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Sampling Problem
Input: a convex set 𝐾 with a membership oracle

Output: sample a point from the uniform distribution on 𝐾.

Theorem: For any convex set, we can sample in 𝑛 . (unconditional) / 𝑛 (under KLS conj) steps.

(Same runtime for volume.)

Martin Dyer, Alan Frieze, Ravi Kannan



Story Time



Ball Walk
At 𝑥, pick random 𝑦 from 𝑥 + 𝛿𝐵 ,

if 𝑦 is in 𝐾, go to 𝑦.

otherwise, sample again

This walk may get trapped on one side if the set is not convex.

𝑥

𝛿



Cheeger constant
For any set 𝐾, we define the Cheeger constant 𝜙 by

𝜙 = min
Area(𝜕𝑆)

min (vol 𝑆 , vol 𝑆 )

Theorem

Given a random point in 𝐾, we can generate another in 

iterations of Ball Walk where 𝛿 is step size.

▪ 𝜙 and 𝛿 larger, mix better.

▪ 𝛿 cannot be too large, otherwise, fail probability is ~1.

𝜙 small, easy to cut the set

𝜙 large, hard to cut the set



Cheeger constant of Convex Set
Note that 𝜙 is not affine invariant and can be arbitrary small.

However, you can renormalize 𝐾 such that Cov 𝐾 = 𝐼.

Definition: 𝐾 is isotropic, if it is mean 0 and Cov 𝐾 = 𝐼.

Theorem: If isotropic, 𝛿 <
.

, ball walk stays inside the set with constant probability.

Theorem: Given a random point in isotropic 𝐾, we can generate another in 

1

L

𝜙 = 1/𝐿.

Cov 𝐾 = 𝔼 ~ 𝑥𝑥



KLS Conjecture
Kannan-Lovász-Simonovits Conjecture:

For any isotropic convex 𝐾, 𝜙 = Ω(1).

Ravindran Kannan Miklós SimonovitsLovász László



Previous Results
[Lovasz-Simonovits 93] 𝜙 = Ω 1 𝑛 / .

[Klartag 06] 𝜎 = Ω 1 𝑛 / log / 𝑛.

[Fleury-Guedon-Paouris 06] 𝜎 = Ω 1 𝑛 / log / 𝑛 log log 𝑛.

[Klartag 06] 𝜎 = Ω(1)𝑛 . .

[Fleury 10] 𝜎 = Ω(1)𝑛 . .

[Guedon-Milman 10] 𝜎 = Ω(1)𝑛 . .

[Eldan 12] 𝜙 = Ω 1 𝜎 = Ω(1)𝑛 . .

[Lee-Vempala 16] 𝜙 = Ω 1 𝑛 . .

For isotropic convex sets, we can sample in  𝑛 . (unconditional) / 𝑛 (under KLS) time.

What if we cut the body by 
sphere only?

/



How to make the body isotropic?
Lovász-Vempala Rounding Algorithm

▪ Start with a ball 𝐵 inside 𝐾

▪ While 𝐵 does not cover 𝐾

▪ Use 𝑂(𝑛) samples to estimate the covariance of 𝐾 ∩ 𝐵.

▪ Transform 𝐾 to make 𝐾 ∩ 𝐵 isotropic.

▪ 𝐵 ← 2𝐵.

Lemma. 𝐾 ∩ 𝐵 isotropic ⇒ 𝐾 ∩ 2𝐵 well-rounded, i.e. 𝔼||𝑥|| = 𝑂(𝑛) and Cov 𝐾 ≽ Ω(𝐼). 

Lemma. We can sample a well-rounded body in time 𝑂(𝑛 ) time.

Theorem [Srivastava-Vershynin 13]. 𝑀 = the empirical covariance of 𝐾 using 𝑛/𝜖 samples. 
Then

(1 − 𝜖)𝑀 ≼ Cov 𝐾 ≼ (1 + 𝜖)𝑀

2t

t

Total Complexity = log 𝑛 ⋅ 𝑛 ⋅ 𝑛 .

Best known even under KLS conj.



There is one possible further improvement on the 
horizon. … If this conjecture is true... could perhaps lead 
to an volume algorithm. But besides the mixing 

time, a number of further problems concerning achieving 
isotropic position would have to be solved.

Lovász-Vempala at 2006



Rounding++
A faster rounding algorithm



How to make the body isotropic?
Lovász-Vempala Rounding Algorithm

▪ Start with a ball 𝐵 inside 𝐾

▪ While 𝐵 does not cover 𝐾

▪ Use 𝑂(𝑛) samples to estimate the covariance of 𝐾 ∩ 𝐵.

▪ Transform 𝐾 to make 𝐾 ∩ 𝐵 isotropic.

▪ 𝐵 ← 2𝐵.

Lemma. 𝐾 ∩ 𝐵 isotropic ⇒ 𝐾 ∩ 2𝐵 well-rounded, i.e. 𝔼||𝑥|| = 𝑂(𝑛) and Cov 𝐾 ≽ Ω(𝐼). 

Lemma. We can sample a well-rounded body in time 𝑂(𝑛 ) time.

Theorem [Srivastava-Vershynin 13]. 𝑀 = the empirical covariance of 𝐾 using 𝑛/𝜖 samples. 
Then

(1 − 𝜖)𝑀 ≼ Cov 𝐾 ≼ (1 + 𝜖)𝑀

2t

t

Total Complexity = log 𝑛 ⋅ 𝑛 ⋅ 𝑛 .

Best known even under KLS conj.Suffice to make a well-rounded 
body isotropic.



How to make the well-rounded body isotropic?
Rounding++

▪ 𝑟 ← 1

▪ While 𝑟 ≤ 𝑛

▪ Use 𝑂(𝑟 ) samples to estimate the covariance of 𝐾.

▪ Let 𝑉 be the subspace of the empirical covariance with eigenvalues ≥ 𝑛.

▪ Scale up all directions in 𝑉 by a factor of 2.

▪ 𝑟 ← 2 1 − 𝑟.

Intuition:

▪ We keep scaling up eigenvalues whenever ≤ 𝑛. So, all eigenvalues converges to 𝑛.

▪ Initially, 𝐾 far from isotropic. We only need few expensive samples.

▪ At the end, 𝐾 close to isotropic. We can afford many cheap samples.

If empirical covariance is accurate, 𝐵 0, 𝑟 ⊂ 𝐾

We only need log (𝑛) steps.
✔

Cov 𝐾 ≼ 𝑛 ⋅ 𝐼 ✔



Why samples enough to find all eigenvalues ?
Lemma [Matrix Chernoff, Ahlswede-Winter]: 

𝐴: covariance, 𝐴: empirical covariance of 𝑘 samples. Then,

𝐴 = 1 ± 𝜀 𝐴 ± 𝑂(
𝑇𝑟 𝐴

𝜀𝑘
)𝐼.

Claim: Tr𝐴 = 𝑂(𝑟 𝑛).

With 𝜖 = 1/2 and 𝑘 = 𝑟 , we have 𝐴 = 1 ± 𝐴 ± 𝑛𝐼. Suffices to detect eigenvalues ≥ Θ(𝑛).

Proof of Claim:

Each step, we scale up some direction by a factor of 2 and Tr𝐴 increased by at most 4.

Since each step 𝑟 around double, we have Tr𝐴 = 𝑂(𝑟 𝑛).



Lemma. While 𝜆 ≥ 4𝑟 log 𝑛, 𝑟 increases by a factor of at least 2 1 − in each iteration. (We 
use 𝜆 = 𝑛). 

Proof:  

Scale up all directions with variance < 𝜆.

𝑉 contains ellipsoid with minimum axis length 𝜆

𝑉 contains a ball of radius 𝑟 that is scaled up by 2.

Then, new body contains a ball of radius nearly 2𝑟.

Consider any 𝑥 on the boundary, we have

𝑥 = 𝛼𝑦 + 1 − 𝛼 where 𝛼 ∈ 0,1 , 𝑦 ∈ 𝜕𝐵 2𝑟 ∩ 𝑉 , 𝑧 ∈ 𝜕𝐵 𝜆 ∩ 𝑉

Then,  

𝑥 = 𝛼 4𝑟 + 1 − 𝛼 𝜆 ≥
4𝜆𝑟

𝜆 + 4𝑟
≥ 4 ⋅

log 𝑛

log 𝑛 + 1
⋅ 𝑟

𝜆

𝑟



How to make the well-rounded body isotropic?
Rounding++

▪ 𝑟 ← 1

▪ While 𝑟 ≤ 𝑛

▪ Use 𝑂(𝑟 ) samples to estimate the covariance of 𝐾.

▪ Let 𝑉 be the subspace of the empirical covariance with eigenvalues ≥ 𝑛.

▪ Scale up all directions in 𝑉 by a factor of 2.

▪ 𝑟 ← 2 1 − 𝑟.

Intuition:

▪ We keep scaling up eigenvalues whenever ≤ 𝑛. So, all eigenvalues converges to 𝑛.

▪ Initially, 𝐾 far from isotropic. We only need few expensive samples.

▪ At the end, 𝐾 close to isotropic. We can afford many cheap samples.

We only need log (𝑛) steps.

If empirical covariance is accurate, 𝐵 0, 𝑟 ⊂ 𝐾

Cov 𝐾 ≼ 𝑛 ⋅ 𝐼

Under KLS, Cov 𝐾 ≼ 𝑛 ⋅ 𝐼 and 𝐵 0, 𝑟 ⊂ 𝐾
implies

𝑛 /𝑟 time per sample.
So, each phase takes 𝑛 time.

✔

✔

✔



Without KLS: Isoperimetry for non-isotropic sets
Theorem [Lee-Vempala 16]

𝜙 = Ω(||Cov𝐾||
/

)

In particular, 𝜙 = Ω(𝑛 / ) for any isotropic 𝐾.

Corollary [This paper] We have complexity 𝑛 . .

Lemma [This paper]

Suppose 𝜙 ≥ 𝑛 for isotropic 𝐾. For any convex 𝐾, we have
𝜙 = Ω(||Cov𝐾|| /( )

/
)

(Namely, it suffices to understand isoperimetry for isotropic sets.)

Proof: stochastic localization.

Corollary [This paper] If 𝜙 ≥ 𝑛 , we have complexity 𝑛 .



Is for some ?



Extra motivation

▪ Theorem (CLT for convex bodies) [Klartag 06]

For any isotropic log-concave in 

with high prob in 

▪ Conjecture (Generalized CLT for convex bodies)

For any isotropic log-concave in 

with high prob in 

This version is not symmetric enough. Alternatively:

Haotian
Jiang

Theorem: 𝑊 𝑝 𝑞, 𝒩 0, 𝑛 = 𝑂(𝑛 )

So, 𝛽 < implies GCLT holds.


