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PANDORA’S BOX PROBLEM [WEITZMAN’79]

• Given: boxes with (random) rewards drawn from known distributions; Can open each box at some fixed penalty

• Goal: select a single box to maximize the reward obtained minus total probing penalty
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Algorithm’s net reward = 𝑅# − (𝑡! + 𝑡#)



PANDORA’S BOX PROBLEM: MINIMIZATION VERSION

• Given: boxes with (random) costs drawn from known distributions; Can open each box at some fixed penalty

• Goal: select a single box to minimize the cost incurred plus total probing penalty
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Algorithm’s net cost = 𝑐# + (𝑡! + 𝑡#)

Question: what order to probe boxes and when to stop and select one?



WEITZMAN’S SOLUTION

Weitzman’s algorithm:

• Compute an amortized cost (a.k.a. Gittins index).

• Probe boxes in greedy order of increasing amortized cost.

• Stop when an observed cost < all remaining indices. Select box with min observed cost.

Theorem: Weitzman’s algorithm is optimal if the cost distributions 𝒟!, … , 𝒟& are independent.

Our setting: correlated costs

• 𝑐!, 𝑐", … , 𝑐& ~𝒟 where 𝒟 is a (large support) joint distribution

• Algorithm is provided sample access to 𝒟

[…, Dumitriu Tetali Winkler’03, 
Kleinberg  Waggoner Weyl’16, 
Singla’18, 
Bradac Singla Zuzic’19,
Beyhaghi Kleinberg’19, 
Gupta Jiang Scully Singla’19,  …]



FULLY ADAPTIVE SOLUTIONS

• An algorithm is defined by a pair (Π, 𝜏).

• Π: Probing Order over boxes

• Π' is a function of 𝑐(! , 𝑐(", …, 𝑐(#$!.

• 𝜏: Stopping time

• At step 𝜏, we stop and select box argmin'∈[+]{𝑐(#} .

• 𝕝(𝜏 = 𝑖) is a function of 𝑐(! , 𝑐(", …, 𝑐(#.

• Objective: minimize  Ε[ 𝜏 + min'∈ + 𝑐(# ]
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Simplifying assumption for this talk: each box has a probing penalty of 1.



BUT CORRELATED COSTS ARE HOPELESS!

• Let 𝑓 be some hard to invert function.

• 𝐶(') = ?
𝑐! = 𝑓 𝑖
𝑐' = 0
𝑐'% = ∞ for 𝑖′ ≠ 1, 𝑖

• OPT = 2

• Alg cannot hope to invert 𝑓 and find a zero-cost box quickly.
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𝑖 ≔ 𝑓$!(𝑐!)

ALTERNATE PLAN: COMPETE AGAINST A SIMPLER BENCHMARK

Related but different: optimal decision tree problem; Assumes small support distribution



PARTIALLY ADAPTIVE PROBING STRATEGIES

Defined by a pair (Π, 𝜏).

• Π: Ordering over boxes

• Π is independent of instantiated costs.

• 𝜏: Stopping time

• At step 𝜏, we stop and select box argmin%∈[(]{𝑐*!} .

• 𝕝(𝜏 = 𝑖) is a function of 𝑐*" , 𝑐*# , …, 𝑐*! .

• Objective: minimize  Ε[ 𝜏 + min%∈ ( 𝑐*! ] over PA strategies

• Stopping rule can still be quite complicated. Unclear if we can learn it with low 
sample complexity, or even represent it succinctly.
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MAIN RESULT                                   [Chawla, Gergatsouli, Teng, Tzamos, Zhang’20]

There exists a simple class of PA strategies 𝒞 with the following properties:

Theorem 1: For every joint distribution over costs, 𝒞 contains an /
/0!

approximate strategy.

Theorem 2: Learning the optimal strategy in 𝒞 requires poly(𝑛) samples.

Theorem 3: Given a small support distribution over costs, can efficiently approximate the optimal strategy in 𝒞
to within a small constant (3 + 2√2).

CAN LEARN AN APPROXIMATELY OPTIMAL Partially Adaptive STRATEGY 
EFFICIENTLY FROM DATA



MAIN RESULT                                   [Chawla, Gergatsouli, Teng, Tzamos, Zhang’20]

There exists a simple class of PA strategies 𝒞 with the following properties:

Theorem 1: For every joint distribution over costs, 𝒞 contains an /
/0!

approximate strategy.

Theorem 2: Learning the optimal strategy in 𝒞 requires poly(𝑛) samples.

A strategy in 𝒞 is parameterized by the ordering Π.
Stop when probing penalty > solution cost:

𝜏 = min{𝑖: 𝑖 > min
12'

𝑐(&}

𝓒 = 𝒏!

𝟐

Let 𝑎' = min
12'

𝑐(& and 𝑖∗ = argmin{𝑖 + 𝑎'}.

𝜏 ≤ max 𝑖∗, 𝑎'∗ .    ⟹ 𝜏 + 𝑎+ ≤ 2(𝑖∗ + 𝑎'∗).

Theorem 1 holds even when the algorithm is 
required to select a larger feasible subset of boxes 

and the probing penalty is a set function.

“Myopic 
stopping”



EFFICIENT OPTIMIZATION OVER 𝒞

Given: uniform distribution over 𝑚 “scenarios” with cost vectors 𝑐(4) = (𝑐!4, 𝑐"4, … , 𝑐&4) for each scenario 𝑠 ∈ 𝑚.

Goal: find a permutation Π such that (Π,myopic stopping) is approximately optimal.

Goal: find a permutation Π such that (Π, hindsight−optimal stopping) is approximately optimal.

Special case: costs are 0 or ∞. “Min sum set cover”

• Minimize the expected time to find a 0, equivalently, “cover” the scenario.

• 4-approx. (tight!) via greedy and LP-rounding. [Feige Lovasz Tetali’02]

• Many variants studied. [Azar GamzuYin’09, Bansal Gupta Krishnaswamy’10,  Azar Gamzu’11,  …]

𝜏4 = argmin{𝑖 + 𝑐(#
4 }Scenario-aware PA strategy



EFFICIENT OPTIMIZATION OVER 𝒞

Given: uniform distribution over 𝑚 “scenarios” with cost vectors 𝑐(4) = (𝑐!4, 𝑐"4, … , 𝑐&4) for each scenario 𝑠 ∈ 𝑚.

Goal: find a permutation Π such that (Π,myopic stopping) is approximately optimal.

Goal: find a permutation Π such that (Π, hindsight−optimal stopping) is approximately optimal.

An LP for scenario-aware PA strategies

Permutation constraints
for probing order

𝑖 is selected only if 𝑖 is probed

At least one box is selected

𝑥'5: 𝑖 is probed at time 𝑡.

𝑧'45: In scenario 𝑠, 𝑖 is selected at time 𝑡.



A RECAP OF OUR RESULTS

Feasibility constraint
Approx. Ratio

(approx. Partially Adap using 
Partially Adap)

Lower bound
(approx. Non Adap using 

Fully Adap)

Select 1 box 9.22 1.27

Select 𝑘 boxes O(1) 1.27

Select a matroid basis O(log rank) Ω(log rank)

In each setting:

• Draw poly(𝑛) samples from distribution. Set up LP on samples and solve.

• Use LP-rounding in phases to find a good probing order.

• Use myopic stopping with the probing order to get final algorithm.



CONCLUDING THOUGHTS

A potential approach to data-driven algorithm design:

Identify a class of algorithms that

• Always contains a near optimal solution

• Has low “complexity” so as to be learnable

Some open directions

• Improved approximation? (through a different “simple” class of algorithms?)

• Are there other benchmarks between Partially Adaptive and Fully Adaptive that are approximable?

• Other combinatorial settings, e.g. metric probing penalties (parking problem)? shortest paths in a graph?



THANK YOU!

Questions?


