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Sampling Problem

Input: a convex set K with a membership oracle

Output: sample a point from the uniform distribution on K. Martin Dyer, Alan Frieze, Ravi Kannan

Year/Authors New ingredients Steps
L - 1989/Dyer-Frieze-Kannan [6] Everything n
m 1990/Lovasz-Simonovits [18] Better isoperimetry n'®
| 1990/Lovész [17] Ball walk n10
l 1991 /Applegate-Kannan [2] Logconcave sampling nl1o
1990/Dyer-Frieze [5] Better error analysis n®
1993 /Lovasz-Simonovits [19)] Localization lemma n'
1997 /Kannan-Lovi; cesz-Simonovits [11] | Speedy walk, isotropy n°
2003 /Lovasz-Vempala [20] Annealing, hit-and-run | n*
2015/Cousins-Vempala [3] (well-tounded) | Gaussian Cooling n3

Theorem: For any convex set, we can sample in n3-° (unconditional) / n® (under KLS conj) steps.

(Same runtime for volume.)




Story Time




Ball Walk

At x, pick random y from x + 6 B,,,
if yisin K, gotoy.

otherwise, sample again

This walk may get trapped on one side if the set is not convex.
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Cheeger constant

For any set K, we define the Cheeger constant ¢ by

. Area(0dS)
Px = mgn min(vol(S), vol(S¢))
Theorem
Given a random point in K, we can gener%te another in
0 log(1/¢
(52g7108(1/€)

iterations of Ball Walk where § is step size.

= ¢k and é larger, mix better.

= § cannot be too large, otherwise, fail probability is ~1.

¢ large, hard to cut the set

¢ small, easy to cut the set




Cheeger constant of Convex Set

Note that ¢ is not affine invariant and can be arbitrary small.

Cov(K) = E,xxx’

v

A

¢k = 1/L. 6

However, you can renormalize K such that Cov(K) = I.
Definition: K is isotropic, if it is mean 0 and Cov(K) = I.

Theorem: If isotropic, 6 < 29 ‘pall walk stays inside the set with constant probability.

\/_ )
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Theorem: Given a random point in isotropic K, we can generate another in 0(;—2 log(1/¢))
K




KLS Conjecture

Kannan-Lovasz-Simonovits Conjecture:

For any isotropic convex K, ¢x = Q(1).

Ravindran Kannan Lovasz Laszlo Miklds Simonovits




What if we cut the body by
sphere only?

Previous Results o = Var(||X|D"Y2 = ¢

[Lovasz-Simonovits 93] ¢ = Q(1)n~1/2,

[Klartag 06] o = Q(1)n"2log!/?n.

[Fleury-Guedon-Paouris 06] ¢ = Q(1)n~1?log/®nlog=2 logn.
[Klartag 06] o = Q(1)n~%%,

[Fleury 10] o = Q(1)n~%373,

[Guedon-Milman 10] ¢ = Q(1)n~9333,

[Eldan 12] ¢ = 0(1)o = Q(1)n=0333,

[Lee-Vempala 16] ¢ = Q(1)n"%2>,

For isotropic convex sets, we can sample in n?®° (unconditional) / n? (under KLS) time.




How to make the body isotropic?
Lovasz-Vempala Rounding Algorithm
= Start with a ball B inside K

= While B does not cover K

= Use 0(n) samples to estimate the covariance of K N B.

= Transform K to make K N B isotropic.

= B« 2B.
Total Complexity = log(n) - n - n3.

Lemma. K N B isotropic = K N 2B well-rounded, i.e. E||x||?> = 0(n) and Cov(K) = Q(I).

Lemma. We can sample a well-rounded body in time 0(n3®) time. REESEGENREERT RSN

Theorem [Srivastava-Vershynin 13]. M = the empirical covariance of K using n/e? samples.

Then
(1-eM<Cov(K) S (1+e)M




There is one possible further improvement on the
horizon. ... If this conjecture is true... could perhaps lead

to an 0*(n?) volume algorithm. But besides the mixing
time, a number of further problems concerning achieving
Isotropic position would have to be solved.




Rounding++

A faster rounding algorithm



How to make the body isotropic?

Lovasz-Vempala Rounding Algorithm
= Start with a ball B inside K

= While B does not cover K

= Use 0(n) samples to estimate the covariance of K n B.

= Transform K to make K N B isotropic.
= B« 2B.

Total Complexity = log(n) - n - n3.

x||? = 0(n) and Cov(K) > Q(I).

Suffice to make a well-rounded ..

bOdy 'SOtrOpIC' 1l covariance of K using n/e? samples.




How to make the well-rounded body isotropic?

Rounding++ N I

s re1

= Whiler?2 <n P
|
|

= Use 0(r?) samples to estimate the covariance of K.
= Let VV be the subspace of the empirical covariance with eigenvalues > n. _ Cov(K) < n-1I
= Scale up all directions in V* by a factor of 2. — If empirical covariance is accurate, B(0,r) € K

) (1 _ 1 )r_ _ We only need log(n) steps. b,

logn

Intuition:

= We keep scaling up eigenvalues whenever < n. So, all eigenvalues converges to n.
= Initially, K far from isotropic. We only need few expensive samples.

= Atthe end, K close to isotropic. We can afford many cheap samples.




Why % samples enough to find all eigenvalues > n?

Lemma [Matrix Chernoff, Ahlswede-Winter]:

A: covariance, A: empirical covariance of k samples. Then,
N ~ Tr(A
A=(1xe)A+ 0(%))1.

Claim: Tr4 = 0(r?n).

With e = 1/2 and k = r?, we have 4 = (1 + %)A + nl. Suffices to detect eigenvalues = 0(n).

Proof of Claim:
Each step, we scale up some direction by a factor of 2 and TrA increased by at most 4.

Since each step r around double, we have Tr4 = 0(r?n).




B(0,r) c K
Lemma. While 1 > 4r%logn, r increases by a factor of at least 2 (1 - @) in each iteration. (We
use 1 = n). :

Proof:

Scale up all directions with variance < A.

V' contains ellipsoid with minimum axis length A

VL contains a ball of radius r that is scaled up by 2.

Then, new body contains a ball of radius nearly 2r.

Consider any x on the boundary, we have

x=ay+ (1—a)where a € [0,1],y €0BQR2r)n Vi, z€e oB*"(A) NV
Then,

427r? logn

>S4 .— 2 42
A+4r?2 —  logn+1 X

lx]|? = a?4r? + (1 — a)?1 =




How to make the well-rounded body isotropic?

Rounding++ N 1 _
=rel

= Whiler?2 <n P
= Use O0(r?) samples to estimate the covariance of K.
= Let IV be the subspace of the empirical covariance with eigenvalues > n. _ Cov(K) < n-1I
= Scale up all directions in V+ by a factor of 2. — If empirical covariance is accurate, B(0,r) c K'

e 2 (1 _ 1 )r_ _ We only need log(n) steps. ),

logn

Intuition:
Under KLS, Cov(K) <n-Iand B(0,r) c K

= We keep scaling up eigen implies D n.
n3/r? time per sample.

= Initially, K far from isotropiQESIsRCE R EEEREIEERTER (1)) (58

= Atthe end, K close to isotropic. We can afford many cheap samples.




Without KLS: Isoperimetry for non-isotropic sets

Theorem [Lee-Vempala 16]
-1/2
i = Q(||CovK]|[)

In particular, ¢ = Q(n~1/%) for any isotropic K.

Corollary [This paper] We have complexity n3-.

Lemma [This paper]
Suppose ¢, > n~F for isotropic K. For any convex K, we have
= -1/2
k = Q(IICOVKI[; ) fr5)

(Namely, it suffices to understand isoperimetry for isotropic sets.) E
=

Proof: stochastic localization.

Corollary [This paper] If ¢, = n~F, we have complexity n3+2F.
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Is ¢ = n ﬁforsomeﬁ<z?




Extra motivation
= Theorem (CLT for convex bodies) [Klartag 06]
For any isotropic log-concave p in R",
dry (mxp, M (0,1)) < 0, (1) with high prob in x~S™"1

Theorem: W,(pTq, V(0,n)) = 0(n?F+€)
So, f§ < implies GCLT holds.

= Conjecture (Generalized CLT for convex bodies)

For any isotropic log-concave p, g in R", W
i
dry (mxp, M (0,1)) < 0,(1) with high prob in x~q iang

This version is not symmetric enough. Alternatively:
W (p'q, N (0,n)) = 0,(\Vn)




