The (Non-)Concentration of the Chromatic Number

Annika Heckel

LMU München

Concentration of Measure Phenomena
 Simons Institute

23 October 2020

What is a colouring?

Colouring of G : Colour vertices so that neighbours get different colours

Chromatic number $\chi(G)$: Minimum number of colours where this is possible $G_{n, p}: n$ vertices, include each edge independently with probability p

What is the chromatic number of $G_{n, p}$?

What can we say about $\chi\left(G_{n, p}\right)$?

Value?

Concentration?

Upper and lower bounds?

$$
\text { How much does } \chi\left(G_{n, p}\right) \text { vary? }
$$

$$
p=\frac{1}{2}
$$

Bollobás 1987:

$$
\chi\left(G_{n, \frac{1}{2}}\right) \sim \frac{n}{2 \log _{2} n} \text { whp. }
$$

Improvements: McDiarmid '90, Panagiotou \& Steger '09, Fountoulakis, Kang \& McDiarmid '10.
H. 2016:

$$
\chi\left(G_{n, \frac{1}{2}}\right)=\frac{n}{2 \log _{2} n-2 \log _{2} \log _{2} n-2}+o\left(\frac{n}{\log ^{2} n}\right) \text { whp. }
$$

Explicit interval of length $\circ\left(\frac{n}{\log ^{2} n}\right)$ which contains $\chi\left(G_{n, \frac{1}{2}}\right)$ whp.

How about concentration?

Shamir, Spencer 1987: For any function $p=p(n), \chi\left(G_{n, p}\right)$ is whp contained in a sequence of intervals of length about \sqrt{n}.

Standard tool: Azuma-Hoeffding inequality + vertex exposure martingale.

$$
\begin{gathered}
p=1-\frac{1}{10 n}: \text { not concentrated on fewer than } \Theta(\sqrt{n}) \text { values } \\
\quad p \leqslant \frac{1}{2}: \text { slight improvement to } \frac{\sqrt{n}}{\log n} \text { (Alon) }
\end{gathered}
$$

Sparse random graphs:

$$
\begin{aligned}
& p<n^{-\frac{1}{2}-\varepsilon}: \begin{array}{l}
\text { Two point concentration } \\
\text { (Alon, Krivelevich } 97, \text { tuczak } 91 \text {) }
\end{array} \\
& p=\frac{C}{n}: 2 \text { explicit values. (Achlioptas, Naor 04) } \\
& p<n^{-3 / 4-\varepsilon}: 3 \text { explicit values. (Coja-Oghlan, Panagiotou, Steger 08) }
\end{aligned}
$$

$\chi\left(G_{n, p}\right)$ for different $p=p(n)$

Value

$\leqslant 3$ values
approximate

Concentration
$=$ minimum length of a series of intervals containing $\chi\left(G_{n, p}\right)$

The opposite question

Bollobás, Erdős, late 80s: Any non-concentration results?

Erdős 1992, appendix to The Probabilistic Method:
Can we show that $\chi\left(G_{n, \frac{1}{2}}\right)$ is not concentrated on a constant number of values?

$$
\text { Upper bound: } \frac{\sqrt{n}}{\log n} \text { (Alon) }
$$

Bollobás 2004:
Any non-trivial examples of non-concentration?
"even the weakest results claiming lack of concentration would be of interest"

Theorem (H. 2019; H., Riordan 2020+):

$\chi\left(G_{n, \frac{1}{2}}\right)$ is not contained whp in any sequence of intervals of length $n^{\frac{1}{2}-\varepsilon}$ for any fixed $\varepsilon>0$.

Independent sets

Independence number $\alpha(G)$: Size of the largest independent vertex set (= set without edges).

$$
\alpha\left(G_{n, \frac{1}{2}}\right)=\left\lfloor\alpha_{0}+o(1)\right\rfloor \mathrm{whp},
$$

where $\alpha_{0}=2 \log _{2} n-2 \log _{2} \log _{2} n+2 \log _{2}(e / 2)+1$

$$
X_{\alpha}=\# \text { independent } \alpha \text {-sets }
$$

$$
X_{\alpha} \underset{\text { roughly }}{\sim} \operatorname{Poi}_{\mu}
$$

X_{α} is not very sharply concentrated

$$
\begin{gathered}
X_{\alpha}=\# \text { independent } \alpha \text {-sets } \\
X_{\alpha} \underset{\text { roughly }}{\sim} \text { Poi }_{\mu} \\
\mu=n^{\rho}, \quad 0 \leqslant \rho(n) \leqslant 1 .
\end{gathered}
$$

What does this have to do with colourings?

Every colour class is an independent set, so if there are n vertices,

$$
\chi(G) \geqslant \frac{n}{\alpha(G)}
$$

We know:

$$
\chi\left(G_{n, \frac{1}{2}}\right) \approx \frac{n}{\alpha_{0}-3.89}
$$

Intuition: An optimal colouring of $G_{n, \frac{1}{2}}$ contains all or almost all independent α-sets as colour classes.
$\chi\left(G_{n, \frac{1}{2}}\right)$ should vary at least as much as X_{α}.

Conjecture: $\chi\left(G_{n, \frac{1}{2}}\right)$ is not concentrated on fewer than $n^{\rho / 2} / \log n$ values.
Theorem (H., Riordan 20+)
Let $\left[s_{n}, t_{n}\right]$ be a sequence of intervals and suppose that $\chi\left(G_{n, \frac{1}{2}}\right) \in\left[s_{n}, t_{n}\right]$ whop.
Then for every n with $\rho(n)<0.99$, there is some $n^{*} \sim n$ such that

$$
t_{n^{*}}-s_{n^{*}} \geqslant \frac{\left(n^{*}\right)^{\rho\left(n^{*}\right) / 2}}{1000 \log n^{*}}
$$

First proof attempt

Compare chromatic numbers of

- $G_{n, \frac{1}{2}}$ with $X_{\alpha}=A \approx \mu$
- $G_{n, \frac{1}{2}}$ with $X_{\alpha}=A+r$ where $r=\sqrt{\mu}=n^{\rho / 2}$.

Hope: If X_{α} goes up, $\chi\left(G_{n, \frac{1}{2}}\right)$ goes down.

Problem: Optimal colouring might not use these α-sets.

Second proof attempt

Trick: Compare $G_{n, \frac{1}{2}}$ for different n.

- Inner random graph: $G \sim G_{n, \frac{1}{2}}$
- Want to show: G^{\prime} similar to $G_{n^{\prime}, \frac{1}{2}}$

Key Lemma

Planted model $G_{n, \frac{1}{2}}^{\mathrm{pl}}$:
Plant an independent α-set uniformly at random, and include all other edges independently with probability $\frac{1}{2}$.
d_{TV} : Total variation distance
Key Lemma

$$
d_{\mathrm{TV}}\left(G_{n, \frac{1}{2}}, G_{n, \frac{1}{2}}^{\mathrm{pl}}\right)=O\left(\frac{1}{\sqrt{\mu}}\right),
$$

where $\mu=\mathbb{E}\left[X_{\alpha}\right]$.
This means: $G_{n, \frac{1}{2}}$ and $G_{n, \frac{1}{2}}^{\mathrm{pl}}$ can be coupled so that they agree with probability

$$
1-O\left(\frac{1}{\sqrt{\mu}}\right)
$$

Key Lemma

$$
d_{\mathrm{TV}}\left(G_{n, \frac{1}{2}}, G_{n, \frac{1}{2}}^{\mathrm{pp}}\right)=O\left(\frac{1}{\sqrt{\mu}}\right),
$$

where $\mu=\mathbb{E}\left[X_{\alpha}\right]$.

Proof:

$$
\begin{aligned}
d_{\mathrm{TV}}\left(G_{n, \frac{1}{2}}, G_{n, \frac{1}{2}}^{\mathrm{pl}}\right) & =\frac{1}{2} \sum_{G}\left|\mathbb{P}\left(G_{n, \frac{1}{2}}^{\mathrm{pl}}=G\right)-\mathbb{P}\left(G_{n, \frac{1}{2}}=G\right)\right| \\
& =\frac{1}{2} \sum_{G}\left|\frac{X_{\alpha}(G)}{\binom{n}{\alpha}}\left(\frac{1}{2}\right)^{\binom{n}{2}-\binom{\alpha}{2}}-\left(\frac{1}{2}\right)^{\binom{n}{2}}\right| \\
& =\frac{1}{2} \sum_{G}\left(\frac{1}{2}\right)^{\binom{n}{2}} \frac{\left|X_{\alpha}(G)-\binom{n}{\alpha}\left(\frac{1}{2}\right)^{\binom{\alpha}{2}}\right|}{\binom{n}{\alpha}\left(\frac{1}{2}\right)^{\binom{\alpha}{2}}} \\
& =\mathbb{E}\left[\frac{\left|X_{\alpha}-\mu\right|}{\mu}\right]=O\left(\frac{1}{\sqrt{\mu}}\right)
\end{aligned}
$$

$G^{\prime}: n^{\prime}$ vertices

Let $r=o(\sqrt{\mu})$ and $n^{\prime}=n+r \alpha$.

$$
d_{\mathrm{TV}}\left(G^{\prime}, G_{n^{\prime}, \frac{1}{2}}\right)=o(1)
$$

So, can couple $G_{n, \frac{1}{2}}$ and $G_{n^{\prime}, \frac{1}{2}}$ such that, whp,

$$
\chi\left(G_{n^{\prime}, \frac{1}{2}}\right) \leqslant \chi\left(G_{n, \frac{1}{2}}\right)+r
$$

Proof ingredients

Ingredient 1: A coupling of $G_{n, \frac{1}{2}}$ and $G_{n^{\prime}, \frac{1}{2}}, n^{\prime}=n+\alpha r$, such that whp

$$
\chi\left(G_{n^{\prime}, \frac{1}{2}}\right) \leqslant \chi\left(G_{n, \frac{1}{2}}\right)+r
$$

Suppose that $\chi\left(G_{n, \frac{1}{2}}\right) \in\left[s_{n}, t_{n}\right]$ whp.

Ingredient 2: A (weak) concentration result

$$
\chi\left(G_{n, \frac{1}{2}}\right)=f(n) \pm \delta(n)
$$

with

$$
\frac{\mathrm{d} f}{\mathrm{~d} n} \geqslant \frac{1}{\alpha}+\Delta
$$

Use known bounds: $\chi\left(G_{n, \frac{1}{2}}\right)=\frac{n}{2 \log _{2} n-2 \log _{2} \log _{2} n-2}+o\left(\frac{n}{\log ^{2} n}\right)$

If intervals short: Contradiction!

So there is at least one long interval.
(length $\approx r / \log n)$

So what's the truth?
No colour classes of size α and $\alpha-1$: two point concentration
H., Panagiotou 20+: The $(\alpha-2)$-bounded chromatic number of $G_{n, \frac{1}{2}}$ takes one of at most 2 consecutive values why.

Zig-zag conjecture: (Bollobás, H., Morris, Panagiotou, Riordan, Smith)

Open questions

- Does the correct concentration interval length zigzag between $n^{1 / 4}$ and $n^{1 / 2}$?
- The proof only finds some n^{*} where the chromatic number is not too concentrated. Can we prove something for every n ?
- Alon's upper bound: $\frac{\sqrt{n}}{\log n}$. Our lower bound: $n^{\frac{1}{2}-o(1)}$. Close the gap? Preview: Might push lower bound to $\frac{\sqrt{n}}{\log ^{5} n}$.
- Other ranges of p ?
$p<n^{-\frac{1}{2}-\varepsilon}$: two-point concentration. How "far down" does non-concentration go?

Thank you!

