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Back in 2015

Goal: provably efficient sequential decision
making methods that scale to complex domains

Gaming

Al: What are the dates you want to
go?

Next Monday throu

gh Thursday.

Al: In that case, stay in SoMa since
your meetings are all in that area
What's the budget?

$369/night.
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Information theory: [KAL 16] [JKALS 17] [SJKAL 19] [DPWZ 20]
Algorithms for Block MDPs: [DKJADL 19] [FWYDY 20] [FRS-LX 20]



A latent state model: The block MDP

S1 S2 S3
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Rich observation problem with discrete latent state space Non“”eaf f“?_CtiO”
Agent operates on rich observations approximation

Latent states are decodable from observations, so no partial observability




Main guarantee

Assumptions:
1. Function class: We have a class of decoders @ containing the true decoder ¢*.
2. Reachability: Latent states are reachable with probability at least n

Theorem [MHKL19]: Homer covers the states and finds an e-optimal policy using

poly(|S], |Al, H,%,E, log(|®|/8)) trajectories

Homer runs in polynomial time assuming supervised learning problems are tractable.



Empirical Results

PPO (fails to explore from time step 5)
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Methods run for ~1m episodes



Block MDP pros and cons

+ Accommodates nonlinear function approximation
+ Can model many rich observation RL settings

+ Statistically and algorithmically tractable

- Discrete/finite latent state space

- Perfect decodability



Meanwhile

Flurry of activity around linear function approximation
* Classical results: [G95] [BB96] [TvR97] [SMcASMOO0] [PSDO1] [LPO3] [SSMO08] [SMPBSS08] ...

e Modern results
e Exploration [YW19] [JYWJ19] [ZBBPL20] [AJSWY20] [AHKS20] [WDYS20] [NP-B20]

* Representation quality + approximation [DKWY19] [LS19] [VRD19]
e Batch RL [DW20][WFK20]

* Weaker assumptions [L§5520] [DLMW?20] [ZLKB20] [WAS20]

* Infinite horizon [WJLJ20]

* Adversarial losses [CYJW20] [NO20]

But where do the features come from?




This Talk

Provably efficient representation/feature learning in low rank MDPs

* Non-linear function approximation beyond Block MDPs

* Allows us to apply linear RL methods afterwards

Challenge: Feature learning and exploration are intertwined!



The low rank MDP

Latent representation ]

Embedding dimension d « size of observation space



Block MDPs are low rank

Block diagonal ]

\i Features on simplex ]

Proposition: There exist transition operators over N observations with
rank 2 that require N latent states in block factorization.
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Tangent: beyond decodability

Rows on simplex ]

\i Features on simplex ]

Simplex representation: sample latent variable z ~ ¢(x,a) and next state x ~ u( | z).
Latent variables not decodable, but not an HMM.
Studied in [BPP11], mentioned in [JYWJ19]
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Why study low rank MDPs?

Tractable if feature map is known

Theorem [JYWJ19]: Optimistic LSVI has regret O (Vd3H3T ) when ¢ is known

Statistically tractable even without

Proposition [JKALS17]:
- Low rank MDPs have Bellman rank d for any function class
- With class ® of embeddings and realizability, OLIVE has sample complexity:

O0(d?H3|A|(d + log |®])/€?)
But OLIVE is not computationally efficient



Main guarantee

. - . . | .
Assume function class realizability: ®, Y contain the true dynamics System Identification

Assume oracle computation model: Can optimize/sample from ®,Y

Theorem [AKKS20]: FLAMBE learns a low rank MDP model such that
vV, ko Eg|[(@nCen, an), n()) — Ta(-l xp, ah)”TV <¢

With sample complexity: No reachability required!
1
poly(d, 1Al H,2,log(|®I[Y]/6) )

FLAMBE runs in polynomial time in oracle model.
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Potpourri

Representation learning:
For any reward, optimal policy (and Q function) for M are linear in ¢;.;

= near-optimal policy (and Q function) for M are linear in ¢.y

Reward-free learning:
Can efficiently optimize any reward function with no further experience

Real-world planning:
Can replace model-based planning with real world planning in FLAMBE

* No need for sampling from models

* But requires a reachability assumption
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A model-based algorithm

_ Ideally ensures good
Po = random policy data coverage at time h
Forj=1, .., max :

For each h use pj_; to collect data with a; uniform

For each h learn dynamics Th using all data
Compute exploratory policy p;

Questions
1. How to learn dynamics?
2. How to compute exploratory policy?

an
Pj-1

Pj
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Learning one-step model

9
Pj-1

Collect n triples (xp, ap, Xp41) from p;_; o unif (A)
Solve MLE problem

(6, fin) = argmax Y log(¢(zn, an), p(zns1))

: b, 1
Function classes: ’ Th,Qh,Th+1
peEDUEY

Theorem [Z07]: With realizability, can guarantee:

- " 2 _ 2log(|®l]Y]/8)
Exh;ah~Pj—1°unif(A) ”(d)h (e, an), ﬂh(')) —T(:| xp, ay )”TV < "

e
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Learning one-step model

3)
Pj-1

2 log(|®||Y]/5)
n

Martingale version:

=

~.

[Exh,ah~piounif(A) err(xhr ah) <

Il
o

i

Error transfer: Define X, ; = Al + Z{;g Ey ¢ (xn, an)p(xp, ap)’

2 log(|PI[Y]/6)
n

I 2,2 S uCenduni(an) - yerrGen, an) I < 2d +

Independent of

Key property of low rank MDPs: For any function f and any policy

Eqf(xp) = (End)(xh—l»ah—l)rfH(xh)f(xh»
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Simulation Lemma

We have X, ; for each h

Define known set K, = {||Z,:}/2gb(xh, ap)ll, < 1}

Small by MLE argument
Define absorbing MDP My where unknown (x, a;) transit to absorbing state.

Simulation lemma: For any function f with range [0,1] and any policy &

Erlf(xp,ap) | Mg ] < En[f(xh» ap) | M] + |4] 'ZETT(Zh’,j—1)
h/

“escape” probability

En[f(xh» ap) | M] < Eplf(xpoan) | Mg ]+ |A] 'zETT(Zh’,j—1) + 2 Pn[(xh"ah') ¢ Ky | M]
h' hr
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Planning

We want exploratory policy p to have large escape probability

A < P,[(xn ap) & Kyl < Epdp(xp, ap) 25 50 (xn, an)

This can only happen ~ d / A times. Elliptical potential using ¢

Challenge: We do not know K}, as it depends on true features ¢
Solution: We plan to visit all directions of our learned features ¢ at the previous time

By iteratively maximizing quadratic forms, p guarantees that

A

By simulation lemma, either p escapes earlier or p o unif (4) has large escape probability at h.



Final steps

Ingredients:

* Simulation lemma with escaping
* pj approximately maximizes escaping

Case analysis for iteration j:

* If pj escapes with high prob, then we learn a lot: X ; K Zp j41.
* Canonly happen in polynomially many iterations.
* If pj escapes with low prob, then no other policy can escape = we are done!

« No policy can escape and M ~ M in the known set
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The

landscape

//

Block MDPs

Known representation
[KSO02] [AOM17] [DLB17], etc.

Reachable latent variables

~

/

Unknown representation

[DKJADL19] [FWYDY19][FR-SLX20]

Homer [MHKL19]

Known representation

[JYWJ19] [YW19], etc.

Unknown representation

/

FLAMBE [AKKS20]

Bellman/ \

Witness rank

Computationally

intractable

/

\\k

[JKALS17]
[SJKAL19]

/
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Discussion

Our approach decouples dynamics assumptions from observations
* Allow expressive non-linear function approximation, yet tractable

Dependence on [A[|? Seems necessary here without further assumptions

Sharp rates and regret?

Does it actually work? We are trying

Homer: https://arxiv.org/abs/1911.05815
FLAMBE: https://arxiv.org/abs/2006.10814

-
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https://arxiv.org/abs/1911.05815
https://arxiv.org/abs/2006.10814

