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Stochastic Shortest Paths

• Basic RL model

– Episodic

• Dual objective

– Reach goal state

– Minimize cost

• Applications:

– Games

– Car navigation

– Robotics

– Any episodic task
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SSP: Model

• MDP with goal state g

• Interaction ends when g is reached

• Dual objectives:

– Reach goal state

– Minimize total cost in the process (sum)

• Challenges:

– The two objectives do not always agree.
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SSP generalizes other models

Finite horizon

• Extend states adding the time in the 

episode

– |S| H states

• Add a goal state g

• Result: loop-free SSP

Discounted

• Add a goal state g

• From every state s:

– With probability γ move to the goal state g 

• Expected return 

– Exactly the discounted expected return

– Probability to reach any state s after t steps 

is 𝛾𝑡
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Online learning SSP: Model

• K episodes

• Have to reach goal state in every episode

• Transition function and cost unknown 

• Minimize the regret

• Challenge: 

– A single episode can potentially have infinite cost!

– Number of time steps of online and opt can be very different
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Online learning SSP: Regret

• Fix an optimal policy 𝜋∗

• Consider online cost in K episodes

• The expected difference is the regret:

𝐸 

𝑖=1

𝐾



𝑗=1

𝐼𝑘

𝑐𝑜𝑠𝑡 𝑠𝑗
𝑖 , 𝑎𝑗

𝑖 − 𝐾 𝐸[𝑐𝑜𝑠𝑡 𝜋∗ ]
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SSP regret: Previous works

• Regret minimization finite horizon MDP:

– UCRL and variants Θ( 𝐾)

• Note that the regret is always bounded by 𝐾

• Many SSP loop-free works

– Finite horizon

• Regret minimization SSP:

– Tarbouriech et al. (ICML 2020)

• Regret bound ෨𝑂(𝐾2/3)
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SSP regret: our works

Stochastic MDP (ICML 2020)

• Upper bound 

– ෨𝑂 𝐾

• Lower bound:

– Ω(𝐵∗ 𝑆 𝐴 𝐾)

Adversarial MDP (Submitted)

• Upper bound

– ෨𝑂 𝐾0.75
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Planning in SSPs (Bertsekas and Tsitsiklis, 1991)

• Proper policy: reaches the goal 

state from any state!

• Assumption:

– There is a proper policy

– Any improper policy has infinite 

cost

• The optimal policy is 

– stationary

– deterministic

– proper

– Can be computed efficiently

• E.g., Value Iteration.
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Making policies proper: 𝑐𝑚𝑖𝑛 > 0

• Assume strictly positive costs:  
𝑐𝑜𝑠𝑡 𝑠, 𝑎 ≥ 𝑐𝑚𝑖𝑛 > 0

– Any improper policy has infinite cost 

• From some state

– Optimal policy is proper

• Bounded Regret implies:

– Guarantee that we reach the goal state!
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From positive costs to general costs

• Add an 𝜖 perturbation (bias) to the costs

– cost′ s, a = max{𝑐𝑜𝑠𝑡 𝑠, 𝑎 , 𝜖}

• Perturbation adds a bias:

– increases the total cost by 𝜖 per step

– Optimize later over 𝜖 to minimize regret
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SSP regret: positive costs

Stochastic MDP

• Our upper bound 

෨𝑂 𝐾 + 1
𝑐𝑚𝑖𝑛

→ ෨𝑂 𝐾

• Tarbouriech et al. 

෨𝑂
𝐾

𝑐𝑚𝑖𝑛
→ ෨𝑂(𝐾2/3)

Adversarial MDP

• Upper bound

෨𝑂 𝐾
𝑐𝑚𝑖𝑛

→ ෨𝑂 𝐾0.75
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SSP algorithm

• Overview:

– Keep confidence set for the transitions

• Similar to UCRL2

• Assume (w.l.o.g. and for simplicity) that costs are known

– Compute an optimal optimistic policy

• When should we re-compute?

– Keep states known/unknown

• When all states are known, we have a good model.
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SSP algorithm

• Challenge:

– We cannot allow one policy to run until an episode is completed.

• It might never complete!

– This implies that we need to re-compute policies during an 

episode.
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SSP our algorithms

• Simpler

– Uses Hoeffding bounds

– Regret matches Tarbouriech et al. 

• Re-compute each time you 

reach an unknown state.

• Advanced

– Uses Berenstein bounds

– Gets the improved regret

• Re-compute when the number 

of visits to some state-action 

doubles.

– Similar to UCRL2
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Regret Analysis

• Observations:

– Let 𝐵∗ be the cost of the optimal policy 

• from the worse state

– If each state-action visited 𝑀 = Ω
𝐵∗ 𝑆

𝑐𝑚𝑖𝑛
then:

• optimal optimistic policy is proper (w.h.p.), its expected cost 𝑂(𝐵∗)

– If policy expected cost is 𝑂 𝐵∗ then w.h.p it is 𝑂(𝐵∗ log
1

𝛿
)
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Regret Analysis

• A state-action is unknown if visited less than 𝑀 = Ω
𝐵∗ 𝑆

𝑐𝑚𝑖𝑛

times.

• Consider intervals which restart at the end of episode or 

when we reach an unknown state-action.

• Number of intervals: I = 𝐾 + ෨𝑂
𝐵∗
2 𝑆 2 𝐴

𝑐𝑚𝑖𝑛

• Cost of an interval: ෨𝑂 𝐵∗ w.h.p.
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Regret analysis: bounds

• Using Berenstein: for each interval, variance is ෨𝑂 𝐵∗
2

• Regret scales with the square-root of total variance

– 𝑅𝐸𝐺𝑅𝐸𝑇 = ෨𝑂 𝐵∗ 𝑆 𝐴I = ෨𝑂 𝐵∗ 𝑆 𝐴𝐾 + 𝐵∗
1.5 𝑆 2 𝐴 𝑐𝑚𝑖𝑛

−1

• main term optimal up to |𝑆| factor

• General bound:

• 𝑅𝐸𝐺𝑅𝐸𝑇 = ෨𝑂 𝐵∗
1.5 𝑆 𝐴𝐾 + 𝑇∗

1.5 𝑆 2 𝐴

– 𝑇∗ the time of the optimal policy
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Hoeffding versus Berenstein bound 

• Hoeffding bound:

– Variance per step ෨𝑂 𝐵∗
2

– Regret is ෨𝑂 𝐵∗ 𝑇 = ෨𝑂 𝐵∗
𝐵∗𝐼

𝑐𝑚𝑖𝑛

• Berenstein bound:

– Variance per episode ෨𝑂 𝐵∗
2

– Regret is ෨𝑂 𝐵∗ 𝐼
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Lower bound

• Yao’s principle:

– Distribution over MDPs

– Lower bound on regret

• Two states:

• Costs always 1.

• Transitions:

– Pr 𝑔 𝑎∗ = 1

𝐵∗

– Pr 𝑔 𝑎 = 1−𝜖

𝐵∗

• Optimal policy cost 𝐵∗

• Any other action cost 𝐵∗
1−𝜖
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Lower bound

• Similar in spirit MAB

– Some technical challenge

• Expected Regret:

– 𝜖𝐾𝐵∗
1

8
− 2𝜖 2𝐾

|𝐴|

• MDP:

– Take |S| such “gadgets”

– Initial distribution is uniform

– Visit per gadget 𝐾/|𝑆|

– Set 𝜖 = 0.01 𝐴 𝑆 /𝐾

• 𝜖𝐾𝐵∗ = Ω(𝐵∗ 𝐴 𝑆 /𝐾)

– Lower bound!
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Adversarial SSP

• Model:

– Fixed unknown transition 

function

– Costs change every step.

• Observed at the end of an episode

• Algorithm:

– Online Mirror Descent (OMD)

• selects an occupancy measure

– Maintains confidence set over 

transition probabilities

– Bound the duration to reach goal

• Bounds the loss in an episode
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Summary

• Stochastic Shortest Paths

– Stochastic model

– Near optimal bound

– Adversarial model

• More work is needed!
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