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Motivation: Cognitive Radio

licensed bands: Opportunistic
Spectrum Access

arm ↔ availability from primary users

un-licensed bands: IoT communications
arm ↔ background traffic

→ what about multiple devices?
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Stochastic bandits [Multiplayer]
K arms, M players
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Model
M players pull arms πj(t) ; Goal: Maximize social welfare

Notation: µ(1) > µ(2) > . . . > µ(K)

Regret: RT = T
M∑
j=1

µ(j) −
M∑
j=1

Rewj
T

with Rewj
T :=

∑T
t=1 µ

j
πj (t)

1no collision on πj (t)

Existing approaches: Centralized case or Cooperative players.

This paper: selfish players?
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Centralized case
The benchmark

One single agent pulls M arms among K (combinatorial bandit)

Obviously: no collision.

Pull M − 1 best empirical arms. ucb for the last one

Finite regret from the M − 1 best arms∑
k>M

µ(M) − µ(k)

kl(µ(M), µ(k))
log(T ) for the last one

Regret ≤
∑
k>M

µ(M) − µ(k)

kl(µ(M), µ(k))
log(T ) + o(log(T ))
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Cooperative players – protocols
Different Sensings

After pull, reward rk(t) = Xk(t)(1− 1collision), but agent observes

Full sensing: Xk(t) ∈ {0, 1} and 1collision

estimate µk and presence/absence of other agents

No sensing: Just rk(t) ∈ {0, 1}
If rk (t) = 0, collision or bad arm ?

Stat. sensing: Xk(t) ∈ {0, 1} and rk(t) ∈ {0, 1}
If Xk (t) = 0, collision or not ?
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Emulate the centralized case

Initialization: Estimate M , get “rank”.
Based on ] collisions. Finite cost

One player becomes the leader

He will dictate the strategy to other players

Explore/Exploit: Follow a centralized algorithm
The leader makes all computations

Communication: Collide on purpose to send a bit of info
Report statistics to the leader/Get arm reco

Almost costless: log2 log(T ) = o(log(T ))

Regret: Same as centralized case
With Full and Stat. sensing to observe collisions !

No sensing: Extra Multiplicative factor M

If all agents follow scrupulously the protocol !
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Selfish players
Strategy/algo profile (s ′, s−j) := (s1, . . . ,

j︷︸︸︷
s ′ , . . . , sM) ∈ SM

Definition ε-Nash Equilibrium

∀s ′ ∈ S, E[Rewj
T (s ′, s−j)] ≤ E[Rewj

T (s)] + ε

I ε-gain from unilateral deviation

Definition (α, ε)-stability
For all s ′ ∈ S, i , j ∈ [M], ` ∈ R+:

E[Rewi
T (s ′, s−j)] ≤ E[Rewi

T (s)]− `

=⇒ E[Rewj
T (s ′, s−j)] ≤ E[Rewj

T (s)] + ε− α`

I Cannot “hurt” someone else without “hurting” oneself
I ε-Nash equilibrium =⇒ (0, ε)-stability
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Existing protocols are not equilibria

Communication: Selfish player can interfere
By not communicating its statistics

By improperly communicating its statistics

By colliding while others are communicating (change bits)

Fairness: Need strong symmetry/anonymity
Algo a-priori fair not a-posteriori

Selfish agent wants to the be the leader

Omniscient selfish player
Knows the values µk

Knows the strategy of other players (the “normal” protocol)
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Selfish-Robust MMAB
Statistic sensing: X t

πj (t) and rj(t) observed

Emulate centralized independently

Initialization: estimate M and get ranks
I Small variant for robustness

Explore/Exploit: blocks of size M :
I pull M − 1 best empirical arms in a shifted way (no collision)

I on remaining round

{
pull M-th best arm with probability 1/2
explore at random otherwise

Regret analysis. M times optimal regret
I No collision if same empirical best arms ... all but finite number of times

Equilibrium !
I Estimating µk always possible.
I Other players are occupying all but one of best M − 1 arms

I Selfish can only spare its own regret
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Selfish-Robust MMAB
Theoretical guarantees

Theorem (Selfish-Robust MMAB guarantees)

1 E[RT ] ≤ M
∑

k>M

µ(M)−µ(k)

kl(µ(M),µ(k))
log(T ) +O

(
MK3

µ(K)
log(T )

)
,

2 ε-Nash equilibrium and (ε, α)-stable with:

ε =
µ(M) − µ(k)

kl(µ(M), µ(k))
log(T ) +O

(
K 3µ(1)

µ(K)
log(T )

)
and α =

µ(M)

µ(1)

Optimal without collision information [Besson and Kaufmann, 2019]

α-stability. Collide with j by pulling 1 instead of M
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No sensing - Impossibility
Only r j(t) observed

Th. There is no symmetric o(T )−Nash eq. s.t. E[RT ] = o(T )

Proof.
assume µ1 > µ2 . . . > µK and o(T ) regret
selfish player pulls arm 1 the whole time

I others observe (0, µ2, . . . , µK ) and do not pull 1

Ω(T )-improvement for selfish player �

Same arguments
I no o(T )-Nash eq. (non-symmetric) where E[R j

T ] = o(T )
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Reaching decentralized regret ?
Full sensing: Both Xπj (t) and 1collision observed

Th.: E[RT ] = O

(∑
k>M

1
µ(M) − µ(k)

log(T ) + MK 2 log(T )

)

Requires:
A new “robust” initialization

I Bi-partite leadership
a new “robust” communication scheme.

I Back and Forth messaging
a new punishment protocol

I Grim Trigger Strategies
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Initialization
Bi-partite leadership

Selfish players will try to be the leader
Define two leaders

I Each player reports statistics to both leaders
I They check if statistics match & same updates
I They both transmit recommendations to players

Robust to single deviations
I If s-selfish players : s + 1 leaders

Fairness ?
I arms are exploited sequentially by all player (round robin)
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Communication tricks
Back and forth

Player j Player i

send m

m = (1, 0, . . . , 0, 0)

Corruption

m = (1, 0, . . . , 1, 0)

receive m̃ =
(1, 0, . . . , 1, 0)
receive m̃
resend m̃

m = (1, 0, . . . , 1, 0)

m̃ = (1, 0, . . . , 1, 0)m̃ = (1, 1, . . . , 1, 0)

Corruption

receive m̂ =
(1, 1, . . . , 1, 0)
receive m̂

Corruption
iff m 6= m̂

m̃ = (1, 1, . . . , 1, 0)

Communication
j sends to i , mi→j = (1, 0, . . . , 0, 0) by pulling (i , j , . . . , j , j)

h can corrupt mi→j by colliding → transform 0 in 1
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Communication tricks
Punishment

Grim Trigger: Malicious player detected → punish until T . How?

1st idea: sample any arm with probability 1
K
.

I Selfish player gains µ(1)(1− 1/K )M−1

I not enough, can be bigger than
∑
µj/M

2nd idea: sample arm k with proba ≈ 1−
(
γ
∑M

j=1 µj

Mµk

) 1
M−1

.

I Selfish player gains ≈ γ
∑M

j=1 µj
M on k .

I Relative loss 1− γ
I Perfect! (for us). Admissible value: γ = (1− 1

K )M−1
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SIC-GT
Theoretical Guarantees

Theorem (SIC-GT guarantees)

1 E[RT ] = O
(∑

k>M
log(T )

µ(M)−µ(k)
+ MK 2 log(T )

)
2 ε-Nash equilibrium and (α, ε) stable with:

ε = O

(∑
k>M

log(T )

µ(M) − µ(k)
+ K 2 log(T ) +

K log(T )

α2µ(K)

)
and 2α = 1− (1− 1/K )M−1
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Heterogeneous setting
Impossibility result

Heterogeneous : µj
k different among players

Find best matching: W ∗ = max
σ

M∑
i=1

µi
σ(i)

Theorem (Heterogeneous Full sensing)
There is no o(T )-Nash equilibrium such that E[RT ] = o(T ).

Theorem [Zhou, 1990]There is no symmetric, Pareto optimal and
strategy-proof random assignment algorithm.
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Assume that µselfish1 = 1
2 > µselfishk and

Optimal matching σ∗

I Arm 1 is allocated to another player (not selfish)
I Total utility W ∗ = maxσ∗

∑M
i=1 µ

i
σ∗(i)

Best matching σ̂ giving arm 1 to selfish
I Total utility Ŵ =

∑M
i=1 µ

i
σ̂(i)

Non strategy-proof if W ∗ ≤ Ŵ + 1
3 (or ≤ Ŵ + 1

2 − η)
I Report/act as if µselfish1 = 1 and µselfishk = 0
I “Optimal” allocation becomes Ŵ

Regret RT ' (W ∗ − Ŵ )T .
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Random Serial Dictatorship

(RSD) Symmetric & strategy-proof [Abdulkadiroglu and Sonmez, 1998]

Choose dictator ordering σ at random
σ(1) chooses her preferred arm, σ(2) her preferred remaining...
Not efficient (i.e., welfare max)

RSD-regret: RRSD
T = TEσ

[
M∑
k=1

µ
σ(k)
πσ(k)

]
−

M∑
j=1

Rewj
T

where πσ(k) = arm attributed to σ(k) when order of dictators is σ.

19 / 22



RSD-GT
Description

Initialization: estimate M and attribute ranks (order σ)
Exploration: pull all arms

I End when M-best arms identified
I Signal it to others and exploit

Exploitation: M blocks
I Block k , order is σk0 ◦ σ where σ0 = cycle (1, . . . ,M).
I Cycles over permutations.

No benefit from initialization rank and σ (robustness)
Malicious behavior detected → punishment protocol

I δ-heterogeneous: for all j , k : µjk ∈ [(1− δ)µk , (1 + δ)µk ]
Needed for punishment (selfish player unidentified)
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RSD-GT
∆ = minj,k<M µj

k − µ
j
k+1, 2r = 1−

(
1+δ
1−δ

)2
(1− 1/K )M−1

Theorem (δ-heterogeneous)
1 E[RRSD

T ] = O
(
MK
∆2 log(T ) + MK 2 log(T )

)
2 ε-Nash equilibrium and (α, ε)-stable with

ε = O
(
K log(T )

∆2 + K 2 log(T ) +
K log(T )

(1− δ)r2µ(K)

)
α = min

(
r

(
1 + δ

1− δ

)3 √
log(T )− 4M√
log(T ) + 4M

;
1

(1 + δ)

∆

µ(1)
;

(1− δ)

(1 + δ)

µ(M)

µ(1)

)

For stability, random inspections during exploitation
I Selfish misreports µselfishk to hurt j (if µselfish(1) still available)

I With proba
√

log(T )

T , check if other players are well behaving
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Recap

Upsides
I robust algorithms for many settings
I impossibility result for no sensing and heterogeneous settings
I centralized like regret still achievable

Downsides
I Rely on strong assumption: synchronicity - stationarity
I Players arrive and leave in “real life”

Bottleneck: stream-Evaluation of M
I Coalitions of selfish players (using the same providers)

Thank you!
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