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Prelude: from bandits to RL

Bandits RL

PSA: Thodoris Lykouris will give a longer talk on this work on Nov 3 in Virtual RL Theory Seminar

Global constraints Limited-supply dynamic pricing, 
Bandits with knapsacks

Brantley, Dudik, Lykouris, Miryoosefi, 
Simchowitz, S., Sun: NeurIPS’20

Incentives Incentivized exploration Simchowitz & S., 2020

Lipschitz
assumptions

Lipschitz bandits,
adaptive discretization

Sinclair, Banerjee, Yu: Sigmetrics`20
Cao & Krishnamurthy: NeurIPS`20

Between IID 
& adversarial

adversarial corruptions
Starting from [Lykouris et al., STOC`18]

This talk: 
RL with adversarial corruptions



Episodic RL
• Fixed and unknown nominal MDP

• known state space, action space; 

• randomized (& unknown) rewards & transitions

• 𝐾episodes of 𝐻 steps each, 𝑇 = 𝐾𝐻 steps total.

• At each episode 𝑘: algorithm commits to a policy 𝜋𝑘,
executes 𝜋𝑘 in the MDP for 𝐻 steps, observes state-actions-rewards trajectory.

• policy maps histories to actions, can be randomized

• bandit feedback: only for (current state, chosen action)

• Regret = 𝐾 ⋅ 𝑟𝑒𝑤 𝜋∗ − σ𝑘 𝑟𝑒𝑤 𝜋𝑘
• e.g., poly 𝐻 ⋅ #states ⋅ #actions ⋅ 𝑇 (Azar et al.`17, Jin et al.`19)

w.r.t. best policy 𝜋∗

Adversary corrupts the MDP

Goals: scale well with 𝐶, approx. state-of-art for 𝐶 = 0

with adversarial corruptions

𝐶 = #corrupted episodes 
not known in advance



Our results

Tabular RL: regret 𝐶 ⋅ poly 𝐻 ⋅ 𝑆𝐴𝑇

• 𝑆𝐴𝑇 dependence is optimal, even for IID

First non-trivial guarantees for RL with non-IID transitions & bandit feedback

• Also: first computationally efficient guarantees for any feedback model

Linear RL: regret   poly 𝐻 𝐶 (𝑑3+𝑑𝐴) ⋅ 𝑇 + 𝐶2 𝑑𝑇

• optimal dependence on 𝑇, state-of-art dependence on 𝑑, even for IID

Transformation: (some) algorithms for IID environment → corruption-robust algorithms

𝐾 episodes, 𝐻 steps each, 𝑇 = 𝐾𝐻
𝑆 states, 𝐴 actions
𝐶 ≥ 1 (unknown) #corrupted episodes 

expected rewards and transition probs are linear in (known) 𝑑-dim feature vectors

no dependence on 𝑆

Provable guarantees known only for Tabular and Linear variants of episodic RL

e.g., well-defined for deep RL



Prior work

Bandits: stochastic vs adversarial

• Classic papers: UCB1 and EXP3

• Best of both worlds
Bubeck & S. `12; Seldin & S. `14; Auer & 
Chiang `16; Seldin & Lugosi `17; Wei & Luo `18

• intermediate regimes
starting from Seldin & S. `14

• Adversarial corruptions
Lykouris-Mirrokni- Paes Leme `18
improved regret bounds
Gupta-Koren-Talwar `19, Zimmert & Seldin `19
many extensions 
LLS19, CKW19, BJS20, KLPS20, AAKLM20

Episodic RL

• Stochastic: optimistic value iteration
starting from Jaksch-Ortner-Auer’10
worst-case optimal regret rates
Azar et al.’17, Dann et al. `17
instance-dependent regret rates
Zanette &Brunskill `19, Simchowitz &Jamieson `19

• Adversarial rewards: full feedback
transition probabilities known (Even-Dar+ `10),
unknown (Rosenberg+ `19), 
or adversarial (Abbasi-Yadkori+ `13) 

... bandit feedback
trans. probs known (Neu+ `10) or not (Jin+ `19)



Prior work: how to resolve uncertainty?

Active sets

• works for bandits

• underlies the corruption-robust 
algorithm in Lykouris et al. `18 

Fails for RL: “any reasonable version” 
suffers regret min(𝐾, 𝐴𝐻)
on a “combination lock instance”

Optimism

• works for RL: optimistic value iteration

• vast majority of Episodic RL algorithms
except Jin et al.’19 and Russo’19

Fails for corruptions, even for bandits

update active set = {plausibly optimal actions},
choose uniformly from this set

pick alternative with best optimistic estimate:
most favorable estimate consistent with data

𝐾 episodes of 𝐻 steps each, 𝐴 actions

Bellman updates with optimistic estimates

Suffices to corrupt 𝑂(log𝑇) rounds:
reward 0 each time algorithm picks best arm



Optimistic Value Iteration with active sets

For each step ℎ from 𝐻 down to 1

• update 𝑄ℎ using 𝑉ℎ+1, rewards & transition probs

• UCB via optimistic reward estimates

• LCB via pessimistic reward estimates

• use both “local” and “global” data

• update 𝜋∗ using 𝑄ℎ
• use UCBs

• restrict to active sets

• update 𝑉ℎ using 𝑄ℎ
• compute UCBs and LCBs 

• recompute active sets (of actions)

Starting at state 𝑥, action 𝑎, step ℎ
𝑄ℎ(𝑥, 𝑎):  value if continued optimally
𝑉ℎ 𝑥 = max

𝑎
𝑄ℎ(𝑥, 𝑎)

𝜋ℎ
∗ 𝑥 = argmax

𝑎
𝑄ℎ(𝑥, 𝑎)

Value iteration (VI)

Optimistic VI

Optimistic VI with active sets

“Base Algorithm”



Full algorithm: Base Learners

Each Base Learner (BL) ℓ runs a separate instance of Base Algorithm

• robust against a given level of corruption  𝐶 = 2ℓ

• “local data”: data assigned to this BL

“global data”: union of data from all BLs

At each step of each episode: randomly switch to a more robust BL (larger ℓ) 

• carefully chosen, data-independent probs

• sufficient prob of switching to a more robust BL for the rest of the episode

• episode’s data assigned to the most robust BL used in this episode

Need “global data” because different BLs may traverse different trajectories across state space

More robust BL provide supervision for less robust BL via “global data”



Analysis

General framework to analyze Base Learners with active sets

• beyond UCB selection (or uniform selection)

Bellman errors

Decomposition: express regret in terms of Bellman Errors

Compare policy 𝜋 with UCB policy 

Visitation ratio max
steps ℎ<𝜏

max
𝑥,𝑎

ℳ′(𝑥,𝑎)

ℳ(𝑥,𝑎)

𝑄ℎ 𝑥, 𝑎 − 𝑟∗ 𝑥, 𝑎 + 𝑉ℎ+1 ⋅ 𝑝
∗ 𝑥, 𝑎

Error in Bellman update     𝑄ℎ 𝑥, 𝑎 − Ƹ𝑟 𝑥, 𝑎 + 𝑉ℎ+1 ⋅ Ƹ𝑝 𝑥, 𝑎

policy 𝜋′: what if we switch to UCB after step ℎ

ℳ,ℳ′occupancy measures for 𝜋, 𝜋′ at step 𝜏 > ℎ

states 𝑥, actions 𝑎, steps ℎ

Pr 𝑥𝜏, 𝑎𝜏 = (𝑥, 𝑎)



e.g., more robust Base Learner

e.g., one that ensures corruption-robustness

Zoom out

RL challenge: inject enough exploration into a complex behavior

• optimism = best available hammer

Design principle: randomly switch to a (more) reliable version of optimism

• general framework for analysis

• proof of concept: a new algorithm for “stochastic” episodic RL,
start with active sets & uniform exploration, inject optimism => optimal regret

• this machinery could be applicable to other domains



Improves to 𝐴𝑆 + 1

MinGap
if all but few actions are bad

Extensions & Open Questions

Instance-dependent regret bounds: 𝐶 ⋅ poly 𝐻 ⋅
𝐴𝑆

MinGap
⋅ log(𝑆𝐴𝑇)

• constant 𝐶: matches state-of-art for the IID case (Simchowitz & Jamieson`19)

Open Q: mitigate the linear dependence on 𝐶

• make it additive rather than multiplicative?

• non-trivial guarantees for 𝐶 > 𝑇 ?

• 𝑜(𝐶) dependence, preferably 𝐶
... if we only count regret for non-corrupted rounds?

𝐾 episodes, 𝐻 steps each, 𝑇 = 𝐾𝐻
𝑆 states, 𝐴 actions
𝐶 ≥ 1 (unknown) #corrupted episodes 

MinGap = min
states 𝑥, actions 𝑎

Gap(𝑥, 𝑎)

Yes for bandits 
Gupta-Koren-Talwar ’19; 
Zimmert & Seldin `20

PSA: Thodoris Lykouris will give a longer talk on this work on Nov 3 in Virtual RL Theory Seminar

Link to the paper: https://arxiv.org/abs/1911.08689 . 

https://arxiv.org/abs/1911.08689

