The (Non-)Concentration of the Chromatic Number

Annika Heckel

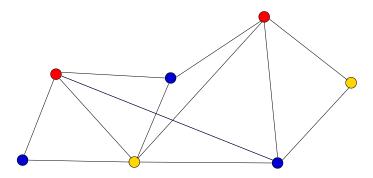
LMU München

Concentration of Measure Phenomena Simons Institute

23 October 2020

What is a colouring?

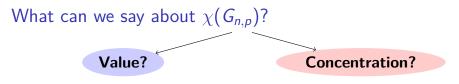
Colouring of G: Colour vertices so that neighbours get different colours



Chromatic number $\chi(G)$: Minimum number of colours where this is possible

 $G_{n,p}$: *n* vertices, include each edge independently with probability *p*

What is the chromatic number of $G_{n,p}$?



Upper and lower bounds?

How much does $\chi(G_{n,p})$ vary?

$$p = rac{1}{2}$$

 $\chi(G_{n,rac{1}{2}}) \sim rac{n}{2\log_2 n}$ whp.

Bollobás 1987:

Improvements: McDiarmid '90, Panagiotou & Steger '09, Fountoulakis, Kang & McDiarmid '10. H. 2016:

$$\chi\left(G_{n,\frac{1}{2}}\right) = \frac{n}{2\log_2 n - 2\log_2\log_2 n - 2} + o\left(\frac{n}{\log^2 n}\right) \text{ whp.}$$

Explicit interval of length $o\left(\frac{n}{\log^2 n}\right)$ which contains $\chi(G_{n,\frac{1}{2}})$ whp.

How about concentration?

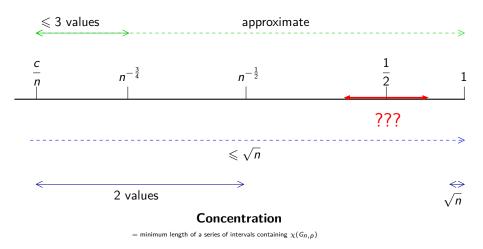
Shamir, Spencer 1987: For any function p = p(n), $\chi(G_{n,p})$ is whp contained in a sequence of intervals of length about \sqrt{n} .

Standard tool: Azuma-Hoeffding inequality + vertex exposure martingale.

$$p = 1 - \frac{1}{10n}$$
: not concentrated on fewer than $\Theta(\sqrt{n})$ values
 $p \leq \frac{1}{2}$: slight improvement to $\frac{\sqrt{n}}{\log n}$ (Alon)

Sparse random graphs:

 $p < n^{-\frac{1}{2}-\varepsilon}$: Two point concentration (Alon, Krivelevich 97, Łuczak 91) $p = \frac{C}{n}$: 2 *explicit* values. (Achlioptas, Naor 04) $p < n^{-3/4-\varepsilon}$: 3 *explicit* values. (Coja-Oghlan, Panagiotou, Steger 08) $\chi(G_{n,p})$ for different p = p(n)



The opposite question

Bollobás, Erdős, late 80s: Any non-concentration results?

Erdős 1992, appendix to The Probabilistic Method:

Can we show that $\chi(G_{n,\frac{1}{2}})$ is not concentrated on a constant number of values?

Upper bound:
$$\frac{\sqrt{n}}{\log n}$$
 (Alon)

Bollobás 2004:

Any non-trivial examples of non-concentration?

"even the weakest results claiming lack of concentration would be of interest"

Theorem (H. 2019; H., Riordan 2020+):

 $\chi(G_{n,\frac{1}{2}})$ is not contained whp in any sequence of intervals of length $n^{\frac{1}{2}-\varepsilon}$ for any fixed $\varepsilon > 0$.

Independent sets

Independence number $\alpha(G)$: Size of the largest independent vertex set (= set without edges).

 $lpha({\sf G}_{{\sf n},rac{1}{2}})=\lfloor lpha_{{\sf 0}}+{\it o}(1)
floor$ whp,

where $\alpha_0 = 2 \log_2 n - 2 \log_2 \log_2 n + 2 \log_2 (e/2) + 1$

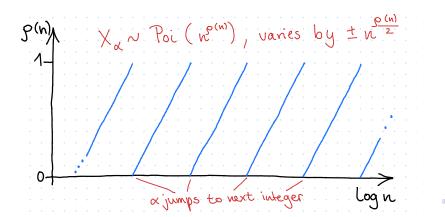
 $X_{\alpha} = \#$ independent α -sets

$$X_{lpha} \sim \operatorname{Poi}_{\mu}$$

 X_{α} is not very sharply concentrated

 $X_{\alpha} = \#$ independent α -sets

 $X_{\alpha} \underset{\text{roughly}}{\sim} \operatorname{Poi}_{\mu}$ $\mu = n^{\rho}, \quad 0 \leqslant \rho(n) \leqslant 1.$



What does this have to do with colourings?

Every colour class is an independent set, so if there are n vertices,

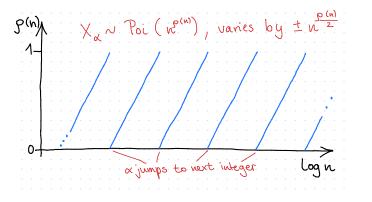
 $\chi(G) \geqslant \frac{n}{\alpha(G)}$

We know:

$$\chi(G_{n,\frac{1}{2}}) \approx \frac{n}{\alpha_0 - 3.89}$$

Intuition: An optimal colouring of $G_{n,\frac{1}{2}}$ contains all or almost all independent α -sets as colour classes.

 $\chi(G_{n,\frac{1}{2}})$ should vary at least as much as X_{α} .



Conjecture: $\chi(G_{n,\frac{1}{2}})$ is not concentrated on fewer than $n^{\rho/2}/\log n$ values.

Theorem(H., Riordan 20+)

Let $[s_n, t_n]$ be a sequence of intervals and suppose that $\chi(G_{n,\frac{1}{2}}) \in [s_n, t_n]$ whp. Then for every *n* with $\rho(n) < 0.99$, there is some $n^* \sim n$ such that

$$t_{n^*} - s_{n^*} \ge \frac{(n^*)^{\rho(n^*)/2}}{1000 \log n^*}.$$

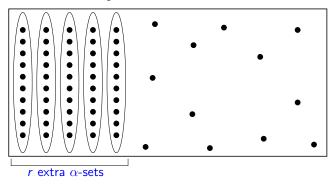
First proof attempt

Compare chromatic numbers of

•
$$G_{n,\frac{1}{2}}$$
 with $X_{\alpha} = A \approx \mu$

•
$$G_{n,rac{1}{2}}$$
 with $X_{lpha}=A+r$ where $r=\sqrt{\mu}=n^{
ho/2}$.

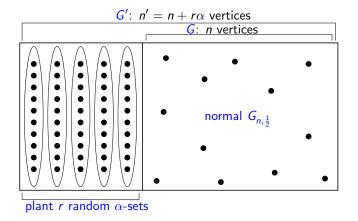
Hope: If X_{α} goes up, $\chi(G_{n,\frac{1}{2}})$ goes down.



Problem: Optimal colouring might not use these α -sets.

Second proof attempt

Trick: Compare $G_{n,\frac{1}{2}}$ for different *n*.



- Inner random graph: $G \sim G_{n, \frac{1}{2}}$
- Want to show: G' similar to $G_{n',\frac{1}{2}}$

Key Lemma

Planted model $G_{n,\frac{1}{2}}^{\text{pl}}$: Plant an independent α -set uniformly at random, and include all other edges independently with probability $\frac{1}{2}$.

d_{TV} : Total variation distance

Key Lemma $d_{\rm TV}\left({\cal G}_{n,\frac{1}{2}},{\cal G}_{n,\frac{1}{2}}^{\rm pl}\right)=O\left(\frac{1}{\sqrt{\mu}}\right),$ where $\mu=\mathbb{E}[X_{\alpha}].$

This means: $G_{n,\frac{1}{2}}$ and $G_{n,\frac{1}{2}}^{\text{pl}}$ can be coupled so that they agree with probability

$$1 - O\left(rac{1}{\sqrt{\mu}}
ight).$$

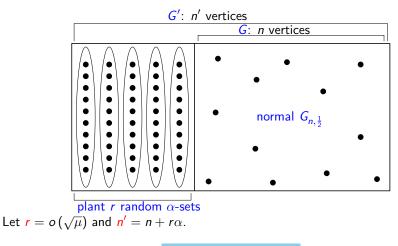
Key Lemma

$$d_{\mathrm{TV}}\left(G_{n,\frac{1}{2}},G_{n,\frac{1}{2}}^{\mathrm{pl}}
ight)=O\left(rac{1}{\sqrt{\mu}}
ight),$$

where $\mu = \mathbb{E}[X_{\alpha}]$.

Proof:

$$d_{\mathrm{TV}}\left(G_{n,\frac{1}{2}}, G_{n,\frac{1}{2}}^{\mathrm{pl}}\right) = \frac{1}{2} \sum_{G} \left| \mathbb{P}\left(G_{n,\frac{1}{2}}^{\mathrm{pl}} = G\right) - \mathbb{P}\left(G_{n,\frac{1}{2}} = G\right) \right|$$
$$= \frac{1}{2} \sum_{G} \left|\frac{X_{\alpha}(G)}{\binom{n}{\alpha}} \left(\frac{1}{2}\right)^{\binom{n}{2} - \binom{\alpha}{2}} - \left(\frac{1}{2}\right)^{\binom{n}{2}} \right|$$
$$= \frac{1}{2} \sum_{G} \left(\frac{1}{2}\right)^{\binom{n}{2}} \frac{\left|X_{\alpha}(G) - \binom{n}{\alpha} \left(\frac{1}{2}\right)^{\binom{\alpha}{2}}\right|}{\binom{n}{\alpha} \left(\frac{1}{2}\right)^{\binom{\alpha}{2}}}$$
$$= \mathbb{E}\left[\frac{\left|X_{\alpha} - \mu\right|}{\mu}\right] = O\left(\frac{1}{\sqrt{\mu}}\right)$$



$$d_{\mathrm{TV}}\left(G',G_{n',rac{1}{2}}
ight)=o(1)$$

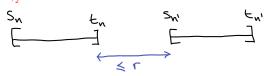
So, can couple $G_{n,\frac{1}{2}}$ and $G_{n',\frac{1}{2}}$ such that, whp, $\chi(G_{n',\frac{1}{2}})\leqslant\chi(G_{n,\frac{1}{2}})+r$

Proof ingredients

with

Ingredient 1: A coupling of $G_{n,\frac{1}{2}}$ and $G_{n',\frac{1}{2}}$, $n' = n + \alpha r$, such that whp $\chi(G_{n',\frac{1}{2}}) \leq \chi(G_{n,\frac{1}{2}}) + r$

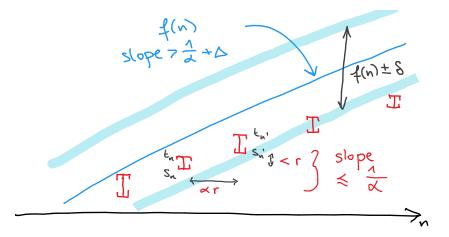
Suppose that $\chi(G_{n,\frac{1}{2}}) \in [s_n, t_n]$ whp.



Ingredient 2: A (weak) concentration result

$$\chi(G_{n,\frac{1}{2}}) = f(n) \pm \delta(n)$$
$$\frac{\mathrm{d}f}{\mathrm{d}n} \ge \frac{1}{\alpha} + \Delta$$

Use known bounds: $\chi(G_{n,\frac{1}{2}}) = \frac{n}{2\log_2 n - 2\log_2 \log_2 n - 2} + o\left(\frac{n}{\log^2 n}\right)$



If intervals short: Contradiction!

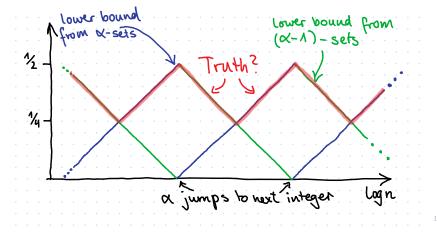
So there is at least one long interval. (length $\approx r/\log n$)

So what's the truth?

No colour classes of size α and $\alpha - 1$: two point concentration

H., **Panagiotou 20+:** The $(\alpha - 2)$ -bounded chromatic number of $G_{n,\frac{1}{2}}$ takes one of at most 2 consecutive values whp.

Zig-zag conjecture: (Bollobás, H., Morris, Panagiotou, Riordan, Smith)



Open questions

- Does the correct concentration interval length zigzag between $n^{1/4}$ and $n^{1/2}$?
- The proof only finds some *n*^{*} where the chromatic number is not too concentrated. Can we prove something for every n?
- Alon's upper bound: $\frac{\sqrt{n}}{\log n}$. Our lower bound: $n^{\frac{1}{2}-o(1)}$. Close the gap? Preview: Might push lower bound to $\frac{\sqrt{n}}{\log^5 n}$.
- Other ranges of p?

 $p < n^{-\frac{1}{2}-\varepsilon}$: two-point concentration. How "far down" does non-concentration go?

Thank you!