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Markov Decision Processes (MDPs)

MDP M = 〈S,A,T ,R, γ, µ0〉
S: (possible infinite) set of states

A: (possible infinite) set of actions

T (s ′|s, a): transition probabilities

R (s, a): immediate reward

γ ∈ (0, 1]: discounted factor

µ0 ∈ P (S): initial state distribution

Terminology

Policy: π(·|s) : S → P(A)

Trajectoy: τ = (s0, a0, r0, s1, a1, r1, . . .)

Return: U(τ) = (1− γ)
∑∞

t=0 γ
tri

Value of policy: v(π) = E [U(τ)]
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Off-policy Policy Evaluation

Historic experiences:

D = {x i}mi=1

x i = (s0, a0, s, a, r , s
′, a′),

with (s0, a0) ∼ µ0π, (s, a, r , s ′) ∼ dD, and a′ ∼ π(·|s ′) where dD is an
unkown distirbution induced by some policies.

Goal: Estimate v̂(D, π) ≈ v(π) = Eτ∼π [U(τ)] without knowing T
and R.

If the behavior policies inducing dD is also unknown, the task is called
bahavior-agnostic OPE.
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Linear Programming for Policy Value

min
Q:S×A→R

(1− γ)Eµ0π [Q (s0, a0)]

Primal s.t. Q (s, a) > R (s, a) + γ · PπQ (s, a) ,

∀ (s, a) ∈ S × A,

max
d :S×A→R+

Ed [r (s, a)]

Dual s.t. d (s, a) = (1− γ)µ0π (s, a) + γ · Pπ∗ d (s, a) ,

∀ (s, a) ∈ S × A,

where the operator Pπ and its adjoint, Pπ∗ , are defined as

PπQ (s, a) := Es′∼T (·|s,a),a′∼π(·|s′)
[
Q
(
s ′, a′

)]
,

Pπ∗ d (s, a) := π (a|s)
∑
s̃,ã

T (s|s̃, ã) d (s̃, ã) .
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DICE Backbone

Lagrangian

ρπ = max
τ>0

min
ν

Eµ0π,dD [` (x ; τ, ν)]

where τ (s, a) := d(s,a)
dD(s,a)

is the stationary DIstribution Corrector Estimation

and

` (x ; τ, ν) := τ(s, a) · r(s, a) + (1− γ) ν (s0, a0) + τ (s, a) (γν (s ′, a′)− ν (s, a))

DICE family

The existing DICE family algorithms, e.g.,
[NCDL19, ZDLS20, UHJ20, ZLW20], are the variants based on this
Lagrangian [YND+20].
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Uncertainty is important

Optimism in the face of uncertainty [LS20]

Optimism in the face of uncertainty leads to risk-seeking algorithms, which
can be used to balance the exploration/exploitation trade-off.

Pessimism in the face of uncertainty [SJ15, BGB20]

In offline reinforcement learning, a safe optimization criterion is to
maximize the worst-case performance among a set of statistically plausible
models
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CoinDICE

Intuition from Bootstrap

Contruct Di by resampling from D
Run DICE estimator on Di , obtaining ρ̂i (π)

Estimate the variance from the set of estimators {ρ̂i (π)}mi=1

This procedure is computational expensive!

Any way to reduce the compuation? YES!lol
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CoinDICE (cont’d)

Optimizing the perturbation

[ln, un] =

[
min
ν

max
τ>0

min
w∈Kf

Ew [` (x ; τ, ν)] , max
τ>0

min
ν

max
w∈Kf

Ew [` (x ; τ, ν)]

]

Kf :=

{
w ∈ Pn−1 (p̂n) , Df (w ||p̂n) 6

ξ

n

}
(1)

Closed-form reweighting

wl = f ′∗

(
η − ` (x ; τ, β)

λ

)
and wu = f ′∗

(
` (x ; τ, β)− η

λ

)
. (2)

Connection to CVaR: With a special f selected, we recover the CVaR
from the lower bound.
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Theoretical Analysis

Asymptotic Coverage

Under mild conditions,

lim
n→∞

P (ρπ ∈ [ln, un]) = P
(
χ2

(1) 6 ξ
)
. (3)

Thus, C f
n,χ2,1−α

(1)

= [ln, un] is an asymptotic (1− α)-confidence interval of

the value of the policy π.

Finite-sample Analysis

With high probability, we have

ρπ ∈
[
ln −O

(
1

n

)
, un +O

(
1

n

)]
. (4)
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Implementation of OFU and PFU

CoinDICE for OFU/PFU

Estimate (β∗u , τ
∗
u ,w

∗
u ) via CoinDICE for optimism. //(β∗l , τ

∗
l ,w

∗
l ) for

pessimism.

Estimate the stochastic approximation to ∇πuDt (πt) . //∇π lDt (πt)
for pessimism.

Natural policy gradient update:
πt+1 = argminπ −〈π,∇πuDt (πt)〉+ 1

ηKL (π||πt).

//πt+1 = argminπ −〈π,∇π lDt (πt)〉+ 1
ηKL (π||πt) for pessimism.

Collect samples E = {x (j) = (s0, s, a, r , s
′)(j)}mj=1 by executing πt+1,

Dt+1 = Dt ∪ E .
//Skip the data collection step in offline setting.

Connection to Experience Replay: with different reweighting scheme,
the expeience replay is for exploration or safe RL.
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Experient Result

FrozenLake Taxi
# trajectories = 50 # trajectories = 100 # trajectories = 20 # trajectories = 50
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Figure 1: Results of CoinDICE and baseline methods on an infinite-horizon version of FrozenLake and Taxi.
In FrozenLake, each dataset consists of trajectories of length 100; in Taxi, each dataset consists of trajectories
of length 500.

CoinDICE are especially narrow while maintaining accurate coverage.
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in
t
e
r
v
a
l
c
o
v
e
r
a
g
e

0.6 0.7 0.8 0.9 0.95

0.4

0.6

0.8

0.6 0.7 0.8 0.9 0.95

0.2

0.4

0.6

0.8

0.6 0.7 0.8 0.9 0.95

0.2

0.4

0.6

0.8

in
t
e
r
v
a
l
lo

g
-w

id
t
h

0.6 0.7 0.8 0.9 0.95

�1

0

1

2

0.6 0.7 0.8 0.9 0.95

�2

�1

0

1

2

0.6 0.7 0.8 0.9 0.95

�2

�1

0

1

Confidence level (1�↵)

CoinDICE (ours)

Bootstrapping

Bernstein

Student t

Expected coverage

Figure 2: Results of CoinDICE and baseline methods on a sim-
ple two-armed bandit. We plot empirical coverage and median
log-width (y-axes) of intervals evaluated at a number of desired
confidence levels (x-axis), as measured over 200 random trials. We
find that CoinDICE achieves more accurate coverage and narrower
intervals compared to the baseline confidence interval estimation
methods.

We now turn to more complicated
MDP environments. We use Frozen-
Lake (Brockman et al., 2016), a highly
stochastic gridworld environment, and
Taxi (Dietterich, 1998), an environment
with a moderate state space of 2 000 ele-
ments. As in (Liu et al., 2018), we modify
these environments to be infinite horizon
by randomly resetting the state upon ter-
mination. The discount factor is � = 0.99.
The target policy is taken to be a near-
optimal one, while the behavior policy is
highly suboptimal.

We follow the same evaluation proto-
col as in the bandit setting, measuring
empirical interval coverage and log-width
over 200 experimental trials for various
dataset sizes and confidence levels. Re-
sults are shown in Figure 1. We find a
similar conclusion that CoinDICE consis-
tently achieves more accurate coverage
and smaller widths than baselines. No-
tably, the baseline methods’ accuracy suf-
fers more significantly compared to the
simpler bandit setting described earlier.

Lastly, we evaluate CoinDICE on
Reacher (Brockman et al., 2016; Todorov et al., 2012), a continuous control environment. In this set-
ting, we use a one-hidden-layer neural network with ReLU activations. Results are shown in Figure 3. To
account for the approximation error of the used neural network, we measure the coverage of CoinDICE

9
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Conclusion

Recap

We proposed a series of estimators for behavior-agnostic confidence
interval estimation.

These estimators can be used for implementing OFU/PFU.

Future work

Regret bound of the OFU with CoinDICE (will release soon!)

Better algorithm for solving DICE.
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Thanks!
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