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• Alice and Bob play in a multi-armed bandit problem.

• One arm is safe (known probability p), the other is 

volatile (unknown probability of success 𝜃𝜃 with prior μ).

• In every round, each player

• pulls an arm

• gets the reward (0 or 1) from the arm they pulled, and

• observes the action of the other player but not their reward.

Multiplayer Model
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Alice’s utility is: 𝚪𝚪𝑨𝑨 + 𝝀𝝀 ⋅ 𝚪𝚪𝑩𝑩, and similarly for Bob, where

• 𝚪𝚪𝐀𝐀 = ∑𝐭𝐭=𝟎𝟎∞ 𝛄𝛄𝐀𝐀 𝐭𝐭 ⋅ 𝛃𝛃𝐭𝐭 and 𝚪𝚪𝐁𝐁 = ∑𝐭𝐭=𝟎𝟎∞ 𝛄𝛄𝐁𝐁 𝐭𝐭 ⋅ 𝛃𝛃𝐭𝐭 are Alice and Bob’s discounted rewards, 

respectively

• 𝛃𝛃 is the discount factor

Definition for finite horizon is similar: 𝚪𝚪𝐀𝐀 = ∑𝐭𝐭=𝟎𝟎𝐓𝐓 𝛄𝛄𝐀𝐀 𝐭𝐭 , i.e. sum of rewards

Utilities



𝝀𝝀 = −𝟏𝟏: Alice’s utility is: Γ𝐴𝐴 − Γ𝐵𝐵 and Bob’s is Γ𝐵𝐵 − Γ𝐴𝐴 (E.g., competing phone companies 

in a saturated market)

Competitive setting: zero sum game



Neutral setting

𝝀𝝀 = 𝟎𝟎: Alice’s utility is Γ𝐴𝐴 and Bob’s is Γ𝐵𝐵 ⇒ each player cares about its own rewards 

(i.e. purely selfish)



Cooperative setting

𝝀𝝀 = 𝟏𝟏: Both Alice and Bob have utility Γ𝐴𝐴 + Γ𝐵𝐵 ⇒ players are aligned, maximize total 

rewards collected (e.g. genetically identical organisms)



Partly cooperative setting

𝝀𝝀 = 𝟏𝟏
𝟐𝟐

: Alice has utility Γ𝐴𝐴 + 1
2
⋅ Γ𝐵𝐵 ⇒ players are partly aligned (e.g. siblings – share ½ 

of the genes)



Strategy: map from history to the next action to play; may be randomized.

• Alice’s history = actions of both players + Alice’s rewards; same for Bob. 

Expected utility: computed using the player’s beliefs about the private 

information of the other player

Strategies



Gittins index g=g(μ,β) of the risky arm is defined as the infimum of the 

success probabilities p where playing always a safe arm with probability p 

is optimal for a single player. 

• It’s a retirement value – what payment p the player would accept every 

period instead of exploring more the risky arm

• Note g > m, where 𝑚𝑚 is the mean of 𝜇𝜇 and 𝜇𝜇 is not a point mass.

Gittins Index p μ



Gittins index g=g(μ,β) of the risky arm is defined as the infimum of the 

success probabilities p where playing always a safe arm with probability p 

is optimal for a single player. 

• It’s a retirement value – what payment p the player would accept every 

period instead of exploring more the risky arm

• Note g > m, where 𝑚𝑚 is the mean of 𝜇𝜇 and 𝜇𝜇 is not a point mass.

Optimal strategy of one player facing k risky arms: in each round, play 

the arm with the highest Gittins index at that point.

Gittins Index p μ



Multiplayer learning in the collision model 

• players are pulling arms independently.

• cooperating—trying to maximize the sum of rewards—and can agree on a protocol before play, but 

cannot communicate during the game. 

• whenever there is a collision at some arm, then no player that selected that arm receives any reward.

Related literature



Multiplayer learning in the collision model 

• players are pulling arms independently.

• cooperating—trying to maximize the sum of rewards—and can agree on a protocol before play, but 

cannot communicate during the game. 

• whenever there is a collision at some arm, then no player that selected that arm receives any reward.

• Adversarial setting: Alatur et al (2019), Bubeck et al (2019); stochastic setting: Kalathil et al (14), 

Lugosi and Mehrabian (18), Bistritz and and Leshem (18)

• May receive input about collision or not (Avner and Mannor [AM14], Rosenski, Shamir, and Szlak 

[RSS16], Bonnefoi et al [BBM+17], Boursier and Perchet [BP18])

Related literature



Multiplayer bandit learning in the same feedback model

• Aoyagi (98, 11) – with two risky arms where priors have discrete support

• Rosenberg et al (13) – same model but decision to switch to the safe arm is irreversible

Interplay between competition and innovation modeled with bandit learning in R&D (D’Aspremont

and Jackquemi (88), Besanko and Wu (13)

Related literature



Multiplayer bandit learning, same setting except feedback is immediate (everyone can 

observe all the past actions and all past rewards)

• Bolton and Harris (99) – free rider effect and encouragement effect: a player may explore more in 

order to encourage further exploration from others

• Cripps, Keller, and Rady (05) - characterize the unique Markovian equilibrium of the game 

• Heidhues, Rady, and Strack (15) - study the discrete version of this model and establish that in any 

Nash equilibrium, players stop experimenting once the common belief falls below a single-agent 

cutoff

Related literature



Incentivizing exploration 

• Kremer et al (13), Frazier et al (14), Mansour et al (15) - principal wants to explore a set of arms, but 

exploration is done by stream of myopic agents

• Aridor et al (19) - empirically study the interplay between exploration and competition in a model 

where multiple firms are competing for the same market of usersand each firm commits to a multi-

armed bandit algorithm

• Braverman et al (19) - each arm receivesa reward for being pulled and the goal of the principal is to 

incentivize the arms to pass on as much of their private rewards as possible to the principle

Related literature



Evolutionary biology

• How cooperation evolved in insects (ants, bees) – Hamilton (64), Anderson (84), Boomsma (07)

Related literature



Competitive setting



Zero-sum game has a value by Sion’s minimax theorem.

Competitive setting



Zero-sum game has a value by Sion’s minimax theorem.

How do competing players behave?
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Theorem 1 (Competing players explore less). 
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Zero-sum game has a value by Sion’s minimax theorem.

Theorem 1 (Competing players explore less). Suppose arm L has known probability p and 

arm R has i.i.d. rewards with unknown success probability with prior μ (which is not a point 

mass). Assume Alice and Bob are playing optimally in the zero sum game with discount factor β. 
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Zero-sum game has a value by Sion’s minimax theorem.

Theorem 1 (Competing players explore less). Suppose arm L has known probability p and 

arm R has i.i.d. rewards with unknown success probability with prior μ (which is not a point 

mass). Assume Alice and Bob are playing optimally in the zero sum game with discount factor β. 

Then there exists a threshold 𝒑𝒑∗ < 𝒈𝒈, where 𝑔𝑔 = 𝑔𝑔(𝜇𝜇,𝛽𝛽) is the Gittins index of the right arm, 

such that for all 𝒑𝒑 > 𝒑𝒑∗, with probability 1 the players will not explore arm R. 

More precisely, 𝑝𝑝∗ ≤ 𝑚𝑚⋅𝛽𝛽+𝑔𝑔
1+𝛽𝛽

, where 𝑚𝑚 is the mean of 𝜇𝜇. 

Competitive setting
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Theorem 1 shows information is less valuable in the zero sum setting. Does it have any 

value?
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Theorem 1 shows information is less valuable in the zero sum setting. Does it have any 

value?

Theorem 2 (Competing players are not completely myopic). In the same setting of 

Theorem 1, there exists a threshold �𝒑𝒑 > 𝒎𝒎, such that for all 𝒑𝒑 < �𝒑𝒑, with probability 1 both 

players will explore arm R in the initial round of optimal play.                                                

More precisely, �𝑝𝑝 ≥ 𝑚𝑚 + 𝛽𝛽𝛽𝛽
2 , where 𝑚𝑚 is the mean of 𝜇𝜇 and w its variance. 

Competitive setting
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Cooperative setting



Cooperative setting

Players aim to maximize the sum of their rewards; can agree on their strategies before play



Theorem 3 (Cooperating players explore more). 
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Theorem 3 (Cooperating players explore more). Suppose Alice and Bob are players with 

aligned interests playing a one armed bandit problem with discount factor β. The left arm has 

success probability p and the right arm has prior distribution μ that is not a point mass. 

Cooperative setting

Players aim to maximize the sum of their rewards; can agree on their strategies before play



Theorem 3 (Cooperating players explore more). Suppose Alice and Bob are players with 

aligned interests playing a one armed bandit problem with discount factor β. The left arm has 

success probability p and the right arm has prior distribution μ that is not a point mass. 

Then there exists �𝒑𝒑 > 𝒈𝒈 = 𝒈𝒈 𝝁𝝁,𝜷𝜷 , so that for all 𝒑𝒑 < �𝒑𝒑, at least one of the players explores the 

risky (right) arm with positive probability under any optimal strategy pair maximizing their total 

reward. 

Cooperative setting

Players aim to maximize the sum of their rewards; can agree on their strategies before play
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Neutral setting



Utility of each player is their own reward (selfish)

Solution concepts: Nash equilibrium and perfect Bayesian equilibrium.

Player 𝑖𝑖’s strategy 𝜎𝜎𝑖𝑖 is a best response to player 𝑗𝑗’s strategy 𝜎𝜎𝑗𝑗 if no strategy 𝜎𝜎𝑖𝑖′ achieves a 

higher expected utility against 𝜎𝜎𝑗𝑗.

A mixed strategy profile (𝜎𝜎𝑖𝑖 ,𝜎𝜎𝑗𝑗) is a Bayesian Nash equilibrium if 𝜎𝜎𝑖𝑖 is a best response for 

each player 𝑖𝑖.

Neutral setting



A Perfect Bayesian Equilibrium is the version of subgame perfect equilibrium for games 

with incomplete information. A pair of strategies (𝜎𝜎𝑖𝑖 ,𝜎𝜎𝑗𝑗) is a perfect Bayesian equilibrium if

• starting from any information set, subsequent play is optimal, and

• beliefs are updated consistently with Bayes’ rule on every path of play that occurs with 

positive probability. 

Note: Such equilibria are guaranteed to exist in this setting; unlike Nash equilibria, there 

cannot be non-credible threats.

Neutral setting



Does each neutral player play the one player optimum strategy? (i.e. pull the arm with highest 

Gittins index in each round)

Neutral setting



Theorem 4 (Neutral players learn from each other). 

Neutral setting



Theorem 4 (Neutral players learn from each other). Let Alice and Bob be neutral players in a 

one armed bandit problem with discount factor β. The left arm has success probability p and 

the right arm has prior distribution μ that is not a point mass. Then in any Nash equilibrium:
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Theorem 4 (Neutral players learn from each other). Let Alice and Bob be neutral players in a 

one armed bandit problem with discount factor β. The left arm has success probability p and 

the right arm has prior distribution μ that is not a point mass. Then in any Nash equilibrium:

1. For all 𝑝𝑝 < 𝑔𝑔(𝜇𝜇,𝛽𝛽), with probability 1 at least one player explores. Moreover, the 

probability that no player explores by time t decays exponentially in t.
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Theorem 4 (Neutral players learn from each other). Let Alice and Bob be neutral players in a 

one armed bandit problem with discount factor β. The left arm has success probability p and 

the right arm has prior distribution μ that is not a point mass. Then in any Nash equilibrium:

1. For all 𝑝𝑝 < 𝑔𝑔(𝜇𝜇,𝛽𝛽), with probability 1 at least one player explores. Moreover, the 

probability that no player explores by time t decays exponentially in t.

2. Suppose 𝒑𝒑 ∈ (𝒑𝒑∗,𝒈𝒈), where p∗ is the threshold above which competing players do not 

explore. If the equilibrium is furthermore perfect Bayesian, then every (neutral) player has 

expected reward strictly higher than a single player using an optimal strategy.

Neutral setting
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Long term 
behavior

What do strategies look like in 

the long term?



The 
Rothschild 
conjecture 

• Rothschild [1974] studies a single-person two-armed bandit, 

and shows that the player ends up with the wrong arm with 

positive probability. Rothschild  conjectures that two players 

observing each other's actions may settle on different arms. 

• High level reasoning: When a single player plays a two-

armed bandit, he settles on the wrong arm with positive 

probability because he will give up the right arm if he happens 

to have bad draws on that arm. Even if there are two players, 

therefore, they may settle on different arms both thinking it is 

the other player who is playing the wrong arm after having 

had bad draws on the right arm. [Discussion in Ayoyagi ‘98]

• Ayoyagi [98, 01] proves convergence in discrete case.
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The 
Rothschild 
conjecture 

Rothschild  writes

• ``... One could well ask whether they (stores) would be 

content charging the prices that they think are best while 

observing that other stores presumably rational are charging 

different prices. I do not think this is a particularly compelling 

point. 

• Unless store A has access to store B's books, the mere fact 

that store B is charging a price different from A's and not going 

bankrupt is not conclusive evidence that A is doing the wrong 

thing. Who is to say A's experience is not a better guide to the 

true state of affairs than B's?''



Aumann’s agreement theorem (1976): rational 

players with common knowledge of each other's 

beliefs cannot agree to disagree.



Aumann’s agreement theorem (1976): rational 

players with common knowledge of each other's 

beliefs cannot agree to disagree.

But the bandit setting has elements not found in the setting of 

Aumann’s theorem: players keep getting different information.



Long term 
behavior

• When λ = 1 there are Nash equilibria where (aligned) 

players do not settle on the same arm; one player 

alternates infinitely often between the two arms.

Example (Nash equilibria where players do not 

converge, λ= 1). Suppose Alice and Bob are aligned 

players in a one-armed bandit problem with discount 

factor β, where the left arm has success probability p and 

the right arm has prior distribution μ that is a point mass 

at m > p. 

Then for every discount factor β >1/2, there is a Nash 

equilibrium in which Bob visits both arms infinitely often.
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• When λ = 1 there are Nash equilibria where (aligned) 

players do not settle on the same arm; one player 

alternates infinitely often between the two arms.

Example (Nash equilibria where players do not 

converge, λ= 1). Suppose Alice and Bob are aligned 

players in a one-armed bandit problem with discount 

factor β, where the left arm has success probability p and 

the right arm has prior distribution μ that is a point mass 

at m > p. 

Then for every discount factor β >1/2, there is a Nash 

equilibrium in which Bob visits both arms infinitely often.



Long term 
behavior

Nash equilibria where aligned 
players do not converge,  λ= 1: Let 
𝑘𝑘 ∈ 𝑁𝑁. 

• Bob’s strategy SB : play left in 

rounds 0,𝑘𝑘, 2𝑘𝑘, 3𝑘𝑘, … and right in 

the remaining rounds. 

• Alice’s strategy SA : play right if Bob 

follows the trajectory above; if Bob 

ever deviates from SB, then Alice 

switches to playing left forever. 

Alice Bob



Long term 
behavior

Theorem 5 (Competing and neutral players 
settle on the same arm). 

Suppose Alice and Bob are playing a one-armed 
bandit game, where the left arm has success 
probability p and the right arm has prior 
distribution μ such that μ(p) = 0. 

Then in any Nash equilibrium, in both the 
competing (λ=−1) and neutral (λ= 0) cases, the 
players eventually settle on the same arm with 
probability 1.



Long term 
behavior

Theorem 5 (Competing and neutral 
players settle on the same arm). 
Intuition: if both players explore finitely many times, then 
we are done. Otherwise, there is a player, say Alice, who 
explores infinitely many times. Then Alice will eventually 
know which arm is better, so if she continues exploring, 
then Θ > p.

So if Bob sees that Alice keeps exploring, he will eventually 
realize that Θ > p and will join her at the right arm. 

Challenge: Θ might be very close to p, which delays the 
time at which Alice determines the better arm.
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Do competing and neutral players always have optimal pure strategies or is randomization required 

sometimes?

With multiple risky arms: if there exist optimal pure strategies, can they be obtained from an index 

analogous to the Gittins index for a single player?

Is �𝑝𝑝 = 𝑝𝑝∗? (Monotonicity)

Patent protection: each player learns the other player’s rewards, but with a delay of k rounds, or is given 

a “patent” – the other player cannot explore for k rounds after its first exploration

When there are multiple risky arms, do neutral and competing players eventually settle with probability 1 

on the same arm in every Nash equilibrium? For neutral players, this is Rotschild’s conjecture.

Computational issues – finite memory for players?

Discussion and open questions



THANKS



Theorem 1 (Competing players explore less). Suppose arm L has known probability p and 

arm R has i.i.d. rewards with unknown success probability with prior μ (which is not a point 

mass). Assume Alice and Bob are playing optimally in the zero sum game with discount factor β. 

Then there exists a threshold 𝒑𝒑∗ < 𝒈𝒈, where 𝑔𝑔 = 𝑔𝑔(𝜇𝜇,𝛽𝛽) is the Gittins index of the right arm, 

such that for all 𝒑𝒑 > 𝒑𝒑∗, with probability 1 the players will not explore arm R. 

More precisely, 𝑝𝑝∗ ≤ 𝑚𝑚⋅𝛽𝛽+𝑔𝑔
1+𝛽𝛽

, where 𝑚𝑚 is the mean of 𝜇𝜇. 

Competitive setting



Consider the following strategy SB for Bob: play left until Alice selects the right arm, say in some round k. 

Then play left again in round k+ 1, and then starting with round k+ 2 copy Alice’s move from the previous 

round. In particular, Bob never plays left first. 

Fix an arbitrary pure strategy SA for Alice. If SA never explores first, then we are done. Otherwise, suppose SA

explores first in round k.

Then we can calculate Alice and Bob’s expected reward and bound them (since Bob is copying Alice, she is 

not learning from his actions), so from round k+1 on her maximum reward is what a single player can do. 

Using inequality on Gittins index 𝑔𝑔 𝜇𝜇,𝛽𝛽 ≥ 𝑚𝑚 + 𝛽𝛽𝛽𝛽
2

we obtain the conclusion.

Proof sketch for Theorem 1 (Competing players explore less). 
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