
0 & \text { w.p } 1-\epsilon
\end{array}\right.
$$

Seems as hard as binary version (harder?)

- Noisy Linear Algebra is hard
- Large $q \Rightarrow$ less noise cancelations

Powerful assumption: Effective secret is $\mathrm{O}_{\epsilon}(n)$ bits but stretch is $\Omega_{\epsilon}(m)$ field elements

Requires further study especially for polynomial regime

Learning with Errors Variant [Regev05]

$$
A \in_{R} \mathbb{Z}_{q}^{m \times n}
$$

$s \in_{R} \mathbb{Z}_{q}^{n}$

Mainstream Crypto Assumption

Noise induces geometry
different game

Learning with Errors Variant [Regev05]

$$
\begin{gathered}
A \in_{R} \mathbb{Z}_{q}^{m \times n} \\
s \in_{R} \mathbb{Z}_{q}^{n}
\end{gathered}
$$

- Modulus poly(n) or $\exp (\mathrm{n}) \quad-(\mathrm{q}-1) / 2 \quad 0 \quad(\mathrm{q}-1) / \mathbf{l}^{x}$
- Noise $1 /$ poly(n) or $1 /$ sub-exponential

As hard as worst-case Lattice problems (GAP-SVP) [Reg05,Peik09]

- Approximation factor $\tilde{O}(n / \epsilon)$
- exp-approximation easy via [LLL82]

Believed to be sub-exp secure even against Quantum adversaries

Learning with Errors Variant [Regev05]

$A \in_{R} \mathbb{Z}_{q}^{m \times n}$
$s \in_{R} \mathbb{Z}_{q}^{n}$

Low noise \Rightarrow Can repeatedly add noise vectors

- Unlike the Bernoulli variant
- Generate additional equations for free
- Key to many applications [GPV08, ...,BV11,...]
- Puts the problem in SZK ("co-NP attacks") [GG98,MV03]

Local PRGs

Locally Computable Functions (NC^{0})

Each output depends on constant number of inputs

Function defined by:

- (m,n,d) graph G
- List of d-local predicates $Q_{1}, \ldots, Q_{m}:\{0,1\}^{d} \rightarrow\{0,1\}$

$$
\stackrel{y_{i}}{y_{1}=Q_{i}\left(x_{1}, x_{2}, x_{5}\right)}
$$

Locally-Computable PRGs?

Long line of works [СМ01,MST02,AIK04,....] see survey [A13]

Stretch matters!

Sub-Linear Local PRG in NC^{0}

Stretch: $m=n+n^{1-\epsilon}$

Follows from any OWF in NC1 [AIK04]

- Most standard cryptographic assumptions
- Lattices, DLOG, factoring, LPN, asymptotic DES/AES

Lin-PRG in NC^{0}

Linear Stretch: $m=(1+\epsilon) n$

Follows from LPN over sparse matrix [AIK07]

- Assumption made by [Alek03]
- Implies hardness of refuting 3-SAT [Feige02]

Random Sparse Matrix
or
Any sparse expanding matrix

Lin-PRGs in NC ${ }^{0}$

[A-17] Also follows from other assumptions

- Any exponentially-hard regular Local OWF (e.g., [Gol00])
- Exp-hard LPN over O(n)-time computable code, e.g., [DI14]

Lin-PRGs in NC^{0}

Generic attack [AIK07]

- Find shrinking set
- Enumerate over projected seed

Lin-PRGs in NC^{0}

Generic attack [AIK07]

- Find "small" shrinking set of size \mathbf{k}
- Enumerate over projected seed

Lin-PRGs in NC^{0}

Expansion is necessary!

- Plausible to achieve $\exp (n)$ security

$$
\underbrace{\substack{y_{i}=Q_{i}\left(x_{1}, x_{2}, x_{5}\right)}}_{\substack{y_{1}}}
$$

Poly-Stretch PRG in NCº

Polynomial-Stretch: $m=n^{2}$

- Can only get $n^{1-\delta}$ expansion \Rightarrow sub-exp security
- Morally should get from sparse-LPN w/ sub-const noise [ABW10]
- All known constructions rely on var's of Goldreich's Assumption

OUTPUT

Goldreich’s Assumption [ECCC ‘00]

Conjecture: for random predicate \mathbf{Q}, and $\forall \operatorname{expander} \mathbf{G}, \mathrm{m}=\mathrm{n}$ inversion takes $\exp (\Omega(\mathrm{n}))$-time

- First candidate for optimal one-way function
- Random local function is whp exp-hard to invert
- Constraint Satisfaction Problems are cryptographically-hard

Generalization to Long Output

OW-Conjecture: for properly chosen predicate \mathbf{Q}, any graph \mathbf{G} inversion complexity is exponential in the expansion of \mathbf{G}
Params: output length m, predicate Q, locality d, expansion quality

- Larger $m \Rightarrow$ easier to attack \Rightarrow security requires more "robust" predicates
- Weaker variant: for random graphs no poly-time inversion
- Strong variant confirmed for many classes of attacks [CEMT09,ABW10,A12,ABR12,BR11,BQ12,OW14,FPV15,AL16, KMOW16] See survey [A15]

Generalization to Long Output

OW-Conjecture: for properly chosen predicate \mathbf{Q}, any graph \mathbf{G} inversion complexity is exponential in the expansion of \mathbf{G}

[A12,AR16]

weak

PRG-Conject: for properly chosen predicate \mathbf{Q}, any graph \mathbf{G} distinguishing complexity is exp. in expansion of \mathbf{G}
1/poly-advantage

> [AK19]

Poly-stretch local PRG

Generalization to Long Output

PRG-Conject: for properly chosen predicate \mathbf{Q}, any graph \mathbf{G} distinguishing complexity is exp. in expansion of \mathbf{G}

Which predicates yield PRGs?

Resiliency

Linear algebra

Goal: Hard to distinguish y from random

More fragile than one-wayness:
Predicate must be balanced

Goal: Hard to distinguish y from random

More fragile than one-wayness:
Predicate must be balanced even after fixing single input

Goal: Hard to distinguish y from random

k-resiliency [Cho-Gol-Has-Fre-Rud-Smo]:
Predicate must be balanced even after fixing \mathbf{k} inputs

Resiliency defeats local attacks [Mossel-Shpilka-Trevisan'03]

For $m=n^{s}$ resiliency of $k=2 s-1$ is necessary and sufficient against

- Sub-exponential AC0 circuits [A-Bogdanov-Rosen12]
- Semidefinite programs [O’Donnel Witmer14]
- Sum of Squares attacks [Kothari Mori O'Donnel Witmer17]
- Statistical algorithms [Feldman Perkins Vempala15]

Resiliency defeats local attacks

For $m=n^{s}$ resiliency of $k=2 s-1$ is necessary and sufficient against

- Sub-exponential ACO circuits [A-Bogdanov-Rosen12]
- Semidefinite programs [O'Donnel Witmer14]
- Sum of Squares attacks [Kothari Mori O'Donnel Witmer17]
- Statistical algorithms [Feldman Perkins Vempala15]

Defeating Linear Algebra

For $m=n^{s}$ need algebraic degree of s
Resiliency+Degree \Rightarrow Pseudorandomness? [OW14, A14, FPV15]

- Yes for $m<n^{5 / 4}$ and linear distinguishers [MST03, ABW10, ABR12] i.e., small-bias generator [NN]
- No for larger m's [A-Lovett16]

Defeating Linear Algebra [A-Lovett16]

 b-fixing degree: algebraic degree of b even after fixing b inputsThm: For $m=n^{s}, \Theta(s)$-bit fixing degree necessary \& sufficient against linear distinguishers

A stronger form of rational-degree is necessary \& sufficient for defeating "algebraic attacks"

OUTPUT

INPUT

Summary: Local PPRGs

Seem to achieve sub-exp security

- For proper predicate best attack is exponential in expansion
- Concrete security should be further studied, see [CDMRR18]

Interesting TCS applications

- CSPs are hard to approximate [Feige02, Ale03, AIK07,...,A17]
- Densest-subgraph is hard to approximate [A12]
- Hardness of learning depth-3 AC0 [AR16]

Symmetric eXternal DH [BGdMM05]

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}
$$

- SXDH: DDH is hard in both \mathbb{G}_{1} and \mathbb{G}_{2}
- $\left(g^{a}, g^{b}, g^{a b}\right) \approx\left(g^{a}, g^{b}, g^{c}\right)$ for $a, b, c \leftarrow \mathbb{Z}_{p}$
- where g generates \mathbb{G}_{1} or \mathbb{G}_{2}

Symmetric eXternal DH [BGdMM05]

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}
$$

- SXDH: DDH is hard in both \mathbb{G}_{1} and \mathbb{G}_{2}
- Strong form of DDH
- Can be broken by Quantum adversary
- Standard bilinear assumption
- Groups defined over elliptic curves
- Decisional
- Cryptanalysis by math community?

