
Stability and Learning in
Strategic Queuing Systems

Éva Tardos
Cornell University

Joint work with Jason Gaitonde (Cornell)

Example of a repeated game: traffic routing

• Traffic subject to congestion delays
• cars and packets follow shortest path
• Congestion game =cost (delay) depends only on

congestion on edges

Learning in Repeated Games

• Agents play fixed game (bidding in auctions, routing with delay)
• Selfishly aim to minimize own sum of costs over time
• Model agents as using no-regret learning algorithms

• Simple and efficient algorithms achieve no-regret: Hannan consistent [Hannan’57],
multiplicative weights [Freund-Schapire ‘97], follow-the-perturbed-leader [Kalai-Vempala
‘03], etc.

• Simple behavioral assumption: if single action would have been good to play
throughout, notice it!

• Less restrictive assumptions than being stable at a one-shot Nash
• Some evidence that players satisfy this…

Social Welfare: Price of Anarchy and Learning

• Price of Anarchy [Koutsoupias-
Papadimitriou ‘99]: “how does
social cost of Nash outcome
compare to social optimum?”

4/3 in affine routing delays
[Roughgarden-T ’03],
½ in valid utility games [Vetta ‘02],
many others…

• Bicriteria Results: “cost of
equilibrium of nonatomic flow is
at most optimal social cost with
twice the amount of flow”
[Roughgarden-T ‘03]

Quantitative bounds (i.e. price of anarchy) on quality of Nash
outcomes often extend directly to learning outcomes [Blum,
et al ’08; Roughgarden ’09; Lykouris, et al ‘16]

Social Welfare of Learning Outcomes

Critical Assumption: new copy of the same game is
repeated (no carryover effect between rounds other
than through learning)

Is this reasonable?

Large population games: traffic routing

Morning rush-hour traffic
No carryover effect
(except through the
learning of the agents)

Second-by-second packet traffic
Packets take time to clear,
dropped packets need to be
resent in the next round

This work: what can we say about
quality of competitive, learning

outcomes in repeated games with
carryover?

We study this question in a natural queuing setting.

Model of Learning in a Queuing System
• Queue 𝑖𝑖 gets new packets with a

Bernoulli process with rate 𝜆𝜆𝑖𝑖
• Server 𝑗𝑗 succeeds at serving a packet

with probability 𝜇𝜇𝑗𝑗
• Each time step: each queue can send

one packet to one of the servers to try
to get serviced

• Server can process at most one packet
and unserved packets get returned to
queue

• Queues use no-regret learning to
selfishly get the best service

queues servers

Failed

𝜆𝜆𝑖𝑖

𝜇𝜇𝑗𝑗

Our Main Question

• Example: one queue, one server (no learning, no competition)

• 𝜆𝜆 < 𝜇𝜇: expected queue size bounded (biased r.w. on the half-line)
• 𝜆𝜆 = 𝜇𝜇: expected queue size grows like Θ(𝑡𝑡) (unbiased r.w.)
• 𝜆𝜆 > 𝜇𝜇: expected queue size grows linearly in 𝑡𝑡 sharp threshold

λ 𝜇𝜇

How large should the server capacity be to ensure
competitive, no-regret queues remain bounded in

expectation over time?

One queue many servers
• The one queue faces a Bayesian multi-arm

bandit learning problem to find the best server

[Krishnasamy, Sen, Johari, & Shakkottai NIPS’16]
• Queue is searching for the best server:

needs 𝜆𝜆 < 𝜇𝜇𝑖𝑖
• Study the evolution of queue length over time:
goes up to 𝑂𝑂(log 𝑡𝑡) and then back to a constant
once the best server is identified

queue servers

𝜆𝜆 𝜇𝜇1

𝜇𝜇𝑛𝑛

Many queues, many servers and learning

Today learning in game:
• non-cooperative, selfish play and
• carry-over effect

queues servers

𝜆𝜆𝑖𝑖

𝜇𝜇𝑗𝑗

Baseline Measure: Coordinated Queues

Assume queues and servers are sorted:
1 > 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑛𝑛

1 ≥ 𝜇𝜇1 ≥ 𝜇𝜇2 ≥ ⋯ ≥ 𝜇𝜇𝑚𝑚 > 0

Claim: necessary/sufficient condition for centralized
stability: for all k,

�
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑖𝑖 < �
𝑖𝑖=1

𝑘𝑘

𝜇𝜇𝑖𝑖

(Recall: can only send one packet each round)

queues servers

𝜆𝜆𝑖𝑖

𝜇𝜇𝑗𝑗

How Do Servers Choose Between Packets?

• Option 1: uniformly random
• Option 2: oldest first

Main Results [Gaitonde-T ’20]
• Uniformly random: selfishness need not help coordinate queues, unless

prohibitively larger service rates
• Oldest first: selfish learning helps coordinate so long as service rate is at

least twice the arrival rate, i.e. for all k,

�
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑖𝑖 <
𝟏𝟏
𝟐𝟐
�
𝑖𝑖=1

𝑘𝑘

𝜇𝜇𝑖𝑖

Why Uniform Selection Fails

• One big queue/server and many small
queues w/ matching servers  slack c > 1

• Simple coordinated strategy: send to own
server!

• But: small queues can saturate large server
 big queue cannot clear!

queues

𝜇𝜇1 = 1𝜆𝜆1 =
1
𝑐𝑐

𝜇𝜇𝑛𝑛−1 =
𝑐𝑐3

𝑛𝑛

servers

… …

𝜇𝜇3 =
𝑐𝑐3

𝑛𝑛

𝜇𝜇2 =
𝑐𝑐3

𝑛𝑛

𝜇𝜇𝑛𝑛 =
𝑐𝑐3

𝑛𝑛

𝜆𝜆2 =
𝑐𝑐2

𝑛𝑛

𝜆𝜆3 =
𝑐𝑐2

𝑛𝑛

𝜆𝜆𝑛𝑛−1 =
𝑐𝑐2

𝑛𝑛

𝜆𝜆𝑛𝑛 =
𝑐𝑐2

𝑛𝑛

Selfish Queuing with Priorities

• Main Theorem [informal, Gaitonde-T ’20]: suppose that:
• Servers attempt to serve oldest packet received in each round,
• Queues use no-regret learning algorithms,
• and for all k,

�
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑖𝑖 <
1
2
�
𝑖𝑖=1

𝑘𝑘

𝜇𝜇𝑖𝑖

Then, all queue sizes remain bounded in expectation uniformly over time.
Moreover, factor 1/2 is tight.

Proof Ideas

• Use potential function

Φ ≈ ∑𝜏𝜏Φ𝜏𝜏
with Φ𝜏𝜏 = # packets aged 𝜏𝜏 or older in the system
• [Pemantle, Rosenthal ‘04]: random process satisfying

i. Sufficiently regular
ii. Negative drift when large

remains bounded in expectation for all times
• No-regret + factor 2 slack implies negative drift when queues have

large backup

Why Φ and How No-Regret Helps

• Look at queues with packets at least 𝜏𝜏-old; they have priority
• Fix long window and look at best/fastest servers
• Either: i) many 𝜏𝜏-old queues send there throughout window 

decrease in queue size, OR
ii) they do not  had priority there so no-regret kicks in:

𝜆𝜆𝑖𝑖
𝜇𝜇𝑗𝑗

Any queue with 𝜏𝜏-old packets would have
regret, unless it managed to get service for at
least this much!

Apply at all thresholds 𝜏𝜏 simultaneously to get
no-regret at all scales  implies negative drift

Extra Technical Details

• Need no-regret to hold on specific windows of long enough size with
high-probability

unlikely bad situations will happen, need to be able to recover
• Other technical issues for applying Pemantle/Rosenthal result

use model with deferred decisions: study ages instead of sizes:
age of oldest packet 𝑇𝑇𝑖𝑖𝑡𝑡 in queue 𝑖𝑖
Φ𝜏𝜏 = ∑𝑖𝑖:𝑇𝑇𝑖𝑖𝑡𝑡>𝜏𝜏 𝜆𝜆𝑖𝑖(𝑇𝑇𝑖𝑖

𝑡𝑡 − 𝜏𝜏) ≈ # packets age 𝜏𝜏 or older in the system

• apply concentration bounds, avoid bad correlations for the analysis,
• “sufficiently regular” = bounded moments

Summary and Future Directions

• Learning in games has many attractive features, but not much known
on quality of outcomes in games with carryover effect

• We prove stability results of selfish learners in queuing model with
strong dependencies over time via returned packets and priority

• Can these kinds of results be extended to other natural games with
carryover (auctions with budgets? More complicated routing
schemes/feedback structures?)?

• Upcoming work: Is this the right learning? More patience in
evaluating results: 𝑒𝑒

𝑒𝑒−1
≈ 1.58 … factor is enough.

	Stability and Learning in Strategic Queuing Systems
	Example of a repeated game: traffic routing
	Learning in Repeated Games
	Social Welfare: Price of Anarchy and Learning
	Social Welfare of Learning Outcomes
	Large population games: traffic routing
	This work: what can we say about quality of competitive, learning outcomes in repeated games with carryover?
	Model of Learning in a Queuing System
	Our Main Question
	One queue many servers
	Many queues, many servers and learning
	Baseline Measure: Coordinated Queues
	How Do Servers Choose Between Packets?
	Why Uniform Selection Fails
	Selfish Queuing with Priorities
	Proof Ideas
	�Why Φ and How No-Regret Helps�
	Extra Technical Details
	Summary and Future Directions

