# Corruption-robust exploration in episodic RL

Alex Slivkins (Microsoft Research NYC)

### joint work with

Thodoris Lykouris Max Simchowitz W



MSR-NYC



Berkeley





Cornell

## Prelude: from bandits to RL

|                              | Bandits                                                             | RL                                                                                      |
|------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Global constraints           | Limited-supply dynamic pricing,<br>Bandits with knapsacks           | Brantley, Dudik, Lykouris, Miryoosefi,<br>Simchowitz, <mark>S</mark> ., Sun: NeurIPS'20 |
| Incentives                   | Incentivized exploration                                            | Simchowitz & S., 2020                                                                   |
| Lipschitz<br>assumptions     | Lipschitz bandits, adaptive discretization                          | Sinclair, Banerjee, Yu: Sigmetrics`20<br>Cao & Krishnamurthy: NeurIPS`20                |
| Between IID<br>& adversarial | adversarial corruptions<br>Starting from [Lykouris et al., STOC`18] | This talk:<br>RL with adversarial corruptions                                           |

PSA: Thodoris Lykouris will give a longer talk on this work on Nov 3 in Virtual RL Theory Seminar

## Episodic RL with adversarial corruptions

- Fixed and unknown nominal MDP
  - known state space, action space;
  - randomized (& unknown) rewards & transitions
- Kepisodes of H steps each, T = KH steps total.
- At each episode k: algorithm commits to a policy  $\pi_k$ , executes  $\pi_k$  in the MDP for H steps, observes state-actions-rewards trajectory.
  - policy maps histories to actions, can be randomized
  - bandit feedback: only for (current state, chosen action)
- Regret =  $K \cdot rew(\pi^*) \sum_k rew(\pi_k)$  w.r.t. best policy  $\pi^*$ 
  - e.g.,  $poly(H) \cdot \sqrt{#states \cdot #actions \cdot T}$  (Azar et al. `17, Jin et al. `19)

Goals: scale well with C, approx. state-of-art for C = 0

not known in advance

C =#corrupted episodes

Adversary corrupts the MDP

### Our results

Tabular RL: regret  $C \cdot \text{poly}(H) \cdot \sqrt{SAT}$ 

•  $\sqrt{SAT}$  dependence is optimal, even for IID

K episodes, H steps each, T = KHS states, A actions  $C \ge 1$  (unknown) #corrupted episodes

First non-trivial guarantees for RL with non-IID transitions & bandit feedback

• Also: first computationally efficient guarantees for any feedback model

Linear RL: regret  $poly(H)\left(C\sqrt{(d^3+dA)\cdot T}+C^2\sqrt{dT}\right)$  no dependence on *S* expected rewards and transition probs are linear in (known) *d*-dim feature vectors

• optimal dependence on T, state-of-art dependence on d, even for IID

Transformation: (some) algorithms for IID environment → corruption-robust algorithms Provable guarantees known only for Tabular and Linear variants of episodic RL

e.g., well-defined for deep RL

## Prior work

#### Bandits: stochastic vs adversarial

- Classic papers: UCB1 and EXP3
- Best of both worlds

Bubeck & S. `12; Seldin & S. `14; Auer & Chiang `16; Seldin & Lugosi `17; Wei & Luo `18

- intermediate regimes starting from Seldin & S. `14
- Adversarial corruptions
   Lykouris-Mirrokni- Paes Leme `18
   improved regret bounds
   Gupta-Koren-Talwar `19, Zimmert & Seldin `19
   many extensions
   LLS19, CKW19, BJS20, KLPS20, AAKLM20

### Episodic RL

- Stochastic: optimistic value iteration starting from Jaksch-Ortner-Auer'10 worst-case optimal regret rates Azar et al.'17, Dann et al. `17 instance-dependent regret rates Zanette &Brunskill `19, Simchowitz &Jamieson `19
- Adversarial rewards: full feedback transition probabilities known (Even-Dar+ `10), unknown (Rosenberg+ `19), or adversarial (Abbasi-Yadkori+ `13)

#### ... bandit feedback

trans. probs known (Neu+ `10) or not (Jin+ `19)

## Prior work: how to resolve uncertainty?

#### **Active sets**

update active set = {plausibly optimal actions}, choose uniformly from this set

- works for bandits
- underlies the corruption-robust algorithm in Lykouris et al. `18

Fails for RL: "any reasonable version" suffers regret  $min(K, A^H)$  on a "combination lock instance"

K episodes of H steps each, A actions

#### Optimism

pick alternative with best optimistic estimate: most favorable estimate consistent with data

• works for RL: optimistic value iteration

Bellman updates with optimistic estimates

• vast majority of Episodic RL algorithms except Jin et al.'19 and Russo'19

Fails for corruptions, even for bandits

Suffices to corrupt  $O(\log T)$  rounds: reward 0 each time algorithm picks best arm

## Optimistic Value Iteration with active sets

For each step *h* from *H* down to 1

- update  $Q_h$  using  $V_{h+1}$ , rewards & transition probs
  - UCB via optimistic reward estimates
  - LCB via pessimistic reward estimates
  - use both "local" and "global" data
- update  $\pi^*$  using  $Q_h$ 
  - use UCBs
  - restrict to active sets
- update  $V_h$  using  $Q_h$ 
  - compute UCBs and LCBs
  - recompute active sets (of actions)

Starting at state x, action a, step h  $Q_h(x, a)$ : value if continued optimally  $V_h(x) = \max_a Q_h(x, a)$  $\pi_h^*(x) = \operatorname*{argmax}_a Q_h(x, a)$ 

Value iteration (VI) Optimistic VI Optimistic VI with active sets

"Base Algorithm"

## Full algorithm: Base Learners

Each Base Learner (BL)  $\ell$  runs a separate instance of Base Algorithm

- robust against a given level of corruption  $C = 2^{\ell}$
- "local data": data assigned to this BL "global data": union of data from all BLs

Need "global data" because different BLs may traverse different trajectories across state space

At each step of each episode: randomly switch to a more robust BL (larger  $\ell$ )

- carefully chosen, data-independent probs
- sufficient prob of switching to a more robust BL for the rest of the episode
- episode's data assigned to the most robust BL used in this episode

More robust BL provide supervision for less robust BL via "global data"

### Analysis

General framework to analyze Base Learners with active sets

• beyond UCB selection (or uniform selection)

Bellman errors  $\hat{Q}_h(x,a) - \left(r^*(x,a) + \hat{V}_{h+1} \cdot p^*(x,a)\right)$ 

Error in Bellman update  $\hat{Q}_h(x,a) - (\hat{r}(x,a) + \hat{V}_{h+1} \cdot \hat{p}(x,a))$ 

**Decomposition:** express regret in terms of Bellman Errors



policy  $\pi'$ : what if we switch to UCB after step h

 $\mathcal{M}, \mathcal{M}'$  occupancy measures for  $\pi, \pi'$  at step  $\tau > h$ 

$$\Pr[(x_{\tau}, a_{\tau}) = (x, a)]$$

states x, actions a, steps h

### Zoom out

RL challenge: inject enough exploration into a complex behavior

• optimism = best available hammer

e.g., one that ensures corruption-robustness

Design principle: randomly switch to a (more) reliable version of optimism

• general framework for analysis

e.g., more robust Base Learner

- proof of concept: a new algorithm for "stochastic" episodic RL, start with active sets & uniform exploration, inject optimism => optimal regret
- this machinery could be applicable to other domains

## Extensions & Open Questions

K episodes, H steps each, T = KHS states, A actions  $C \ge 1$  (unknown) #corrupted episodes

Instance-dependent regret bounds: 
$$C \cdot poly(H) \cdot \frac{AS}{MinGap} \cdot log(SAT)$$
  
MinGap =  $\min_{\text{states } x, \text{ actions } a} Gap(x, a)$  Improves to  $AS + \frac{1}{MinGap}$  if all but few actions are bad

• constant *C*: matches state-of-art for the IID case (Simchowitz & Jamieson`19)

Open Q: mitigate the linear dependence on C

- make it additive rather than multiplicative?
- non-trivial guarantees for  $C > \sqrt{T}$  ?
- o(C) dependence, preferably  $\sqrt{C}$ 
  - ... if we only count regret for non-corrupted rounds?

PSA: Thodoris Lykouris will give a longer talk on this work on Nov 3 in Virtual RL Theory Seminar

Link to the paper: <u>https://arxiv.org/abs/1911.08689</u>.

Yes for bandits Gupta-Koren-Talwar '19; Zimmert & Seldin `20