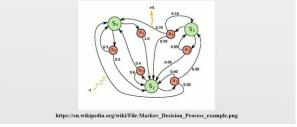
Online Learning in Stochastic Shortest Path

Yishay Mansour Tel-Aviv University and Google

Joint works with: Alon Cohen, Haim Kaplan and Aviv Rosenberg

1

Markov decision process



Stochastic Shortest Paths

- Basic RL model
 - Episodic
- Dual objective
 - Reach goal state
 - Minimize cost

- Applications:
 - Games
 - Car navigation
 - Robotics
 - Any episodic task

SSP: Model

- MDP with goal state **g**
- Interaction ends when g is reached
- Dual objectives:
 - Reach goal state
 - Minimize total cost in the process (sum)
- Challenges:

- The two objectives do not always agree.

SSP generalizes other models

Finite horizon

- Extend states adding the time in the episode
 - |S| H states
- Add a goal state g
- Result: loop-free SSP

Discounted

- Add a goal state g
- From every state s:
 - With probability γ move to the goal state g
- Expected return
 - Exactly the discounted expected return
 - Probability to reach any state s after t steps is γ^t

Online learning SSP: Model

- K episodes
- Have to reach goal state in every episode
- Transition function and cost unknown
- Minimize the regret

- Challenge:
 - A single episode can potentially have infinite cost!
 - Number of time steps of online and opt can be very different

Online learning SSP: Regret

- Fix an optimal policy π^*
- Consider online cost in K episodes
- The expected difference is the regret:

$$E\left[\sum_{i=1}^{K}\sum_{j=1}^{I_{k}}cost(s_{j}^{i},a_{j}^{i})\right] - KE[cost(\pi^{*})]$$

SSP regret: Previous works

- Regret minimization finite horizon MDP:
 - UCRL and variants $\Theta(\sqrt{K})$
 - Note that the regret is always bounded by *K*
 - Many SSP loop-free works
 - Finite horizon
- Regret minimization SSP:
 - Tarbouriech et al. (ICML 2020)
 - Regret bound $\tilde{O}(K^{2/3})$

SSP regret: our works

Stochastic MDP (ICML 2020)

- Upper bound
 - $\tilde{O}(\sqrt{K})$
- Lower bound:
 - $\ \Omega(B_*\sqrt{|S||A|K})$

Adversarial MDP (Submitted)

- Upper bound
 - $\tilde{O}(K^{0.75})$

Planning in SSPs (Bertsekas and Tsitsiklis, 1991)

- Proper policy: reaches the goal state from <u>any</u> state!
- Assumption:
 - There is a proper policy
 - Any improper policy has infinite cost

- The optimal policy is
 - stationary
 - deterministic
 - proper
 - Can be computed efficiently
 - E.g., Value Iteration.

Making policies proper: $c_{min} > 0$

- Assume strictly positive costs: $cost(s, a) \ge c_{min} > 0$
 - Any improper policy has infinite cost
 - From some state
 - Optimal policy is proper
- Bounded Regret implies:
 - Guarantee that we reach the goal state!

From positive costs to general costs

Add an ε perturbation (bias) to the costs
- cost'(s, a) = max{cost(s, a), ε}

- Perturbation adds a bias:
 - increases the total cost by ϵ per step
 - Optimize later over ϵ to minimize regret

SSP regret: positive costs

Stochastic MDP

• Our upper bound $\tilde{O}\left(\sqrt{K} + \frac{1}{\sqrt{c_{min}}}\right) \to \tilde{O}\left(\sqrt{K}\right)$

Adversarial MDP

• Upper bound $\tilde{O}\left(\frac{\sqrt{K}}{c_{min}}\right) \rightarrow \tilde{O}(K^{0.75})$

• Tarbouriech et al.

$$\tilde{O}\left(\sqrt{\frac{K}{c_{min}}}\right) \to \tilde{O}(K^{2/3})$$

SSP algorithm

- Overview:
 - Keep confidence set for the transitions
 - Similar to UCRL2
 - Assume (w.l.o.g. and for simplicity) that costs are known
 - Compute an optimal optimistic policy
 - When should we re-compute?
 - Keep states known/unknown
 - When all states are known, we have a good model.

SSP algorithm

- Challenge:
 - We cannot allow one policy to run until an episode is completed.
 - It might never complete!
 - This implies that we need to re-compute policies during an episode.

SSP our algorithms

- Simpler
 - Uses Hoeffding bounds
 - Regret matches Tarbouriech et al.
- Re-compute each time you reach an unknown state.

- Advanced
 - Uses Berenstein bounds
 - Gets the improved regret
- Re-compute when the number of visits to some state-action doubles.
 - Similar to UCRL2

Regret Analysis

- Observations:
 - Let B_* be the cost of the optimal policy
 - from the worse state
 - If each state-action visited $M = \Omega\left(\frac{B_*|S|}{c_{min}}\right)$ then:
 - optimal optimistic policy is proper (w.h.p.), its expected cost $O(B_*)$
 - If policy expected cost is $O(B_*)$ then w.h.p it is $O(B_* \log \frac{1}{\delta})$

Regret Analysis

- A state-action is unknown if visited less than $M = \Omega\left(\frac{B_*|S|}{c_{min}}\right)$ times.
- Consider intervals which restart at the end of episode or when we reach an unknown state-action.

• Number of intervals:
$$I = K + \tilde{O}\left(\frac{B_*^2|S|^2|A|}{c_{min}}\right)$$

• Cost of an interval: $\tilde{O}(B_*)$ w.h.p.

Regret analysis: bounds

- Using Berenstein: for each interval, variance is $\tilde{O}(B_*^2)$
- Regret scales with the square-root of total variance
 - $-REGRET = \tilde{O}(B_*|S|\sqrt{AI}) = \tilde{O}(B_*|S|\sqrt{AK} + B_*^{1.5}|S|^2 |A|c_{min}^{-1})$
 - main term optimal up to $\sqrt{|S|}$ factor
- General bound:
 - $REGRET = \tilde{O}(B_*^{1.5}|S|\sqrt{AK} + T_*^{1.5}|S|^2|A|)$
 - T^* the time of the optimal policy

Hoeffding versus Berenstein bound

- Hoeffding bound:
 - Variance per step $\tilde{O}(B_*^2)$

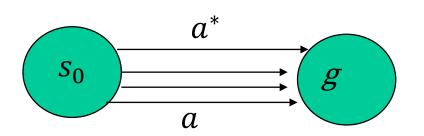
- Regret is
$$\tilde{O}(B_*\sqrt{T}) = \tilde{O}\left(B_*\sqrt{\frac{B_*I}{c_{min}}}\right)$$

- Berenstein bound:
 - Variance per episode $\tilde{O}(B_*^2)$
 - Regret is $\tilde{O}(B_*\sqrt{I})$

Lower bound

- Yao's principle:
 - Distribution over MDPs
 - Lower bound on regret

- Costs always 1.
- Transitions:
 - $-\Pr[g|a^*] = \frac{1}{B_*}$
 - $\Pr[g|a] = \frac{1-\epsilon}{B_*}$
- Optimal policy cost B_*
- Any other action $\cos \frac{B_*}{1-\epsilon}$



Lower bound

- Similar in spirit MAB
 - Some technical challenge
- Expected Regret:

$$-\epsilon KB_*\left(\frac{1}{8}-2\epsilon\sqrt{\frac{2K}{|A|}}\right)$$

- MDP:
 - Take |S| such "gadgets"
 - Initial distribution is uniform
 - Visit per gadget K/|S|
 - $-\operatorname{Set} \epsilon = 0.01 \sqrt{|A||S|/K}$
 - $\epsilon KB_* = \Omega(B_*\sqrt{|A||S|/K})$
 - Lower bound!

Adversarial SSP

- Model:
 - Fixed unknown transition function
 - Costs change every step.
 - Observed at the end of an episode

- Algorithm:
 - Online Mirror Descent (OMD)
 - selects an occupancy measure
 - Maintains confidence set over transition probabilities
 - Bound the duration to reach goal
 - Bounds the loss in an episode

Summary

- Stochastic Shortest Paths
 - Stochastic model
 - Near optimal bound
 - Adversarial model
 - More work is needed!

